
Software Bug Prediction Based on Semi-definite Logistic Regression Model

Tadashi Dohi, Jingchi Wu, and Hiroyuki Okamura

Graduate School of Advanced Science and Engineering, Hiroshima University
Higashi-Hiroshima 739-8527, Japan

email: {dohi, d220580, okamu}@hiroshima-u.ac.jp

Abstract—In software bug prediction to identify bug-prone
modules, several machine learning techniques have been used
in past. However, it has been known that almost all of them
were not explainable and could not be applied to the program
understanding, because the contributions of software metrics
were unclear in such black box techniques. In this article, we aim
at overcoming the problems in an explainable logistic regression
model, called multicollinearity and interaction, and apply the
semi-definite logistic regression model to identify software bug-
prone modules. More specifically, we use three actual software
development project data sets to evaluate the F-score as well
as precision and recall, and compare our semi-definite logistic
regression model with the classical logistic one, in terms of
the predictive performance of software bug-prone modules. It
is shown that our semi-definite logistic regression model involves
the common logistic regression model as a special case and can
improve the predictive performances on the F-score.

Keywords-software bug prediction; bug-prone module; logistic
regressions; semi-definite programming; discrimination problem;
F-score.

I. INTRODUCTION

In testing and maintenance phases of software development,
identification of software bug-prone modules containing bugs
is crucial for both localizing software bugs on a computer
program and optimizing the software test process. Since this
problem is formulated as a typical discrimination problem to
identify software bug-prone modules, several machine learning
techniques have been used in past, where the underlying data
are the binary data to denote whether each module is bug-
prone (1) or not (0), and the features called software metrics to
characterize the quality attributes of each module, such as the
module’s size and program complexity. Various discrimination
and data mining techniques, including logistic regressions [2]
[14], support vector machines [4], naive Bayes [15], Bayesian
networks [3] [16], random forest [5], multilayer perceptron
neural networks [6], convolutional neural networks [1], and
spam filtering technique [13], among others [12] [17], have
been directly used to identify software bug-prone modules.
For the recent survey on software bug prediction, see Li et al.
[11].

However, it has been known that almost all of them were
not explainable and could not be applied to the program
understanding, because the contributions of software metrics
were unclear in such black box techniques. In fact, through
a careful analysis on the contribution of each software metric
in the bug prediction, it would be possible to improve the test
efficiency by localizing software bugs from the code metrics
such as the number of lines of code, cyclomatic numbers,

the number of operators measured in each module develop-
ment. In the view point of program understanding, it is quite
important to investigate the relationship between bug-prone
modules and explanatory variables (features), and to infer the
presence/absence of software bugs in each module. If there is
a clear causal relationship with the explanatory variables in
an explainable method as logistic regression models, we may
design the test cases efficiently according to the contribution
of the metrics.

Unfortunately, it should be noted that the classical logistic
regression model could not provide satisfactory bug-prediction
results in terms of predictive performances [2] [14], compared
to the typical deep machine learning techniques. Even for the
explainable models, we need to carefully check not only the
independence between explanatory variables but also multi-
collinearity and interaction in the regression-based approach.
Konno et al. [8] pointed out in the problem of estimating
bankruptcy probability from financial metrics in companies
that the logistic regression model used conventionally deals
with the metrics that have a monotonic relationship, where
the bankruptcy probability increases (decreases) as the values
of the financial metrics increase (decrease). In the financial
bankruptcy problem, it is implicitly assumed that there is no
interaction on effects of each explanatory variable as a finan-
cial metric on the bankruptcy probability, but generally, the
impact of explanatory variables on the bankruptcy probability
may vary depending on the size of the explanatory variable.

