
On Reducibility of Developer-Written Unit Tests in C#

Arpit Christi
School of Computing
Weber State University

Ogden, UT, USA
email: arpitchristi@weber.edu

David Weber

Northrop Grumman
Roy, UT, USA

email: ein.nuff@gmail.com

Abstract—Test case reduction is employed to help developer
isolate and locate faults in complex software systems if the
failing test is complex and contains a lot of non failure-inducing
elements. Reduced test still contains the exact same failure-
inducing component as the original test. Thus, the smaller test
assists developers by focusing their attention on the faulty aspect
of the program quickly. Researchers have focused their attention
on improvement of the test reduction process. The outcome of
the test reduction is not studied thoroughly. We study the result
of the test case reduction when algorithms like Delta Debugging
are used to minimize the tests. We evaluate (1) test reduction size
based on the category of a statement and (2) effect of the category
of a statement on reduction. The developer-written tests are just
like any other code - containing the same structures, elements,
and components as the rest of the program. If we consider the
program as an abstract syntax tree, our results demonstrate that
(1) leaf nodes are removed in larger quantity and (2) leaf nodes
have higher probability of removal.

Keywords-program debugging; software testing; test case reduc-
tion.

I. INTRODUCTION

Program debugging is often tedious, time-consuming and
challenging. Most of the developer time is spent on locating
and isolating the fault. When utilizing a failed test to debug and
fix a fault, developers may need to observe and transit through
aspects of test/program that are non failure-inducing, resulting
into developer time disuse. If the failed test is minimized while
keeping the failure-inducing input, the developer may need to
rummage through lesser program elements promoting optimal
use of developer time and hence quicker debugging. Being
orthogonal to aiding developer in debugging, test reduction is
found useful in Automatic Fault Localization (FL) - a process
to automatically locate the bug in a faulty program. The entire
reduced test or the byproducts of test reduction are found to
be useful in Automatic FL [1] [2].

Delta Debugging (DD) and Hierarchical Delta Debugging
algorithms (HDD) were proposed to minimize failure-inducing
tests [3] [4]. DD algorithm is optimal for test inputs that are
flat structures like array, lists or sets. If you consider a test
written in program like C#, in order to apply DD, one needs
to consider test to be an array of lines, an array of characters
or words. As it does not consider the tree like structure,
interdependence between nodes and other such details, DD
is not optimal for structures like HTML files and programs.
HDD can process such tests better as it exploits the underlying
tree structures to its advantage. Both algorithms are essentially

a greedy search to systematically and incrementally find a
smaller test until a minimal test is reached.

Many recent algorithms and implementations to minimize
failing tests still rely on the DD and HDD algorithms as
the foundation [5]–[11]. These tools and techniques mainly
attempt to improve the test reduction process to efficiently and
accurately reduce tests. Though test reduction process have
been studied for a while, (1) the outcome of the test reduction
and (2) the entities that were reduced as part of the reduction
process have not been studied thoroughly.

Based on the type of test (program, html, xml, text files
etc.), the reduction outcome and the reduced entities can be
different. If we only consider tests written as a program in a
particular programming language, we can define and study the
reduction outcome and the reduced entities by considering the
outcome as a reduced program and the entities as programming
components like - program statements, program lines, nodes
of Abstract Syntax Tree (AST) of the program. For this work,
we consider reduced entities as nodes of AST. An example
of the test is in Figure 1 and the corresponding AST is in
Figure 4. We further categorize each statement node of the
AST into non-tree statements and tree statements as explained
in detail in Section IV.

We focus on test reduction for tests written in C# pro-
gramming language. We study the reduction outcome and the
reduced entities for 30 real world bugs in 5 open source C#
projects. Based on our study, we provide the following insights
into test reduction for C# tests.

1) The number of non-tree statements reduced are signifi-
cantly larger than the number of tree statements reduced.

2) The chance of a non-tree statement removal is slightly
higher than the chance of a tree statement removal.

The ReduSharptor tool that we used for test reduction is
publicly available on GitHub [12].

