
An Efficient Computation of Reachability Labeling for

 Graph Pattern Matching

Bhargavi Balla, Supreethi Kalyandurgam Pujari

Department of Computer Science & Engineering

JNTUH College of Engineering

 Hyderabad, India

Emails: {bhargavi.bbv1, supreethi.pujari}@gmail.com

Abstract— Due to the rapid growth of Internet, most of the

data that is available in the Internet that is archived/ analyzed,

is graph structured in nature as graphs form a powerful

modeling tool. The problem of graph pattern matching is to

find all the tuples that match a user-given graph pattern from

a large directed graph. For faster access of paths in the large

directed graph, transitive closure of the graph is compressed

and maintained using 2-hop reachability labeling technique by

assigning every node a 2-hop label. These 2-hop labels are

computed using a geometry-based approach that will be useful

in solving the graph pattern matching problem. In this paper,

a geometry-based approach that computes the 2-hop

reachability labeling is described. The experimental results

show that the proposed approach efficiently computes the

compressed transitive closure technique of reachability

labeling.

Keywords- graph pattern; graph matching; 2-hop cluster;

2-hop labeling; 2-hop cover.

I. INTRODUCTION

Graphs form a powerful modeling tool to represent
various networks in different areas like chemistry, biology,
web, etc. In online social networking systems like Facebook
and Twitter, the relationships among users and their
proximity can be conveniently expressed using graphs.
Thus, there is a demand for efficiently querying the graph
data.

Graph database [1] is a large labeled directed graph or a
collection of labeled directed graphs. A graph pattern is a
sequence of nodes and edges which is constructed by
connecting nodes based on links/relationships between them
as required by the user. Given a graph database and a graph
pattern, finding all the set of tuples (an ordered sequence of
vertices) that match a user given graph pattern is the graph
pattern matching problem. For instance, in analyzing online
social networking systems, a large graph can be obtained
where the job-title attribute on each node can be regarded as
label. A small graph pattern can be to discover connections
between several people with specified jobs. But, the graph
pattern matching problem is challenging as graph data can
be large and graph patterns can be large and complex.

To access the paths in a large graph data faster, its
compressed transitive closure is pre-computed using 2-hop
reachability technique which involves assigning a graph
code termed 2-hop reachability label to each node of the

directed graph. The computation of 2-hop reachability
labeling for the graph is found to be NP-hard [3]. In this
paper, a geometry-based approach is implemented to
efficiently compute the 2-hop reachability labels for a large
directed graph which is a nearly optimal solution. The graph
codes computed will be useful in solving the graph pattern
matching problem in relational database context [1].

Section II covers the related work done for finding the
efficient techniques to solve the problem of graph pattern
matching and 2-hop reachability labeling. Section III
describes the prominent compressed transitive closure
techniques while section IV describes the procedure to
compute 2-hop reachability labels efficiently. Section V
reveals the experimental results and analysis and in section
VI, we conclude the paper with future work.

II. RELATED WORK

Extensive survey has been done for finding efficient
techniques to solve the graph pattern matching problem
[10]. It includes the survey on tree-pattern matching
techniques [8][9], graph pattern matching techniques [1][5]
and extensive survey on multi-interval encoding [4] and 2-
hop labeling [2][3][6][7].The problem of tree pattern
matching is to find the set of patterns from a large tree that
match the given tree pattern. Bruno et al. [8] used stack
encoding scheme for tree pattern matching in XML
documents with elements and parent-child relationships
rendering it as tree. Chen et al. [9] further improved by
using hierarchical stack encoding scheme for tree pattern
matching. But, these techniques do not work on graph data
directly as graphs do not have the good acyclic property of
trees.

For faster access of paths and for testing if two nodes are
reachable, transitive closure is pre-computed and stored in
compressed form. Multi-interval encoding defined by
Agrawal et al. [4] is a compressed transitive closure
technique used for faster processing of graph pattern
matching of graph-structured documents in [5]. The 2-hop
reachability labeling defined by Cohen et al. [3] is a
compressed transitive closure technique where each node is
assigned labels that represent the reachability information of
the node. The problem of 2-hop cover is to find the
minimum size of 2-hop cover for a given graph, which is
proved to be NP-hard [3]. Cohen et al. [3] show that a
greedy algorithm exists to compute a nearly optimal
solution for the 2-hop cover problem. The resulting size of

58Copyright (c) IARIA, 2012. ISBN: 978-1-61208-228-8

SOTICS 2012 : The Second International Conference on Social Eco-Informatics

the greedy algorithm is larger than the optimal by atmost
O(log n). The basic idea is to solve the minimum 2-hop
cover problem as a minimum set cover problem [3].
Schenkel et al. [6][7] implemented divide and conquer
approach where the directed graph is partitioned into
subgraphs and 2-hop cover is computed for each partition as
in [3] and then the results are combined. The approach
developed by Cohen et al. focused on finding minimum
overlap among the subsets for finding 2-hops of the graph
while J. Cheng et al. [2] implemented a geometry-based
approach and focused on finding the minimum number of
subsets which finds the 2-hops faster than the former
approach.