Although the conventional logistic regression model, being
simple and low in computational cost, is frequently applied
to many real-world discrimination problems by devising the
selection of explanatory variables and the classification of the
dependent variable groups, there are theoretical and empirical
limitations on the explainable logistic regression model. Konno
et al. [8] proposed a semi-definite logistic regression model
and attempted to solve large-scale semi-definite logistic regres-
sion problems in real-time [10] by applying a few optimization
techniques such as the cutting-plane method [7] and the two-
stage method [9].

In this article, we aim at overcoming the problems in a
classical logistic regression model for software bug predic-
tion, and apply the semi-definite logistic regression model to
identify software bug-prone modules. More specifically, we
use three actual software development project data sets, and
evaluate the predictive performance on F-score, as well as
precision and recall. We compare our semi-definite logistic
regression model with the classical logistic regression model

11Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

in the context of software bug prediction. It is shown that our
semi-definite logistic regression model involves the common
logistic regression model as a special case and can improve
the predictive performances on the F-score in the software bug
prediction.

The remaining part of this article is organized as follows.
In Section II, we describe a software bug prediction problem
by means of the logistic regression model. Section III for-
mulates a semi-definite logistic regression and summarizes a
variable selection method. Section IV is devoted to numerical
experiments, where the underlying data sets are given and
the predictive performances between two logistic regression
models are compared. Finally the article is concluded with
some remarks in Section V.

II. SOFTWARE BUG PREDICTION

Suppose that there are N software modules in the module
testing. Let xi = (xi1, xi2, . . . , xin) denote the feature vector
of the i (= 1, 2, ..., N)-th software module, where n types of
features, called software metrics, are available in the software
development. Define the probability that the i-th module
contains any software bug by f(xi) as a function of the
feature vector xi, where f(·) denotes a nonlinear function.
In the nonlinear equation yi = f(xi) for a given yi, it is
not possible to directly observe the probability of a module
containing software bugs in advance, so that the information
about the presence/absence of software bugs in each module
is used post-hoc. Define the binary random variable Yi with
the realization yi in the following:

Yi =

{
1, if module i contains software bugs,
0, if module i does not contain software bugs.

(1)

There are various methods to formulate the above discrimi-
nation problem. Among them, the logistic regression model
is easy to understand in terms of the formulation and the
low computation cost. In the logistic regression model, the
regression function f(xi) is given by

f(xi) =
exp(Zi)

1 + exp(Zi)
, (2)

where exp(Zi) = βTxi + β0 denotes the random vari-
ables representing the tendency of bug presence, β =
(β1, β2, . . . , βn) is the regression coefficient vector, β0 is a
scalar constant, and T is the transpose. Since the bug-prone
probability f(xi) = f(xi;β, β0) is given by a function of xi,
it turns out that the dependent variable becomes a monotonic
function with respect to each component of xi.

Once the binary data and the software metric data
(yi,xi) (i = 1, 2, . . . , N) are given, the log likelihood
function is obtained as

lnL(β, β0) =

N∑
i=1

{
yi ln f(xi;β, β0)

+ (1− yi) ln(1− f(xi;β, β0))
}
. (3)

Then the problem is to seek the maximum likelihood estimate
(β̃, β̃0) = argmax lnL(β, β0).

As mentioned in Section I, it is known that the logistic
regression has several limitations. First, it is assumed that the
larger (smaller) the value of each explanatory variable, the
larger (smaller) the predicted probability yi becomes. Second,
it is assumed that the elements of each explanatory variable are
independent of each other, and there is no interaction effects
of each explanatory variable on the bug-prone probability. In
the actual software bug prediction, for instance, an increase
in the number of comment lines on a program is implicitly
assumed as one of the software metrics increases the bug-
prone probability. However, this property may not always hold,
because insertion of a certain type of detailed comments may
increase the understandability of the program, and may re-
duce the bug-prone probability efficiently. Furthermore, among
many software metrics, the relationship between the lines of
code and the total number of operators on the program may be
unlikely to be independent. This is because an increase in the
lines of codes may naturally tend to increase the total number
of operators.