The rest of the paper is organized as follows. In Section II,
we discuss the related work. In section III, we discuss the
background for our work and motivate the need for the study.
In Section IV, we discuss the terminology and definitions
based on the outcome of the reduction process to determine
catogory of program statements. Section V depicts the test
subjects, the experiments and the results. We mention how
we mitigate the threats to validity in Section VI. Finally,
Section VII concludes the paper by discussing the results and
the future direction.

17Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

II. RELATED WORK

DD finds minimal failure inducing input by employing a
greedy search that removes components that are unnecessary
for triggering the bug [3]. HDD improves on DD for hier-
archical inputs like xml, html, and programs. HDD achieves
the improvement by considering the AST representation of
hierarchical inputs [4].

Researchers proposed many recent algorithms, tools and
techniques. They (1) improve over the original DD and HDD
algorithms or (2) retrofit DD/HDD implementation for specific
situation or programming languages. CReduce, Generalized
Tree Reduction (GTR), Picireny, Perses, DDSET, Observa-
tional Based Slicing (ORBS), Reduktor, ProbDD, and Re-
duSharptor are a few such attempts [5]–[11], [13]–[15].

Christi et al. combined HDD with statement deletion muta-
tion to propose Test-Based Software Minimization (TBSM)
that reduces programs instead of tests to build a minimal
resource adaptive software while sacrificing low-priority but
resource-consuming functionality [16]. To improve the per-
formance of TBSM, they study the outcome of the program
reduction and the entities that were reduced. Based on that,
they proposed multiple heuristics to improve the performance
of TBMS [17].

Perses reduces the removal entities by only considering
syntactically valid variants [6]. Wang et al. propose prob-
abilistic delta debugging approach that uses AST, historic
test results and syntactic relationships to assign probability
to each element for removal [10] [11]. The approach showed
significant improvement in performance because it reduces the
number of entities under consideration for removal. We study
the reduction process only in terms of the location of an entity
within the program. Also, we use a different programming
language and a different dataset to study the reduction process.

III. BACKGROUND AND MOTIVATION

If we can categorize test program statements into distinct
categories and establish an empirical link between the category
of a statement and its probability of removal, we can preemp-
tively choose to process or ignore certain types of statements
in the test reduction process. To this end, the outcome of
test reduction and reduced entities need to be studied further.
Studying the relationship in detail can help to propose efficient
approaches like perses and probabilistic delta debugging [6],
[11]. It may help propose heuristics as proposed by Christi et
al. to reduce the search space for the reduction [17]. So far,
such categorization is not clearly established.

We will only consider tests written in C# programming
language. When DD, HDD or any other techniques are applied
on a test for test reduction, it produces a minimal test.

The test can be reduced at a different granularity. For
example, a test can be considered as a series of characters and
one or more characters can be reduced at a time to produce
minimal test. If we consider HDD, reduction granularity can
be a node of the AST of the program. Each test method is
composed of program statements that are defined as State-
mentNode. In C# the StatementNode is implemented by Roslyn

[Fact]
public void Foo(Test)
{
1 Math m = new Math();
2 int sum1 = m.Add(3,4)

// Assumption: Add method is written in a
// peculiar way and cannot add 3 and 4
// correctly.

3 Assert.Equal(sum1,7); //suppose sum1 is 8,
hence the test is failing here.

4 if(true){
5 int sum2 = m.Add(-2,-3)
6 Assert.Equal(sum2,-5); // This assert

passes.
7 }
}

Figure 1. original test, Line 3 is the failing statement.

[Fact]
public void Foo(Test) //The minimal reduced

test
{
1 Math m = new Math();
2 int sum1 = m.Add(3,4)

// Same assumption as the original test.
3 Assert.Equal(sum1,7); //suppose sum1 is 8,

hence the test is failing here.

