
Mapping on the Use of Games for Programming Teaching with an Emphasis on

Software Reuse

Diego Castro, Cláudia Werner

COPPE/Computer Systems Engineering Program
Federal University of Rio de Janeiro

Rio de Janeiro, Brazil
{diegocbcastro, werner}@cos.ufrj.br

Abstract—Many works have already approached the use of games
as a teaching method due to several advantages that this strategy
can bring to the current teaching method. Therefore, a study
was previously performed to identify games created for teaching
software reuse fundamentals. However, no work addressing this
problem was identified. Software reuse is an essential area of
software engineering and is commonly associated with program-
ming. Based on this, this article sought to identify works that
had already been done on the use of games for programming
teaching but could be used to teach reuse fundamentals.

Keywords–game; game-based-learning; software reuse; pro-
gramming; systematic mapping.

I. INTRODUCTION

Software Reuse (SR) is the discipline responsible for
creating software systems from pre-existing software [1]. This
concept is not just limited to code reuse; software in this
context can refer to other products, such as modeling, spec-
ifications, test plans, and any other product in the life cycle
of a project. With the correct use of this discipline, it can
provide several positive impacts in a variety of contexts, such
as quality, cost, productivity, code-making performance, rapid
prototyping, reduced code writing, reliability, and interoper-
ability of software [2].

Despite the advantages mentioned, SR is still far from
being used on a large scale; many people reuse software, but
not in a systematic manner. One of the main factors for reuse
not being implemented is the difficulty of education in the area
[3]. Based on this, a study was previously performed to iden-
tify games created for teaching software reuse fundamentals.
However, it was not possible to identify a game specifically
designed for this purpose.

In this initial research, it was observed that software reuse
might be contained in different areas, such as programming
and Software Engineering. Thus, this initial research was
divided into two parts: the first to search for games to teach
software engineering and the other to search for games for
programming teaching with an emphasis on software reuse.
Based on the information provided, this study aims to identify
games that have the purpose of teaching programming with
emphasis/potential for reuse, that is, to find games that were
developed for teaching programming, but could be used to
teach some of the fundamentals of software reuse, such as
logical reasoning development, function development, object
orientation, among others.

The remainder of this paper is presented as follows: Section
II describes the research method used in the systematic map-
ping, Section III shows some results that were found, Section
IV demonstrates an example of how one of the games found
could be used to teach SR, Section ?? shows the threats to
validity, and Section V concludes with the final remarks.

II. RESEARCH METHOD

Systematic mapping is a secondary study method based on
a structured and repeatable process or protocol that explores
studies and provides a result in the form of an overview of
a particular subject [4]. The mapping presented follows the
protocol proposed by Kitchenham [5].

The research process presented in this study covers articles
published by the end of 2018 and aims to conduct a systematic
mapping to identify work that has already been done on games
for programming teaching but could be used to teach software
reuse fundamentals, such as logical reasoning development,
function development, object orientation, among others.
A. Research Questions
• Q1: What is the main advantage / motivation of the use

of games to teaching programming language?
• Q2: What is the disadvantage of the use of games to

teaching programming language?
• Q3: What is the main characteristic of the game used?
• Q4: What was the evaluation method used?

The mapping presented followed well-defined steps so that
it was possible to reach a set of articles that were of interest
to the search [5]. The search string was executed in Scopus as
recommended by other studies [6] [7], and then the inclusion
and exclusion criteria were applied to the set of articles that
were found based on the title, abstract, and full text.

The inclusion criteria chosen were: (1) The article must
be in the context of using games for teaching a programming
language; (2) The article must provide data to answer at least
one of the research questions; (3) The article should be written
in English. The exclusion criteria chosen were: (1) Book
chapters, conference call; (2) Studies that can not be fully
accessed.
B. Search string and Analysis

The definition of the search string was based on the
Population, Intervention, Comparison, Outcome (PICO) struc-
ture [8], using three of the four levels. The search string was
defined by grouping the keywords of the same domain with

1Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

the logical operator “OR” and grouping the two fields with
the logical operator “AND”. However, we chose to use a date
filter, searching only for articles that were published within
five years, aiming to find more recent works in the area [9].
Table I demonstrates the PICO structure used in conjunction
with the search string.