III. SEMI-DEFINITE LOGISTIC REGRESSION APPROACH

The semi-definite logistic regression model was proposed
in the reference [8]. For the real symmetric matrix B ∈
Rn×n, the bug-prone probability f(xi) = f(xi;B, β0) (i =
1, 2, . . . , N) is also defined by Eq.(2), where

Zi = xT
i Bxi + βTxi + β0, (4)

B = BT . (5)

In our semi-definite logistic regression model, it should be
noted that Zi is a quadratic form of xi. Hence, it is possible to
incorporate non-monotonicity and interaction effects between
explanatory variables.

Several optimization algorithms have already been proposed
to solve the semi-definite logistic regression problems [7] [8]
[9] [10]. As the problem size in dealing with the software bug
prediction increases, it tends to be difficult to solve the max-
imum likelihood estimation problem. Fortunately, since our
problem size is relatively small comparing with the financial
bankruptcy problem, we can handle the maximum likelihood
estimation for the semi-definite logistic regression model, by
applying the quadratic programming algorithm implemented
in the statistical software, R, without using the cutting-plane
method [7] and the two-stage method [9]. On the other hand,
it should be emphasized that all the explanatory variables may
not always be useful for discriminating the software bug-prone
modules. Generally, it is important to select a small number
of useful explanatory features from all available ones. In this
article, we use the well-known Akaike information criterion
(AIC):

AIC =− 2 lnL(B̃, β̃0)

+ 2× (number of free parameters in the model)
(6)

12Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

TABLE I
DATA SETS.

No. modules (N) Bug inclusion rate No. metrics (n)
jm1 7782 21.05% 21
pc1 705 8.65% 37
cm1 327 12.80% 37

for the maximum likelihood estimate (B̃, β̃0) to determine the
explanatory variables employed in the analysis. A smaller AIC
indicates better model fit.

In general, there are two variable selection methods; the
variable reduction method and variable increase method under
the AIC criterion. We apply the variable reduction method to
the semi-definite logistic regression model. The main reason
why the variable increase method is not used here is that the
number of arbitrary parameters in the semi-definite logistic
regression model becomes large in the order of squares, and
results in enormous computation cost, so our semi-definite
logistic regression model penalizes by applying the variable
increase method. Concretely, we estimate the parameters (re-
gression coefficients) using all software metrics first, and then
remove unnecessary feature one by one so as to minimize the
AIC. We repeat this procedure again and again until the AIC
value can be reduced no longer. In summary, we describe the
procedure for our variable reduction method as follows.

Step 1: For (yi,xi) (i = 1, 2, . . . ,m), where m is the num-
ber of training data, apply a semi-definite quadratic
programming to the semi-definite logistic regres-
sion model, derive the maximum likelihood estimate
(β̃, β̃0), and calculate the AIC.

Step 2: Apply the variable reduction method, remove one
unnecessary software metric with minimum regres-
sion coefficient and set m− 1 → m.

Step 3: Go to Step 1 and calculate the AIC’ with the updated
m.

Step 4: If AIC > AIC’, then Go to Step 1, otherwise, and
set m → m− 1 and Stop the procedure.

IV. NUMERICAL EXPERIMENTS

A. Data Sets

Data sets used here are from NASA’s software development
projects, namely, jm1, pc1, and cm1. The number of modules,
defect density, and the number of software metrics used in the
experiments for each data set are shown in Tables I to III.1

B. Predictive Performances

We compare the predictive performances of four bug predic-
tion models; the standard logistic regression model, the semi-
definite logistic regression model, and respective models re-
fined by variable reduction. Hereafter, we denote the standard
logistic regression as Logit-11, the standard logistic regression

1The data sets were reported in NASA/WVU IV &V Facility, Metrics Data
Program. http://mdp.ivv.nasa.gov/.

TABLE II
SOFTWARE METRICS IN JM1.