}

Figure 2. minimal test, All statements from line 4 in Figure 1 are removed.

compiler as StatementSytax class or any other StatementNode
that is derived from StatementSyntax class [18]. The statement
node can be further decomposed for processing. Multiple
previous works suggest that reduction is useful and meaningful
at a statement level [9] [16]. Hence, we consider program
statement or StatementNode as a unit of reduction. Consider a
simple test as shown in Figure 1. The corresponding AST is
shown in Figure 4. The dotted lines mean that the nodes can be
further decomposed into non-statement nodes. But we avoid
such decomposition to only consider statement level nodes.
The reduced test is shown in Figure 2 and the corresponding
AST is shown in Figure 5

When we compare the ASTs in Figure 4 and Figure 5,
we note that two leaf statements are reduced, and one non-
leaf statement is reduced (the if statement). The reduction
in terms of program components is shown in Figiure 3. We
want to experiment with real-world tests to study the reduction
outcome and the reduced entities to establish categorization of
statements and the probability of removal for each category.

IV. TERMINOLOGY AND DEFINITIONS BASED ON
REDUCTION PROCESS AND THE OUTCOME

We use the following terminology and definitions for the
rest of the discussion.

18Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

if(true){
5 int sum2 = m.Add(-2,-3)
6 Assert.Equal(sum2,-5); // This assert

passes.
7 }

Figure 3. reduced-statements. Line 4-7 in test in Figure 1 consist of
reduced statements

If the test is in a programming language like C#, we can
define the following.

1) original-test: The test without any reduction. We con-
sider the test to be an AST with a set of StatementNodes.
Figure 1 shows the original test and Figure 4 shows the
corresponding AST.

2) minimal-test: The remaining test after a test is reduced.
If the original-test is reducible, minimal-test has one or
more statements removed. In Figure 2, the statements
from line 4 onwards in original-test are removed. The
AST in Figure 5 depicts the AST for minimal-test.

3) reduced-entities: The program statements that are re-
duced during the reduction process. If original test was
T and the minimal test was T’ then reduced-entities are
T - T’. Reduced-entities are a set of StatementNode or
statements in our case. The reduced-entities are showin
in Figure 3. If you compare Figure 4 and Figure 5, the
reducued-entities are the removed subtree.

4) TreeNode: A TreeNode is a StatementNode that has
at least one subtree that consists of one or more
StatementNode. For example, in Figure 4, IfStmt is
the TreeNode, because it contains two statements that
are TreeNode. (1) int sum2 = m.Add(-2,-3) and (2)
Assert.Equal(sum2,-5). (Note: we are ignoring Block-
Stmt, that is explained later). In our experiment subjects,
we found conditional statements, loop statements and
action statements as the majority tree nodes. As we only
consider statement nodes, Treenode can also be referred
as TreeStmt.

5) NonTreeNode: A NonTreeNode is a StatementNode that
does not have any subtree that consists of StatementN-
ode. In Figure 4 Math m = new Math(), int sum1
= m.Add(3,4) etc. are NonTreeNode. NonTreeNode can
also be referred as NonTreeStmt.

Each BlockStmt consists of one or more StatementNodes.
Removing the BlockStmt can disturb the tree structure such
that Roslyn compiler may not create syntactially correct
variants [18]. Hence, BlockStmt is never considered during
reduction. Only the statements that are below BlockStmt are
considered for reduction as it was done with ReduSharptor.

We categorize the statements of a C# tests into the categories
based on its location in the program: TreeStmt and Non-
TreeStmt. We wan to study how the quantity of removal and the
probability of removal are dependent on this categorization.

V. EXPERIMENTS

We want to study both minimal-test and reduced-entities to
understand the effect of statement category on removal process
and reduction outcome.

For that we use the same subjects and procedure used in
the previous research by Weber et al [9] to evaluate a test-
reduction tool ReduSharptor.

A. Subjects

Weber et al. used 30 real-world failing tests across five
open source C# projects as the subjects. Four out of these
five open source projects are under active development. Each
subject was selected such that it has one or more reduced-
entities. If the original-test is already minimal and cannot
be reduced any further, original-test and minimal-test are
the same. Hence, comparison and further evaluations are not
meaningful. Accuracy of our analysis depends on the accuracy
of ReduSharptor - ReduSharptor has high precision (96.58%)
and high recall (96.45%). The projects that were used as
subjects are enumerated in in Table 1 in the work of Weber
et al. [9].