The survey [10] resulted in discovering an efficient
geometry-based approach [2] for finding reachability labels
of the directed graph.

III. COMPRESSED TRANSITIVE CLOSURE COMPUTATION

TECHNIQUES

Transitive closure represents all the set of paths between
the nodes of the graph that satisfy transitivity property. The
transitive closure size is defined as the total number of paths
present in the transitive closure. By pre-computing transitive
closure, we can access shortest paths faster and check the
existence of paths between the two nodes. But, the transitive
closure size is very large compared to the total number of
vertices/edges that represent the directed graph. The
following are the two different techniques to compute the
compressed transitive closure efficiently.

A. Multi-interval Encoding

Multi-interval encoding technique involves assigning
every node a postid and interval list with atleast one interval
that together represent the compressed transitive closure of
the directed graph.

 Initially, the directed graph is converted into DAG
(directed acyclic graph) by computing the maximal strongly
connected components of the directed graph and assigning a
node to represent each maximal strongly connected
component in DAG. Then, multi-intervals are computed
using Agrawal et al. algorithm [4]. To compute multi-
intervals, an optimum tree cover is derived first from the
DAG [4]. Then, postids (the numbers) are assigned to the
nodes in post-order traversal order of the optimum tree.
 For instance, consider the optimum tree cover shown in
Fig. 2 of the directed graph G in Fig. 1. In Fig. 2, consider a
node ―n9‖ to which the assigned postid is 1, which is
assigned based on the post-order traversal of the optimum
tree. To each node of the optimum tree cover, an interval [s,
e] is assigned where ‘e‘ is the postid of the current node
and‗s‘ is the postid of the lowest descendant node.

For each leaf node ‗v‘ with postid ‗i‘, its interval
assigned is [i, i] and that of its parent node with postid ‗j‘ is
[i, j]. For instance, from Fig. 2, the interval of the leaf node
―n9‖ is [1, 1] and interval of its parent node ―n6‖ is [1, 2]
(shown in Table I). Multiple intervals for each node of the
graph come into existence if there are back edges to the
nodes in the DAG. For instance, in Fig. 1, there is a back
edge (n8, n10) for node ―n8‖ hence the interval of node
―n10‖, i.e. [4, 4] is added to the interval list of ―n8‖ as
shown in Table I.

 In general, there exists a path a~b if and only if the
postid of ‗b‘ lies in atleast one interval in the interval list of
‗a‘. For instance, there exists a path n3~n8 as the postid of
―n8‖ is 6 which lies in the interval [4, 8] of n3. Multi-
intervals for the other nodes of the directed graph are same

TABLE I. MULTI-INTERVAL ENCODING OF G

Figure 1. A Directed Graph G

Figure 2. Optimum tree cover with postid for each

node

V pid I

n1 10 [1, 10]

n2 3 [1, 6]

n3 8 [4, 8]

n4 9 [[1, 2], [4, 4], [6, 6], [9, 9]]

n5 7 [4, 7]

n6 2 [[1, 2], [4, 4], [6, 6]]

n7 5 [4, 5]

n8 6 [[4, 4], [6, 6]]

n9 1 [[1, 1], [4, 4]]

n10 4 [4, 4]

59Copyright (c) IARIA, 2012. ISBN: 978-1-61208-228-8

SOTICS 2012 : The Second International Conference on Social Eco-Informatics

as the multi-intervals of the maximal strongly connected
nodes of the directed graph that represent them in DAG.
Table I shows the multi-interval encoding of each node of G
shown in Fig. 1. Thus, multi-interval encoding represents
the compressed transitive closure of the directed graph.

The disadvantage of multi-interval encoding is that, it is
lengthy and its storage cost increases with increase in the
number of vertices/edges of the directed graph and sorting is
required to perform graph pattern matching using the multi-
interval encoding technique. Hence, the more efficient 2-
hop reachability labeling or 2-hop cover technique is opted
to compute and store the compressed transitive closure.