Software metrics
xi1 LOC BLANK
xi2 BRANCH COUNT
xi3 LOC CODE AND COMMENT
xi4 LOC COMMENTS
xi5 CYCLOMATIC COMPLEXITY
xi6 DESIGN COMPLEXITY
xi7 ESSENTIAL COMPLEXITY
xi8 LOC EXECUTABLE
xi9 HALSTEAD CONTENT
xi10 HALSTEAD DIFFICULTY
xi11 HALSTEAD EFFORT
xi12 HALSTEAD ERROR EST
xi13 HALSTEAD LENGTH
xi14 HALSTEAD LEVEL
xi15 HALSTEAD PROG TIME
xi16 HALSTEAD VOLUME
xi17 NUM OPERANDS
xi18 NUM OPERATORS
xi19 NUM UNIQUE OPERANDS
xi20 NUM UNIQUE OPERATORS
xi21 LOC TOTAL
xi22 DEFECTIVE

with variable reduction method Logit-12, the semi-definite lo-
gistic regression model Logit-21, and the semi-definite logistic
regression model with variable reduction method Logit-22.
In our experiments, the data sets are randomly split into the
training data and the validation data. Especially, three cases
with different training data sizes; 25%, 50%, and 75% of the
whole data, are considered. In each case, the remaining 75%,
50% and 25% data sets are used for validation/prediction.

To evaluate the bug-prone probability, we apply the F-
score which is a harmonic mean of precision and recall,
where precision indicates a proportion of correct results in
the prediction, and recall is a proportion of how much of the
correct answers could be predicted. That is, we have

Precision =
True Positive

True Positive + False Positive
,

Recall =
True Positive

True Positive + False Negative
,

(7)

where True Positive is the number of data that could be
correctly predicted to contain software bugs, False Positive is
the number of data incorrectly predicted to contain software
bugs, and False Negative is the number of data incorrectly
predicted to contain no software bugs. Then F-score is defined
by

F -score =
2× Precision × Recall

Precision + Recall
. (8)

Note that F-score is given by a real number between 0 and
1, and can be interpreted such that the higher the value of
F-score the higher the predictive performance of the model.

In order to predict the bug-proneness of each software
module, it is necessary to choose a threshold for judgement
of bug proneness. In our experiments we set five threshold
values; 0.3, 0.4, 0.5, 0.6, and 0.7. If the bug-prone probability
is greater than a given threshold, then the resulting software

13Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

TABLE III
SOFTWARE METRICS IN PC1 AND CM1.

Software metrics
xi1 LOC BLANK
xi2 BRANCH COUNT
xi3 CALL PAIRS
xi4 LOC CODE AND COMMENT
xi5 LOC COMMENTS
xi6 CONDITION COUNT
xi7 CYCLOMATIC COMPLEXITY
xi8 CYCLOMATIC DENSITY
xi9 DECISION COUNT
xi10 DECISION DENSITY
xi11 DESIGN COMPLEXITY
xi12 DESIGN DENSITY
xi13 EDGE COUNT
xi14 ESSENTIAL COMPLEXITY
xi15 ESSENTIAL DENSITY
xi16 LOC EXECUTABLE
xi17 PARAMETER COUNT
xi18 HALSTEAD CONTENT
xi19 HALSTEAD DIFFICULTY
xi20 HALSTEAD EFFORT
xi21 HALSTEAD ERROR EST
xi22 HALSTEAD LENGTH
xi23 HALSTEAD LEVEL
xi24 HALSTEAD PROG TIME
xi25 HALSTEAD VOLUME
xi26 MAINTENANCE SEVERITY
xi27 MODIFIED CONDITION COUNT
xi28 MULTIPLE CONDITION COUNT
xi29 NODE COUNT
xi30 NORMALIZED CYLOMATIC COMPLEXITY
xi31 NUM OPERANDS
xi32 NUM OPERATORS
xi33 NUM UNIQUE OPERANDS
xi34 NUM UNIQUE OPERATORS
xi35 NUMBER OF LINES
xi36 PERCENT COMMENTS
xi37 LOC TOTAL
xi38 DEFECTIVE

module is judged to contain software bugs. The prediction
results obtained in the experiments are shown in Tables VI to
XII. In these tables, the largest value in each table is denoted
by a double underline, and the largest value in each threshold
level is singly underlined.