B. Process and Measurement

We apply ReduSharptor on each failing test, reduced the
failing test and generated failure-inducing minimal-test. We
compare failing original-test with the failing minimal-test. We
collect the following information.

1) absolute-reduction-size (ARS): The number of state-
ments that are reduced as part of reduction process.
This is essentially the size of reduced-entities in terms
of statements. In the example in section IV, absolute-
reduction-size is three statements - the IfStmt and two
other statements at the leaf of the IfStmt subtree.

2) percentage-reduction-size (PRS): The percentage of total
statements reduced. In the example, the percentage is
50% - total statements are 6 and reduced statements are
3.

3) absolutte-TreeStmt-reduction-size (ATRS): The number
of TreeNodes reduced. In the example, 1 TreeNode is
reduced - the ItStmt.

4) percentage-TreeStmt-reduction-size (PTRS): The per-
centage of TreeNodes reduced. In the example, the PRTS
is 16.67%.

5) absolutte-NonTreeStmt-reduction-size (ANTRS): The
number of NonTreeNodes reduced. In the example, 2
NonTreeNodes are reduced.

6) percentage-NonTreeStmt-reduction-size (PNTRS): The
percentage of NonTreeNodes reduced. In the example,
PNTRS is 33.33%.

C. Results

Across 30 failing tests, we process 759 total statements.
The results of reductions are shown in Table I. We show
total number of statements for each test, the number of
NonTreeStmts, the number of TreeStmtss, ARS, PRS, ANTRS,
PNTRS, ATRS, and PRS. On average, we processed 25.3

19Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

Foo

BlockStmt

Math m = new Math() int sum1 = m.Add(3,4) Assert.Equal(sum1,7); IfStmt

IfPart

BlockStmt

int sum2 = m.Add(-2,-3) Assert.Equal(sum2,-5);

Condition ElsePart

TRUE
NULL

Figure 4. AST of code in Figure 1

Foo

BlockStmt

Math m = new Math() int sum1 = m.Add(3,4) Assert.Equal(sum1,7); This subtree
is removed

Figure 5. AST of code in Figure 2

statements per test that include 24.4 NonTreeStmts and 0.9
TreeStmts. We reduced on average 19.93 statements or 71.87%
per failing test. For NonTreeStmts, the average reduction was
19.56 or 70.44%. The same numbers for TreeStmts are 0.433
and 1.43%.

The most important entities are the PRS, PNTRS and PTRS.
Consider two tests - one contains 100 statements and another
10 statements. If the 20 statements are reduced in the first test
and 4 statements are reduced in the the second test, the ARS,
ANTRS, and ATRS numbers can be misleading. For the first
test 20% statements are reduced and for the second test 40%
statements are reduced. Reduction is significant for the second
test.

More than half of the PTRS values are 0 and the data is
not normally distributed violating the t-test assumptions. We

confirm this using Shapiro-Wilk test for normality [19]. Hence,
we perform paired Wilcoxon signed rank test on PNTRS
and PTRS that has V = 465 and p-value = 1.825e − 06
(p << 0.05) [20]. Wilcoxon test suggests significant differ-
ence between PNTRS and PTRS. To exactly understand the
difference, we draw PNTRS vs PTRS boxplot in Figure 6. We
can conclude that NonTreeStmts are reduced in large numbers
compared to TreeStmts (approximately 50 times).

We also want to know the probability of removal of a
randomly chosen statement based on its category - TreeStmt
or NonTreeStmt. From the results above, we may think that
if a randomly chosen statement is NonTreeStmt, it has more
chances of removal. That may be misleading. Consider the
TestObserve test in Table I. The test has three TreeStmts and
all of them are being removed resulting into 100% removal

20Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

of TreeStmts. For the same test, out of 101 NonTreeStmts
98 are removed resulting into 97% removal. For the test
TreeStmts have higher probability of removal. To consider this,
we define two new terms: (1) PrNTRS - probability of removal
of NonTreeStmts defined as number of NonTreeStmts removed
over total NonTreeStmts in the test, (ANTRS÷#NTN)∗100
as per Table I (2) PrTRS - probability of removal of TreeStmts
defined same as above but for TreeStmts, (ATRS ÷#TN) ∗
100. For a certain rows in Table I, #TN is 0 and hence
PrTRS is undefined (divide by 0). We cannot use such tests for
evaluation. The results excluding the tests that have undefined
PrNTRS are shown in Table II.