Initially, the search string returned a total of 507 papers.
When analyzed according to the inclusion and exclusion filters,
this number dropped to 17 papers. To minimize the lack
of other search bases, considering that the study was only
performed on Scopus, it was opted to use the snowballing
procedure to minimize article loss, according to Motta et
al. [6] and Matalonga et al. [7]. The approach was applied,
searching for new papers through the references and through
the papers that referenced these works. Thus, 9 more papers
were included, totaling 26 analyzed papers. Table II shows
how these 26 articles were obtained, and Table III shows each
of these articles.

TABLE I. SEARCH STRING

PICO SYNONYMS

Population
Programming language, algorithm experience, algorithm skills,
algorithm alternative, algorithm method, coding experience,
coding skills, coding method, coding alternative

Intervention Tutoring, teach*,instruction, discipline, schooling, education*,
mentoring, course, learn*,train*, syllabus

Comparison Not applicable

Outcome Game*, gami*, play*, “serious games”, edutainment,
“game based learning”, simulation

SEARCH STRING
TITLE-ABS-KEY ((”programming language” OR ”algorithm experience”
OR ”algorithm skills” OR ”algorithm alternative” OR ”algorithm method”

OR ”coding experience” OR ”coding skills” OR ”coding method” OR
”coding alternative”) AND (tutoring OR teach* OR instruction OR

discipline OR schooling OR educat* OR mentoring OR course OR learn*
OR train* OR syllabus) AND (game* OR play* OR ”serious

games” OR gami* OR edutainment) AND (LIMIT-TO (PUBYEAR , 2018)
OR LIMIT-TO (PUBYEAR , 2017) OR LIMIT-TO (PUBYEAR , 2016)

OR LIMIT-TO (PUBYEAR , 2015) OR LIMIT-TO (PUBYEAR , 2014)))

III. RESULTS

Section A demonstrates a discussion of the main results
found in this work, and Section B presents the threats to the
validity of this information exposed.

A. Discussion

The articles found in this study sought to demonstrate
games that could be used in teaching some concepts related
to programming. However, the analysis of the documents was
performed in search of works that could be used to explain
some of the concepts of reuse. From this, works that were not
developed with this context but could be used for this purpose
were also found. Figure 1 groups the articles by location and
year of publication. It is possible to see an increase in the
number of publications over the years and that many countries
are looking for improvements in this area.

The bottom of the image also shows the number of articles
found grouped by game type. However, some papers used more
than one approach. From Figure 1, it is possible to observe that
the most used way to teach programming is through the use
of ”blocks of code”. By abstracting this idea it is possible
to consider the concept of software components that is an
important research area of SR and aims to build software from
pre-produced components [10].

Figure 1. General analysis of the articles found.

Q1: What is the main advantage / motivation of the use
of games to teaching programming language?

Using games as a reinforcement tool to teach skills can be
a very beneficial strategy for students. They have proven to be
a useful tool to complement conventional learning methods.
Games allow visualizing concepts that may be too abstract.
They also help you get acquainted with the knowledge and
methods that may be tedious to study, offering a cycle of
challenges and rewards that drives the learning experience [11].

Many authors claim that games have several characteristics
that can benefit teaching [12] [13]. They have already been
used as successful educational tools in many different fields
and topics, such as engineering, learning languages, theater
and even health [14]. The advantages include: increased stu-
dent motivation and engagement, enhancement of pre-existing
knowledge, increased performance in practical activities, im-
mediate feedback, fun and satisfaction, among others [11] [15–
19].

Q2: What is the disadvantage of the use of games to
teaching programming language?

Despite the advantages offered by games as a teaching
method, there are also some issues involving this approach.
The first problem found was the comparison of the level of
learning provided by a game as a teaching method and a class
with textual programming. Despite the advantages offered by
games, textual programming can still convey better content
[20].

Another problem identified was the complexity of the game
created. If the teaching tool used is too complicated, students
can reduce the time spent solving problems to focus more on
the tool. This is an unwanted distraction, and any game used
should be easy to use, allowing the student to focus on solving
the problem rather than how to use the game [21].