In the data set, jm1, our semi-definite logistic model with
variable reduction could show the highest F-scores when
estimating the parameters using 75% of the training data. Fur-
thermore, in Tables IV to VI, the standard logistic regression
showed the highest F-score with 25% of the training data,
but our semi-definite logistic regression model with variable
reduction could give the higher performances on F-score when
estimating parameters using 50% and 75% of the training data.

In the data set, pc1, it is observed that our semi-definite
logistic regression model with variable reduction provided the
highest F-score with 75% of the training data. Also, in all
cases of models in Tables VII to IX, when estimating the
model parameters with 25%, 50% and 75% of the training
data, the semi-definite logistic regression model with variable
reduction could give the highest F-score evidently.

Finally, in the data set, m1, it can be seen that our semi-
definite logistic regression model with variable reduction gave

TABLE IV
JM1 (25% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.445 0.307 0.363

Logit-12 0.451 0.298 0.357
Logit-21 0.305 0.296 0.291
Logit-22 0.443 0.304 0.360

0.4 Logit-11 0.508 0.186 0.271
Logit-12 0.514 0.176 0.261
Logit-21 0.318 0.288 0.292
Logit-22 0.510 0.182 0.267

0.5 Logit-11 0.550 0.111 0.184
Logit-12 0.546 0.108 0.179
Logit-21 0.330 0.287 0.292
Logit-22 0.539 0.113 0.187

0.6 Logit-11 0.592 0.070 0.125
Logit-12 0.587 0.072 0.127
Logit-21 0.325 0.288 0.290
Logit-22 0.605 0.075 0.132

0.7 Logit-11 0.648 0.046 0.086
Logit-12 0.640 0.046 0.086
Logit-21 0.317 0.286 0.285
Logit-22 0.652 0.050 0.093

TABLE V
JM1 (50% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.453 0.309 0.367

Logit-12 0.462 0.307 0.368
Logit-21 0.330 0.319 0.311
Logit-22 0.432 0.326 0.371

0.4 Logit-11 0.513 0.182 0.268
Logit-12 0.518 0.176 0.262
Logit-21 0.336 0.279 0.289
Logit-22 0.509 0.183 0.268

0.5 Logit-11 0.559 0.105 0.176
Logit-12 0.558 0.105 0.176
Logit-21 0.325 0.288 0.281
Logit-22 0.557 0.115 0.190

0.6 Logit-11 0.609 0.069 0.123
Logit-12 0.610 0.066 0.119
Logit-21 0.374 0.240 0.261
Logit-22 0.631 0.071 0.128

0.7 Logit-11 0.685 0.043 0.082
Logit-12 0.682 0.044 0.083
Logit-21 0.356 0.276 0.272
Logit-22 0.646 0.046 0.086

the highest F-score with 25% of the training data. In Tables
X to XII, the standard logistic regression model gave the
highest F-score with 50% of the training data, but our semi-
definite logistic regression model with variable reduction could
show the highest predictive performances when estimating
parameters using 25% and 75% of the training data.