Both PrNTRS and PrTRS are not normally distributed
(Shapiro-Wilk test). So, we use paired Wilcoxon signed rank
test that has V = 99 and p = 0.02877 (p < 0.05). So, PrNTRS
and PrTRS are different. To find the difference, we again draw
the values using boxplot shown in figure 7. We conclude that
the probability of removal of a non-tree statement is slightly
higher (approximately 1.7 times) than that of a tree statement
based on the boxplot.

D. Discussion on Possible Limitations

Our experiments and results depend on how the existing
tests are written for open-source C# projects. We notice that
the tree-statements per test is 0.9, which is very low. For a
tree statement to be reduced, the test must contain at least one
or more tree statements. The PTRS entity is dependent on the
availability of tree statements.

If a failed assert is at the beginning or in the middle of a test,
the entities after the failed assert will always be removed. If we
move that failed assert even at the end of the test, those entities
will still be removed. DD and HDD algorithms guarantee 1-
minimality. 1-minimality ensures that the test reduction and
our analysis are not dependent on the location of the failed
assert.

VI. THREATS TO VALIDITY

Now, we discuss threats to validity and the steps we take
to mitigate them.

A. Construct Validity

Do our results truly compare non-tree statements and tree-
statements for test reduction? The ReduSharptor tool used for
experiments has high precision and high recall. It is easy to
identify tree statements and non-tree statements in a test.

B. Internal Validity

Do we mitigate bias during experiments? All the projects
and tests are part of open-source projects available online.
Bugs were randomly sampled such that it has one or more
reduced-entities.

C. External Validity

Do our results generalize? We only performed experiments
on C# projects and tests. As tests in other programming
languages have similar structures and program statement types,
we expect the results to generalize.

Figure 6. comparison between PNTRS vs PTRS

Figure 7. comparison between PrNTRS vs PrTRS

VII. CONCLUSION AND FUTURE WORK

Based on our results, our contribution is as follows. We also
plan to extend our work to further investigate the relationship
between test reduction outcome and possible categorization of
statements.

A. Contribution

Very few DD and HDD implementations assign priority
to an entity based on the category of the entity. DD and
HDD work on wide range of inputs and hence defining a
generic category is difficult. If we only consider tests written
as programs, we can come up with a broad generic category.
Based on the categorization, we study the effect of a statement

21Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

TABLE I
TEST, PROJECT, TOTAL STMTS, #NTN - NUMBER OF NonTreeNodes, #TN - NUMBER OF TreeNodes, ARS, PRS, ANTRS, PNTRS, ATRS, PTRS

Test Project Stmts #NTN #TN ARS PRS ANTRS PNTRS ATRS PTRS
ListCombineTest language-ext 10 10 0 6 60.00% 6 60.00% 0 0%
EqualsTest language-ext 7 7 0 6 85.71% 6 85.71% 0 0%
ReverseListTest3 language-ext 5 5 0 2 40.00% 2 40.00% 0 0%
WriterTest language-ext 17 15 2 8 47.06% 8 47.06% 0 0%
Existential language-ext 14 14 0 11 78.57% 11 78.57% 0 0%
TestMore language-ext 55 55 0 47 85.45% 47 85.45% 0 0%
CreatedBranchIsOk Umbrraco-C.. 54 54 0 39 72% 39 72% 0 0%

CanCheckIfUserHasAccessToLanguage Umbrraco-C.. 19 17 2 6 31.58% 5 26.32% 1 5.26%
Can Unpublish ContentVariation Umbrraco-C.. 28 28 0 25 89.29% 25 89.29% 0 0%
EnumMap Umbrraco-C.. 11 11 0 6 54.55% 6 54.55% 0 0%
InheritedMap Umbrraco-C.. 17 17 0 11 64.71% 11 64.71% 0 0%