Finally, the last problem identified was that although games
provide several advantages, they are not seen as self-sufficient.

2Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

TABLE II. ANALYSIS OF THE PAPERS

Main Study Snowballing backward Snowballing Forward
Activity Result Number of paper Result Number of paper Result Number of paper
First Execution 507 added 507 389 added 389 123 added 123
Repeated Papers 501 withdraw 501 294 withdraw 95 16 withdraw 107
Papers in another language 0 withdraw 501 14 withdraw 81 13 withdraw 94
Remove conference / workshops 16 withdraw 485 0 withdraw 81 0 withdraw 94
Remove books 0 withdraw 485 0 withdraw 81 0 withdraw 94
Remove by title 368 withdraw 117 46 withdraw 35 58 withdraw 36
Remove by abstract 83 withdraw 34 17 withdraw 18 18 withdraw 18
Papers not found 0 withdraw 34 0 withdraw 18 0 withdraw 18
Remove by full paper 17 withdraw 17 12 withdraw 6 13 withdraw 3
Total papers included 17 papers 6 papers 3 papers
Extracted Papers 26 papers

TABLE III. TRACEABILITY MATRIX.

Title Year Q1 Q2 Q3 Q4
Perceptions of Scratch programming among secondary school students in KwaZulu-Natal, South Africa 2018 X X X
Robo3: A Puzzle Game to Learn Coding 2018 X X X X
Improving programming skills in engineering education through problem-based game projects with Scratch 2018 X X X
Introducing novice programmers to functions and recursion using computer games 2018 X X X
Introducing programming using “scratch” and “greenfoot” 2018 X X X
Developing Educational 3D Games With StarLogo: The Role of Backwards Fading in the Transfer of
Programming Experience 2018 X X X X

Learning to think and practice computationally via a 3D simulation game 2018 X X X
Design and implementation of Robo3 : an applied game for teaching introductory programming 2017 X X X
A cross-cultural review of lightbot for introducing functions and code reuse 2017 X X
Using Digital Game as Compiler to Motivate C Programming Language Learning in Higher Education 2017 X X X
Cubely: Virtual reality block-based programming environment 2017 X X X
Analysis of the learning effects between text-based and visual-based beginner programming environments 2017 X X X
Visual programming language for model checkers based on google blockly 2017 X X X
Educational resource based on games for the reinforcement of engineering learning programming
in mobile devices 2016 X X X

Teaching abstraction, function and reuse in the first class of CS1 - A lightbot experience 2016 X X X
From Alice to Python Introducing text-based programming in middle schools 2016 X X X
Visual programming languages integrated across the curriculum in elementary school: A two year case
study using Scratch” in five schools 2016 X X X

Building a Scalable Game Engine to Teach Computer Science Languages 2015 X X X
A mobile-device based serious gaming approach for teaching and learning Java programming 2015 X X
Coding with Scratch: The design of an educational setting for Elementary pre-service teachers 2015 X X X
Droplet, a Blocks-based Editor for Text Code 2015 X X X
Integrating Droplet into Applab – Improving the usability of a blocks-based text edit 2015 X X X
The development of a virtual learning platform for teaching concurrent programming languages in
secondary education: The use of open Sim and Scratch4OS 2014 X X X X

Effects of using Alice and Scratch in an introductory programming course for corrective instruction 2014 X X X
A structured approach to teaching recursion using cargo-bot 2014 X X X
The Effects of Teaching Programming via Scratch on Problem Solving Skills: A Discussion from
Learners, Perspective, Informatics in Education 2014 X X X

Professional follow-up and feedback on the course are required
to solve any problem that may arise throughout the learning
process [21].

Q3: What is the main characteristic of the game used?
This study identified several games that sought to teach

programming through increased motivation and engagement
through fun. Most of these games were designed to be used by
users with minimal or no knowledge of programming language
[22].

The first game found was LightBot, which is a game to
teach programming logic and has features such as multi-level,
difficulty progression, feedback, challenges, use of similar

tasks, concepts of functions, abstraction, flow control, recur-
sion and code reuse [15] [16] [19]. Another game very similar
to the one described above is Cargo-Bot, which has the same
characteristics, but with other gameplay that revolves around
a crane that moves and stacks a set of colored boxes. Players
write small programs to move boxes from one initial setup to
another [23]. Another game called Robo3 was found that had
characteristics very similar to those described [11].