In comparison between the conventional logistic regression
model and the semi-definite regression model, it is found that
our novel approach could not always outperform the classical
one. However, our experimental results showed that in most
cases across all data sets, the semi-definite logistic regression
models could exhibit higher F-score than the conventional
logistic regression models. As shown in Tables IV to XII,
even though the predictive performances of our semi-definite

14Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

TABLE VI
JM1 (75% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.459 0.313 0.372

Logit-12 0.457 0.310 0.369
Logit-21 0.343 0.325 0.315
Logit-22 0.453 0.331 0.382

0.4 Logit-11 0.514 0.179 0.265
Logit-12 0.520 0.177 0.264
Logit-21 0.337 0.300 0.294
Logit-22 0.515 0.187 0.274

0.5 Logit-11 0.563 0.104 0.175
Logit-12 0.570 0.104 0.175
Logit-21 0.346 0.288 0.284
Logit-22 0.572 0.103 0.175

0.6 Logit-11 0.632 0.066 0.119
Logit-12 0.630 0.067 0.120
Logit-21 0.364 0.294 0.284
Logit-22 0.655 0.066 0.120

0.7 Logit-11 0.686 0.042 0.080
Logit-12 0.691 0.043 0.081
Logit-21 0.351 0.260 0.260
Logit-22 0.731 0.044 0.082

TABLE VII
PC1 (25% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.226 0.348 0.269

Logit-12 0.239 0.342 0.278
Logit-21 0.113 0.494 0.183
Logit-22 0.286 0.462 0.351

0.4 Logit-11 0.232 0.349 0.273
Logit-12 0.243 0.327 0.271
Logit-21 0.106 0.489 0.173
Logit-22 0.293 0.320 0.298

0.5 Logit-11 0.235 0.357 0.277
Logit-12 0.248 0.334 0.277
Logit-21 0.110 0.477 0.178
Logit-22 0.309 0.313 0.305

0.6 Logit-11 0.237 0.351 0.276
Logit-12 0.246 0.320 0.268
Logit-21 0.112 0.518 0.182
Logit-22 0.253 0.217 0.221

0.7 Logit-11 0.232 0.336 0.269
Logit-12 0.238 0.325 0.268
Logit-21 0.106 0.485 0.173
Logit-22 0.319 0.242 0.264

logistic regression models without variable reduction method
were rather low, applying the variable reduction could im-
prove the predictive performances. In a few cases, it can be
found that the conventional logistic regression models showed
better predictive performances than the semi-definite logistic
regression models. However, since the semi-definite logistic
regression model includes the logistic regression model as a
special case, the predictive performances of the semi-definite
logistic regression models are never inferior to those of the
common logistic regression models.

V. CONCLUSIONS

In this article, we have proposed a novel and explainable
software bug-prediction model based on the semi-definite
logistic model and compared the applicability in predicting

TABLE VIII
PC1 (50% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.317 0.355 0.327

Logit-12 0.303 0.338 0.312
Logit-21 0.088 0.490 0.149
Logit-22 0.328 0.298 0.304

0.4 Logit-11 0.337 0.325 0.323
Logit-12 0.326 0.280 0.294
Logit-21 0.086 0.486 0.146
Logit-22 0.350 0.234 0.270

0.5 Logit-11 0.364 0.265 0.299
Logit-12 0.369 0.243 0.280
Logit-21 0.088 0.500 0.149
Logit-22 0.489 0.267 0.334

0.6 Logit-11 0.366 0.248 0.286
Logit-12 0.374 0.220 0.266
Logit-21 0.088 0.490 0.149
Logit-22 0.366 0.288 0.305

0.7 Logit-11 0.391 0.198 0.253
Logit-12 0.421 0.207 0.266
Logit-21 0.092 0.499 0.154
Logit-22 0.461 0.187 0.239

TABLE IX
PC1 (75% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.346 0.356 0.342