B. 2-hop Reachability Labelling

 A hop in a directed graph is defined by a path in the
graph and one of the end points of the path. For each node
‗v‘ in a directed graph G (V, E), a label L(v) = {Lin(v),
Lout(v)} is assigned where Lin(v) represents the set of the
nodes in G that can reach ‗v‘ & Lout(v) represents the set of
nodes in G that are reachable from ‗v‘, (hence the name 2-
hop) which define the 2-hop reachability labeling [3].

A 2–hop cover is a 2–hop labeling of directed graph G
such that if there is a path u~v in G, then Lout (u) ∩ Lin (v) ≠
∅. 2-hop cover is computed such that the transitive closure
of graph is covered.

Table II shows the 2-hop reachability labels for the
nodes of the directed graph G of Fig. 1. For instance, L (n3)
= {{n1}, {n5}} is the 2-hop reachability label for a node
‗n3‘ where Lin (n3) = {n1} & Lout (n3) = {n5}. There exists
a path n3~n8 as Lout (n3) ∩ Lin (n8) is {n5}. Thus, 2-hop
reachability labelling represents the compressed transitive
closure of the directed graph.

The problem of finding 2-hop cover is to assign the 2-
hop reachability labels such that the total size is minimum
which is found to be an NP-hard problem as it can be
reducible to minimum set-cover problem which has no
optimal solution. Minimum set cover problem is to find the
subsets with minimum overlap covering all the paths. Each
subset has a center w associated with it represented as S(Fw,
w, Tw) which is termed the 2-hop cluster with center ‗w‘ and

TABLE II. 2-HOP REACHABILITY LABELING OF G

Fw and Tw constitute all the set of nodes that are reachable
from ‗w‘ and that can reach ‗w‘ respectively. The center
with maximum cost is selected. The cost is assigned to the
center node based on the criterion of maximum number of
paths that the node can cover.

IV. EFFICIENT COMPUTATION OF 2-HOP LABELLING FROM

MULTI-INTERVAL ENCODING USING GEOMETRY-BASED

APPROACH

We computed 2-hop clusters by implementing the
geometry-based concept behind the algorithm in [2]. The
geometry-based technique involves the following steps.

1. Construction of virtual reachability map.
2. Computation of rectangular map for each node ‗w‘ that

forms a bipartite graph with center ‗w‘.
3. Derivation of 2-hop cluster by mapping the rectangular

map that has maximum matches with the virtual reachability
map.

The steps 2 and 3 are repeated until the virtual
reachability map is completely covered. The set of 2-hop
clusters together represent the 2-hop cover.

Initially, the directed graph is converted to DAG and the
reverse DAG is constructed. Reverse DAG is constructed by
reversing the direction of edges of the DAG. Let ―I‖ be the
set having multi-interval encoding information of the nodes
of DAG, i.e., for each node, postid and interval list is stored
in ―I‖. Let ―It‖ be the set having multi-interval encoding
information for the nodes of reverse DAG. Let p(vi) and
pt(vi) be the postids of the node vi in I and It respectively &
let I(vi) & It(vi) denote the interval list of node vi in ―I‖ &
―It‖ respectively where vi is one of the vertices in V of the
DAG G(V, E). The following pseudocode implements the
steps of geometry-based approach and computes the 2-hop
cover efficiently.

Algorithm 2-HopCover (I, It, V)

{ //size(V) returns the number of vertices of DAG in set V.

n:=size(V);

for i:=1 to n

{

 for j:=1 to n, vi≠vj

{

for k:=1 to size(I(vi)) //[xk, yk] is in I(vi)

if (xk<=p(vj)<=yk) f[p(vj)][pt(vi)]:=1;

}

}//virtual reachability in 2D array f

do

{

for m:=1 to n

 {m2:=Rect(vm); if(max<m2) {max:=m2; w:=vm; }}

V Lin(v) Lout(v)

n1

{} {n5, n6}

 n2

{n1}

{n6}

 n3

{n1}

{n5}

 n4

{n1}

{n6}

 n5

{}

{n1, n3}

 n6

{}

{}

 n7

{n2, n5}

{n10}

 n8

{n5, n6}

{n10}

 n9

{n6}

{n10}

 n10 {n5, n6} {}

60Copyright (c) IARIA, 2012. ISBN: 978-1-61208-228-8

SOTICS 2012 : The Second International Conference on Social Eco-Informatics

//get w in V with maximum count from Rect(w).Let rf[i][j]