Another game very similar to the ones listed above was a
game designed to teach Java programming that, to advance the
levels, the player needs to overcome different levels. As the
player surpasses these levels, he or she can progress through
the story, unlocking new elements and gaining experience

3Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

points to unlock new content [22].
Another game found was Lost in Space, which includes,

among other components, a game rules system, a physics
engine, and a rendering engine. The game screen is divided
into two parts. The left side containing the code interpreter
text area and a help window and on the other side, the game
phase. Through this game, some features were highlighted,
such as obstacles, code interpreter (pseudocode of the game),
collisions, movement, enemy and attack system [14].

In this research, we also identified some visual program-
ming languages that are not considered as games directly, but
that uses ”block” approach to building programs. The first
two to be identified were Alice [24] and Scratch [17], which
are block-based visual programming languages designed to
promote media manipulation for new programmers. From these
languages, it is possible to upload media projects and scripts,
animated stories, games, book reports, greeting cards, music
videos, tutorials, simulations, and art and music projects. Two
other languages very similar to those described are StarLogo
TNG [20] and Droplet [25] [26], which are also drag-and-drop
visual languages.

Greenfoot is an integrated tool that aims to teach object-
oriented programming. Also, the tool allows teachers to intro-
duce the most essential and fundamental concepts of object
orientation in an easily understandable way [27]. Finally, the
last visual language found is called Google Blockly [28],
which is a library for building visual programming editors.

Finally, another feature that was used to create these games
was the use of virtual and augmented reality. The Cubely game
made use of these technologies to develop an idea that blended
block programming concepts and the Minecraft game [29].

Q4: What was the evaluation method used?
Several evaluation methods were identified in this research.

However, in general, all evaluations have a questionnaire
applied to a specific population after using the tool to validate
it [20] [24] [28].

Another possible means of the evaluation was the use of
control groups where one group used the tool, and the other
did not, and the same questionnaire was applied to both groups
[14]. Through this assessment, it is possible to find out if
there was a gain of experience through the tool use since it is
possible to compare the results of the two groups.

The last evaluation method found was about the use of the
tool as part of the discipline — the tool as a complement to
the teaching of programming [30].

To conclude, games can be a new method to complement
the current teaching method due to its main advantages, such
as increased practice and engagement through challenges,
rewards, fun, and feedback. However, it is still something new
that needs attention due to problems such as the complexity
of the game that can affect learning, and the level of learning
provided by games is still lower than current teaching methods.

B. Threats to Validity
Through a critical analysis of the mapping, it is possible

to perceive some threats that may have affected the final result
of the work. The first to be highlighted is about the period

in which the mapping was performed, collecting information
from just five years. The second threat is the problem of
interpreting the information found, which is up to the author
to understand the game found and think of a way that could
be applied in the teaching of SR.

IV. REUSING GAMES TO TEACH SR

This mapping found several games; however, none of them
was produced to teach SR. Nevertheless, these games, with
only a few or no modifications, could be used to explain certain
concepts of software reuse, such as the importance of reusing,
software components or code reuse.

Thinking about this idea of teaching SR, the platforms
of Scratch, Alice, Droplet, and Google Blockly could, for
example, be used to teach code reuse. All code that is generated
with these platform is made from pre-produced blocks that
resemble the idea of pre-produced components.

Robo3 and Lightbot are of puzzle type and are very similar,
the general idea of these games is to create sequences of
activities (which are described as functions) that perform a
task, such as taking the avatar from point A to point B.
Thinking about this type of games, these functions can be used
in the game several times, teaching the student the concept of
code reuse. Cubely is a Minecraft-based game; however, its
mechanics are very similar to the two games described earlier
and could also be used to teach code reuse.

V. CONCLUSION AND FUTURE WORK

For many people who are not directly linked to the software
reuse area, they refer to it as just code. Due to this fact,
this mapping sought to find programming teaching games that
could be used to teach reuse concepts that are often abstract to
many students. From this, it was possible to identify six games
and six block-based programming languages. The game, and
the visual programming language that were identified in more
articles were LightBot [15] and Scratch [17], respectively.
The main characteristics found were the use of rules, phases,
difficult progression, feedback, challenges, and the use of
similar tasks in sequence.