Logit-12 0.312 0.317 0.306
Logit-21 0.853 0.483 0.144
Logit-22 0.391 0.349 0.357

0.4 Logit-11 0.395 0.293 0.325
Logit-12 0.388 0.267 0.305
Logit-21 0.091 0.501 0.153
Logit-22 0.412 0.329 0.353

0.5 Logit-11 0.439 0.243 0.301
Logit-12 0.404 0.196 0.260
Logit-21 0.092 0.534 0.156
Logit-22 0.385 0.405 0.374

0.6 Logit-11 0.435 0.211 0.272
Logit-12 0.422 0.167 0.242
Logit-21 0.088 0.500 0.148
Logit-22 0.417 0.245 0.294

0.7 Logit-11 0.479 0.190 0.260
Logit-12 0.486 0.160 0.241
Logit-21 0.094 0.52 0.158
Logit-22 0.521 0.250 0.301

the bug-prone module. In the past literature, almost all works
have focused on only the predictive performances including
F-score and attempted to apply several machine learning
techniques in the software bug-prediction. However, since
almost all machine learning techniques did not provide the
feedback information on the dependence between the software
metrics employed in the analysis and the bug-proneness, more
sophisticated explainable bug-prediction methods have been
demanded. In our numerical experiments, we have shown
that our semi-definite logistic model could show the potential
applicability in software bug prediction. By checking the re-
gression coefficients with respect to a combination of software
metrics, it would be possible to analyze the dependence in
software bug-prone probability.

15Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

TABLE X
CM1 (25% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.200 0.360 0.253

Logit-12 0.234 0.336 0.269
Logit-21 0.137 0.467 0.211
Logit-22 0.167 0.227 0.187

0.4 Logit-11 0.206 0.367 0.260
Logit-12 0.226 0.327 0.260
Logit-21 0.133 0.466 0.205
Logit-22 0.296 0.456 0.354

0.5 Logit-11 0.204 0.355 0.254
Logit-12 0.223 0.314 0.253
Logit-21 0.139 0.488 0.215
Logit-22 0.252 0.321 0.275

0.6 Logit-11 0.211 0.352 0.260
Logit-12 0.220 0.316 0.252
Logit-21 0.141 0.505 0.220
Logit-22 0.247 0.260 0.247

0.7 Logit-11 0.202 0.359 0.254
Logit-12 0.214 0.311 0.247
Logit-21 0.136 0.452 0.207
Logit-22 0.254 0.220 0.225

TABLE XI
CM1 (50% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.269 0.349 0.295

Logit-12 0.261 0.343 0.288
Logit-21 0.135 0.479 0.209
Logit-22 0.258 0.309 0.274

0.4 Logit-11 0.268 0.327 0.288
Logit-12 0.273 0.306 0.280
Logit-21 0.139 0.502 0.216
Logit-22 0.392 0.244 0.292

0.5 Logit-11 0.264 0.307 0.276
Logit-12 0.273 0.263 0.258
Logit-21 0.140 0.489 0.216
Logit-22 0.277 0.236 0.246

0.6 Logit-11 0.269 0.251 0.251
Logit-12 0.284 0.224 0.239
Logit-21 0.133 0.464 0.206
Logit-22 0.315 0.250 0.265

0.7 Logit-11 0.283 0.254 0.258
Logit-12 0.287 0.221 0.239
Logit-21 0.133 0.471 0.206
Logit-22 0.377 0.186 0.242

In future, we will compare the semi-definite logistic regres-
sion approach with several deep learning methods in large-
scaled experiments and explore the potential to use it in
software bug prediction problems.

REFERENCES

[1] S. Balasubramaniam, and S. G. Gollagi, “Software defect prediction via
optimal trained convolutional neural network,” Advances in Engineering
Software, vol. 169, p. 103138, 2022.

[2] L. C. Briand, W. L. Melo, and J. Wust, “Assessing the applicability of
fault-proneness models across object-oriented software projects,” IEEE
Transactions on Software Engineering, vol. 28, pp. 706-–720, 2002.

[3] G. Denaro, and M. Pezze, “An empirical evaluation of fault-proneness
models” Proceedings of The 24th International Conference on Software
Engineering (ICSE-2002), pp. 241–251, 2002.