Get All Blueprints Umbrraco-C.. 25 23 2 22 88.00% 20 80.00% 2 8.00%
ShouldStart Fleck 7 5 2 3 42.86% 3 42.86% 0 0%
ShouldSupportDualStackListenWhenServerV.. Fleck 4 3 1 3 75.00% 3 75.00% 0 0%
ShouldRespondToCompleteRequestCorrectly Fleck 15 15 0 11 73.33% 11 73.33% 0 0%
ConcurrentBeginWrites Fleck 21 21 0 16 76.19% 16 76.19% 0 0%
ConcurrentBeginWritesFirstEndWriteFails Fleck 27 26 1 22 81.48% 21 77.78% 1 3.70%
HeadersShouldBeCaseInsensitive Fleck 7 7 0 5 71.43% 5 71.43% 0 0%
TestNullability BizHawk 15 15 0 13 86.67% 13 86.67% 0 0%
TestCheatcodeParsing BizHawk 8 7 1 7 87.50% 6 75.00% 1 12.50%
SaveCreateBufferRoundTrip BizHawk 31 29 2 24 77.42% 24 77.42% 0 0%
TestCRC32Stability BizHawk 27 25 2 13 48.15% 13 48.15% 0 0%
TestSHA1LessSimple BizHawk 14 14 0 7 50.00% 7 50.00% 0 0%
TestRemovePrefix BizHawk 14 14 0 13 92.86% 13 92.86% 0 0%
TestActionModificationPickup1 Skclusive.Mob.. 23 21 2 9 39.13% 9 39.13% 0 0%
TestObservableAutoRun Skclusive.Mob.. 26 25 1 23 88.46% 22 84.62% 1 3.85%
TestMapCrud Skclusive.Mob.. 39 38 1 37 94.87% 37 94.87% 0 0%
TestObserver Skclusive.Mob.. 104 101 3 101 97.12% 98 94.23% 3 2.88%
TestObserveValue Skclusive.Mob.. 62 59 3 58 93.55% 56 88.71% 3 4.84%
TestTypeDefProxy Skclusive.Mob.. 53 51 2 44 83.02% 43 81.13% 1 1.89%
Mean 25.3 24.4 0.9 19.93 71.87% 19.56 70.44% 0.433 1.43%

TABLE II
TEST, PrNTRS VS PrTRS FOR INDIVIDUAL TEST. TESTS WITH UNDEFINED

PrTRS ARE NOT INCLUDED.

Test PrNTRS PrTRS
WriterTest 53.33% 0.00%
CanCheckIfUserHasAccessToLanguage 19.41% 50%
Get All Blueprints 86.95% 100%
ShouldStart 60.00% 0.00%
ShouldSupportDualStackListenWhenServerV4All 75.00% 0.00%
ConcurrentBeginWritesFirstEndWriteFails 80.76% 100.00%
TestCheatcodeParsing 85.71% 50.00%
SaveCreateBufferRoundTrip 82.75% 0.00%
TestCRC32Stability 52.00% 0.00%
TestActionModificationPickup1 42.87% 0.00%
TestObservableAutoRun 88.00% 100.00%
TestMapCurd 97.36% 0.00%
TestObserver 97.02% 100.00%
TestObserveValue 93.22% 100.00%
TestTypeDefProxy 81.31% 50.00%

category on the reduction outcome and on the removal process.
We conclude that the location of a program within the AST has
an effect on the reduction outcome and the removal process.
The non-tree statements (leaf nodes) will be removed in larger
numbers and they will have slightly higher chance of removal.
.

B. Future Work

Our work focuses on C# tests. A very obvious extension
would be to verify the results on tests written in other program-
ming languages like Java, Python, and etc. We expect similar
results for other programming languages also. Currently we

categorize test statements into two categories based on the
location within the AST. One area of extension would be to use
other kind of categories. For example, types of the statements
like declaration statement, method call statement, if statement,
loop statement, try-catch statement etc. A broader extension
would be to derive generic categories for non-program test
inputs like html, xml, and text files.