//be the array where reachability of node ‗w‘ is stored.

for i:=1 to n{ for j:=1 to n{if(rf[i][j]=f[i][j] & f[i][j]=1){

F.add (p
-1

(i)); T.add (pt
-1

(j)); f[i][j]:=0;}}}

H.add(S (F, w, T)); F.empty (); T.empty ();

} while (atleast one value in 2D array f is 1);

return H;

}

Rect(w)

{ count:=0;

 //I(w)={[s1,e1],s2,e2]..[sn,en]} & similarly for It(w).

 for k:=1 to size(I(w)) for i:=sk to ek

for l:=1 to size(It(w)) for j:=sl

 to el

{

rf[i][j]:=1; rf[p(w)][pt(w)]:=0;

if(rf[i][j]=f[i][j]=1) count++;

}

return count;

}

Pseudocode to compute 2-hop cover

In the pseudocode, the multi-interval encoding

information is taken as input and the output returned is the
2-hop cover H. The explanation of the pseudocode along
with the steps of the geometry-based technique is given
below.

A. Construction of Virtual Reachability Map

For every node vi, its reachability information is stored
in a 2D array ‗f‘ in the pseudocode defined as follows:

 f[i][j]=1 if postid 'i' of a node (p[vj]) lies in one of the
intervals of vi, and ‗j‘ is the postid of the current node vi
(pt[vi]) in reverse DAG.

This 2D array is termed as the virtual reachability map.
This virtual reachability map contains the complete
reachability information of the DAG.

B. Computation of Rectangular Map

Then, a rectangular map is created for each node vi and
stored in a temporary 2D array ―rf‖. This map is created
from the interval lists I and It of the current node vi. Let I=
[[s1, e1], [s2, e2],.[sk, ek]..[sn, en]]. Let It = [[s1

1
, e1

1
], [s2

2
,

e2
2
],. .[sl, el]... [sn

n
, en

n
]] for vi. The rectangular map ―rf‖

computed in Rect(w) in the pseudocode is defined as
follows:

For each interval [sk, ek] in I,
For each interval [sl, el] in It,
rf[i][j]=1 for all integers i such that i is in [sk, ek] and
for all integers j such that j is in [sl, el].
rf[i][j]=0 if p[vi]=i and pt[vi]=j.

C. Derivation of 2-hop Cover

The procedure Rect(w) returns the total number of
matching 1s of the virtual reachability map with ―rf‖ of the
node 'w' which is stored in variable "count". The node
which has maximum value of ―count‖ is selected. From the
matching 1's of ―rf‖ of such node ‗w‘, a 2-hop cluster S (F,
w, T) is derived. For each matching value, i.e. for each
f[i][j]=rf[i][j]=1, where 1<=i<=n and 1<=j<=n, add the node
vi to F which has p[vi]=i and add the node vj to T which has
pt[vj]=j. Each 2-hop cluster formed can be visualized as a
bipartite graph with ‗w‘ as the center node of the bipartite
graph. Thus, a 2-hop cluster is created which is added to 2-
hop cover H. Then, assign to all the matching 1s in the
virtual reachability map the value 0 and remove ‗w‘. This
process of matching the rectangular maps with the virtual
reachability map is repeated until no value in the virtual
reachability map is 1. Thus, the 2-hop cover of DAG is
computed.

The 2-hop clusters computed for the directed graph in
Fig. 1 implementing the above pseudo-code are {[n1, n2,
n4], n6, [n10, n8, n9]}, {[n1, n3], n5, [n10, n7, n8]}, {[n7,
n8, n9], n10, []}, [], n1, [n1, n2, n3, n4]} & {[], n2, [n7]}.
From the 2-hop cover, 2-hop labels can be derived for the
nodes of the DAG. For each cluster S(Fw, w, Tw) , for each
node ‗u‘ in Fw, add ‗w‘ to Lout (u) and for each node ‗v‘ in
Tw, add w to Lin (v).For instance, 2-hop labels derived for
the directed graph in Fig. 1 are shown in Table II. Thus, 2-
hop labels are constructed for the nodes of DAG. 2-hop
labels for the other nodes of the directed graph are same as
2-hop labels of the maximal strongly connected nodes of the
directed graph that represent them in DAG.