As mentioned before, software reuse is inserted in several
contexts, and the most common are propagation and engineer-
ing. This work sought to identify games that were created to
teach programming but could be used to explain some of the
fundamentals of software reuse, thus looking at works from the
first context. To better understand how these games are used as
teaching methods, it is intended to perform another mapping
to identify games that aim to teach software engineering, since
as software reuse is inserted in the engineering and possibly
similar features can be used to the teaching of the two subjects.

Although this work has found some games that could be
used to teach some reuse fundamentals such as components,
functions, and object orientation, none of these games were
specificaly designed to teach software reuse. Therefore, based
on the characteristics that were found (multi-level, difficult
progression, feedback, challenges, among others), it is intended
to create a game with the specific purpose of software reuse
teaching.

4Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

REFERENCES

[1] C. W. Krueger, “Software reuse,” ACM Computing Surveys (CSUR),
vol. 24, no. 2, 1992, pp. 131–183.

[2] J. Sametinger, Software engineering with reusable components.
Springer Science & Business Media, 1997.

[3] N. Niu, D. Reese, K. Xie, and C. Smith, “Reuse a” software reuse”
course,” in American Society for Engineering Education. American
Society for Engineering Education, 2011.

[4] I. Steinmacher, A. P. Chaves, and M. A. Gerosa, “Awareness support in
distributed software development: A systematic review and mapping of
the literature,” Computer Supported Cooperative Work (CSCW), vol. 22,
no. 2-3, 2013, pp. 113–158.

[5] B. Kitchenham, “Procedures for performing systematic reviews,” Keele,
UK, Keele University, vol. 33, no. 2004, 2004, pp. 1–26.

[6] R. C. Motta, K. M. de Oliveira, and G. H. Travassos, “Characterizing
interoperability in context-aware software systems,” in 2016 VI Brazilian
Symposium on Computing Systems Engineering (SBESC). IEEE, 2016,
pp. 203–208.

[7] S. Matalonga, F. Rodrigues, and G. H. Travassos, “Characterizing testing
methods for context-aware software systems: Results from a quasi-
systematic literature review,” Journal of Systems and Software, vol. 131,
2017, pp. 1–21.

[8] M. Petticrew and H. Roberts, Systematic reviews in the social sciences:
A practical guide. John Wiley & Sons, 2008.

[9] S. Jiang, H. Zhang, C. Gao, D. Shao, and G. Rong, “Process simulation
for software engineering education,” in Proceedings of the 2015 Inter-
national Conference on Software and System Process. ACM, 2015, pp.
147–156.

[10] G. Sindre, E.-A. Karlsson, and T. Stålhane, “Software reuse in an
educational perspective,” in SEI Conference on Software Engineering
Education. Springer, 1992, pp. 99–114.

[11] F. Agalbato, “Design and implementation of robo3: an applied game for
teaching introductory programming,” Scuola di Ingegneria Industriale e
dell’Informazione, 2017.

[12] T. Jordine, Y. Liang, and E. Ihler, “A mobile-device based serious gaming
approach for teaching and learning java programming,” in 2014 IEEE
Frontiers in Education Conference (FIE) Proceedings. IEEE, 2014, pp.
1–5.

[13] R. Atal and A. Sureka, “Anukarna: A software engineering simulation
game for teaching practical decision making in peer code review.” in
QuASoQ/WAWSE/CMCE@ APSEC, 2015, pp. 63–70.

[14] Á. Serrano-Laguna, J. Torrente, B. M. Iglesias, and B. Fernández-
Manjón, “Building a scalable game engine to teach computer science lan-
guages,” IEEE Revista Iberoamericana de Tecnologias del Aprendizaje,
vol. 10, no. 4, 2015, pp. 253–261.

[15] E. V. Duarte and J. L. Pearce, “A cross-cultural review of lightbot for
introducing functions and code reuse,” Journal of Computing Sciences
in Colleges, vol. 33, no. 2, 2017, pp. 100–105.