REFERENCES

[1] A. Christi, M. L. Olson, M. A. Alipour, and A. Groce, “Reduce before
you localize: Delta-debugging and spectrum-based fault localization,” in
2018 IEEE International Symposium on Software Reliability Engineer-
ing Workshops, ISSRE Workshops, Memphis, TN, USA, October 15-18,
2018, 2018, pp. 184–191.

[2] D. Vince, R. Hodován, and Á. Kiss, “Reduction-assisted fault localiza-
tion: Don’t throw away the by-products!” in ICSOFT, 2021, pp. 196–
206.

[3] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 183–200, Feb. 2002.

[4] G. Misherghi and Z. Su, “HDD: Hierarchical delta debugging,” in Pro-
ceedings of the 28th International Conference on Software Engineering,
ser. ICSE ’06, 2006, pp. 142–151.

[5] R. Hodován and A. Kiss, “Modernizing hierarchical delta debugging,”
in Proceedings of the 7th International Workshop on Automating Test
Case Design, Selection, and Evaluation, ser. A-TEST 2016. ACM,
2016, pp. 31–37.

[6] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su, “Perses: Syntax-guided
program reduction,” in Proceedings of the 40th International Conference
on Software Engineering. Association for Computing Machinery, 2018,
p. 361–371.

[7] R. Gopinath, A. Kampmann, N. Havrikov, E. O. Soremekun, and
A. Zeller, “Abstracting failure-inducing inputs,” in 29th ACM SIGSOFT
international symposium on software testing and analysis, 2020, pp.
237–248.

22Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

[8] D. Stepanov, M. Akhin, and M. Belyaev, “Reduktor: How we stopped
worrying about bugs in kotlin compiler,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 317–326.

[9] D. Weber and A. Christi, “Redusharptor: A tool to simplify developer-
written c# unit tests,” International Journal of Software Engineering &
Applications, vol. 14, pp. 29–40, 09 2023.

[10] G. Wang, R. Shen, J. Chen, Y. Xiong, and L. Zhang, “Probabilistic delta
debugging,” in Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 881–892.

[11] G. Wang et al., “A probabilistic delta debugging approach for abstract
syntax trees,” in 2023 IEEE 34th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2023, pp. 763–773.

[12] “ReduSharptor Tool,” https://github.com/amchristi/ReduSharptor, ac-
cessed: 2024-04-24.

[13] J. Regehr et al., “Test-case reduction for c compiler bugs,” in 33rd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’12, pp. 335–346.

[14] S. Herfert, J. Patra, and M. Pradel, “Automatically reducing tree-
structured test inputs,” in Proceedings of the 32Nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ser. ASE 2017,
2017, pp. 861–871.

[15] D. Binkley et al., “Orbs: Language-independent program slicing,” in
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2014, pp. 109–120.

[16] A. Christi, A. Groce, and R. Gopinath, “Resource adaptation via test-
based software minimization,” in 2017 IEEE 11th International Con-
ference on Self-Adaptive and Self-Organizing Systems (SASO). IEEE,
2017, pp. 61–70.

[17] A. Christi and A. Groce, “Target selection for test-based resource
adaptation,” in 2018 IEEE International Conference on Software Quality,
Reliability and Security (QRS), July 2018, pp. 458–469.

[18] “Roslyn Compiler Documentation,” https://learn.microsoft.com/en-us/
dotnet/csharp/roslyn-sdk/, accessed: 2024-03-03.

[19] “Descriptive Statistics and Normality Tests for Statistical Data,” https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC6350423/, accessed: 2024-03-
07.

[20] “Wilcoxon Signed Ranked Test,” https://www.sciencedirect.com/topics/
medicine-and-dentistry/wilcoxon-signed-ranks-test, accessed: 2024-03-
07.

23Copyright (c) IARIA, 2024. ISBN: 978-1-68558-178-7

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOFTENG 2024 : The Tenth International Conference on Advances and Trends in Software Engineering