TABLE XII
CM1 (75% TRAINING DATA)．

Threshold Model Type Precision Recall F-score
0.3 Logit-11 0.287 0.331 0.295

Logit-12 0.276 0.326 0.295
Logit-21 0.127 0.472 0.196
Logit-22 0.312 0.396 0.337

0.4 Logit-11 0.338 0.305 0.299
Logit-12 0.311 0.272 0.286
Logit-21 0.136 0.534 0.213
Logit-22 0.348 0.322 0.336

0.5 Logit-11 0.341 0.279 0.288
Logit-12 0.301 0.188 0.235
Logit-21 0.135 0.513 0.210
Logit-22 0.418 0.212 0.277

0.6 Logit-11 0.358 0.200 0.239
Logit-12 0.322 0.160 0.243
Logit-21 0.133 0.492 0.205
Logit-22 0.364 0.190 0.263

0.7 Logit-11 0.329 0.152 0.194
Logit-12 0.342 0.091 0.215
Logit-21 0.136 0.504 0.212
Logit-22 0.347 0.123 0.220

[4] K. O. Elish, and M. O. Elish, “Predicting defect-prone software modules
using support vector machines,” Journal of Systems and Software, vol.
81, pp. 649–660, 2008.

[5] L. Guo, Y. Ma, B. Cukic, H. Singh, “Robust prediction of fault-
proneness by random forests,” Proceedings The 15th International
Symposium on Software Reliability Engineering (ISSRE-2004), pp. 417–
428, 2004.

[6] C. Jin, and S. W. Jin, “Prediction approach of software fault-proneness
based on hybrid artificial neural network and quantum particle swarm
optimization,” Applied Soft Computing, vol. 35, pp. 717–725, 2015.

[7] H. Konno, N. Kawadai, and H. Yuy, “Cutting plane algorithms
for nonlinear semi-definite programming problems with applications,”
Journal of Global Optimization, vol. 25, pp. 141–155, 2003.

[8] H. Konno, N. Kawadai, and D. Wu, “Estimation of failure probability
using semi-definite logit model,” Computational Management Science,
vol. 1, pp. 59—73, 2003.

[9] H. Konno, N. Kawadai, and H. Shimode, “A two step algorithm for
solving a large scale semi-definite logit model,” Optimization Letters,
vol. 1, pp 329–340, 2007.

[10] H. Konno, S. Kameda, and N. Kawadai, “Solving a large scale semi-
definite logit model,” Computational Management Science, vol. 7, pp.
111—120, 2010.

[11] Z. Li, X.-Y. Jing, and X. Zhu, “Progress on approaches to software
defect prediction,” IET Software, vol. 12, 161–175, 2018.

[12] T. Menzies, J. Greenwald, and A. Frank, “Data mining static code
attributes to learn defect predictors,” IEEE Transactions on Software
Engineering, vol. 33, pp. 2—13, 2007.

[13] O. Mizuno, and T. Kikuno, “Training on errors experiment to detect
fault-prone software modules by spam filter,” Proceedings of The 6th
joint meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE2007), pp. 405–414, 2007.

[14] N. Ohlsson, and H. Alberg, “Predicting fault-prone software modules in
telephone switches,” IEEE Transactions on Software Engineering, vol.
22, pp. 886–894, 1996.

[15] S. K. Pandey, R. B. Mishra, and A. K. Triphathi, “Software bug
prediction prototype using Bayesian network classifier: A comprehensive
model,” Procedia Computer Science, vol.1 32, pp. 1412–1421, 2018.

[16] E. Perez-Minana, and J. J. Gras, “Improving fault prediction using
Bayesian networks for the development of embedded software applica-
tions,” Software Testing, Verification and Reliability, vol. 16, pp. 157–
174, 2006.

[17] H. Tong, B. Liu, and S. Wang, “Software defect prediction using stacked
denoising autoencoders and two-stage ensemble learning,” Information
and Software Technology, vol. 96, pp. 94–111, 2018.

16Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