[16] R. Law, “Introducing novice programmers to functions and recursion
using computer games,” in European Conference on Games Based
Learning. Academic Conferences International Limited, 2018, pp. 325–
334.

[17] D. Topalli and N. E. Cagiltay, “Improving programming skills in engi-
neering education through problem-based game projects with scratch,”
Computers & Education, vol. 120, 2018, pp. 64–74.

[18] N. Pellas and S. Vosinakis, “Learning to think and practice computation-
ally via a 3d simulation game,” in Interactive Mobile Communication,
Technologies and Learning. Springer, 2017, pp. 550–562.

[19] M. Aedo Lopez, E. Vidal Duarte, E. Castro Gutierrez, and A. Paz Valder-
rama, “Teaching abstraction, function and reuse in the first class of cs1:
A lightbot experience,” in Proceedings of the 2016 ACM Conference
on Innovation and Technology in Computer Science Education. ACM,
2016, pp. 256–257.

[20] N. Boldbaatar and E. Şendurur, “Developing educational 3d games with
starlogo: The role of backwards fading in the transfer of program-
ming experience¡? aq1?¿,” Journal of Educational Computing Research,
vol. 57, no. 6, 2019, pp. 1468–1494.

[21] N. Pellas, “The development of a virtual learning platform for teaching
concurrent programming languages in the secondary education: The use
of open sim and scratch4os,” Journal of e-Learning and Knowledge
Society, vol. 10, no. 1, 2014, pp. 129–143.

[22] A. Sierra, T. Ariza, F. Fernández-Jiménez, J. Muñoz-Calle, A. Molina,
and Á. Martı́n-Rodrı́guez, “Educational resource based on games for the
reinforcement of engineering learning programming in mobile devices,”
in 2016 Technologies Applied to Electronics Teaching (TAEE). IEEE,

2016, pp. 1–6.
[23] E. Lee, V. Shan, B. Beth, and C. Lin, “A structured approach to teaching

recursion using cargo-bot,” in Proceedings of the tenth annual conference
on International computing education research. ACM, 2014, pp. 59–66.

[24] C.-K. Chang, “Effects of using alice and scratch in an introductory
programming course for corrective instruction,” Journal of Educational
Computing Research, vol. 51, no. 2, 2014, pp. 185–204.

[25] D. Bau, “Droplet, a blocks-based editor for text code,” Journal of
Computing Sciences in Colleges, vol. 30, no. 6, 2015, pp. 138–144.

[26] D. A. Bau, “Integrating droplet into applab—improving the usability of
a blocks-based text editor,” in 2015 IEEE Blocks and Beyond Workshop
(Blocks and Beyond). IEEE, 2015, pp. 55–57.

[27] H. Chandrashekar, A. G. Kiran, B. Uma, and P. Sunita, “Introducing
programming using “scratch” and “greenfoot”,” Journal of Engineering
Education Transformations, 2018.

[28] S. Yamashita, M. Tsunoda, and T. Yokogawa, “Visual programming
language for model checkers based on google blockly,” in Interna-
tional Conference on Product-Focused Software Process Improvement.
Springer, 2017, pp. 597–601.

[29] J. Vincur, M. Konopka, J. Tvarozek, M. Hoang, and P. Navrat,
“Cubely: Virtual reality block-based programming environment,” in
Proceedings of the 23rd ACM Symposium on Virtual Reality Software
and Technology, ser. VRST ’17. New York, NY, USA: ACM, 2017,
pp. 84:1–84:2. [Online]. Available: http://doi.acm.org/10.1145/3139131.
3141785

[30] L. A. Vaca-Cárdenas, F. Bertacchini, A. Tavernise, L. Gabriele,
A. Valenti, D. E. Olmedo, P. Pantano, and E. Bilotta, “Coding with
scratch: The design of an educational setting for elementary pre-service
teachers,” in 2015 International Conference on Interactive Collaborative
Learning (ICL). IEEE, 2015, pp. 1171–1177.

5Copyright (c) IARIA, 2020. ISBN: 978-1-61208-776-4

SOFTENG 2020 : The Sixth International Conference on Advances and Trends in Software Engineering