V. EXPERIMENTAL RESULTS

The graph data can be a large real XML document like
DBLP data (http://dblp.uni-trier.de/xml/), or synthetic XML
data like XMark [11] which are parsed to derive the directed
data graph. XMark is a synthetic XML benchmark known
for its irregular schema. There are elements that internally
refer to other elements in the document which can be used
to encode the XMark XML document as a directed graph
with elements as nodes and parent-child relationships and
referencing relationships as edges. The xmlgen tool of
XMark constitutes a scaling factor which can be adjusted for
generating XML documents with varying sizes.

We conducted our experiments on Dell laptop with 2.10
GHz processor and 3.0GB RAM running on Windows 7 in
Java. 2-hop clusters are computed for XMark benchmark
XML files using the efficient geometry based approach with
the results outlined in the Table III. The last column in the
Table III shows 2-hop labels which are computed from the
2-hop clusters (shown in third column of Table III). Fig. 3

61Copyright (c) IARIA, 2012. ISBN: 978-1-61208-228-8

SOTICS 2012 : The Second International Conference on Social Eco-Informatics

TABLE III. EXPERIMENTED DATA AND RESULTS

XMark

scaling

factor

 |V|

of

Directed

Graph

 |E|

Of Directed

Graph

No. of 2-

hop

clusters

|S|

 2-hop label

size |L|

0.0001 372 438 109 891

0.0005 757 882 182 2444

0.0007 1143 1355 304 3237

0.0008 1158 1358 292 3419

0.001 1677 1961 480 4663

Figure 3. Comparison of Multi-interval Encoding size and 2-hop Labeling

size to Transitive Closure size

shows significantly less 2-hop label size computed using our
approach when compared to transitive closure size.

VI. CONCLUSION AND FUTURE WORK
The approach for computing 2-hop clusters is an

efficient geometry-based approach which is tested on
XMark XML files. From each 2-hop cluster S(Fw, w, Tw), 2-
hop reachability labels are constructed by adding center
node ‗w‘ to the label Lin(v) where ‗v‘ is one of the nodes in
Tw and adding center node ‗w‘ to the label Lout(u) where
‗u‘ is one of the nodes in Fw. The results shown in Fig. 3 of
2-hop labels computed show the significant amount of
compression of transitive closure which indicates the
efficiency of our approach. Using the 2-hop labels computed
from 2-hop clusters, base relations and cluster-based index
will be constructed that will be used in implementing the
join-based algorithms [1] for efficiently solving the graph
pattern matching problem.

REFERENCES

[1] J. Cheng, J. Xu Yu and P.S. Yu , ―Graph Pattern Matching: A

Join/Semijoin Approach‖, IEEE Transactions on Knowledge

and Data Engineering, Vol. 23, No. 7, Jul. 2011, pp. 1006-

1021, doi: 10.1109/TKDE.2010.169.

[2] J. Cheng, J. Xu Yu, X. Lin, H. Wang and P.S. Yu, ―Fast

Computation of Reachability Labeling for Large Graphs‖,

Proc. International Conference of Extending Database

Technology: Advances in Database Technology (EDBT ‘06),

2006.

[3] E. Cohen, E. Halperin, H. Kaplan and U. Zwick,

―Reachability and Distance Queries via 2-Hop Labels‖, Proc.

ACM-SIAM Symp. On Discrete Algorithms, (SODA 02),

Jan. 2002, pp. 937-946.

[4] R. Agrawal, A. Borgida and H.V. Jagadish, ―Efficient

Management of Transitive Relationships in Large Data and

Knowledge Bases‖, Proc. ACM Int‘l Conf on Management Of

Data, Jun. 1989, pp. 253-262.

[5] H. Wang, W. Wang, X. Lin and J. Li , ―Coding-based Join

Algorithms for Structural Queries on Graph-Structured XML

Document‖, Vol. 11, No. 4, Springer 2008, pp. 485-510.

[6] R. Schenkel et al., ―HOPI: An Efficient Connection Index for

Complex XML Document Collections‖, Proc. Int‘l

Conf.(EDBT ‗04), 2004, pp. 237-255.

[7] R. Schenkel, A. Theobald and G. Weikum, ―Efficient

Creation and Incremental Maintenance of the HOPI Index for

Complex XML Document Collections‖, Proc. 21st Int‘l Conf.

Data Eng. (ICDE ‗05), Apr. 2005, pp. 360-371.

[8] N. Bruno, N. Koudas and D. Srivastava, ―Holistic Twig Joins:

Optimal XML Pattern Matching‖, Proc. ACM SIGMOD

2002, pp. 310-321.

[9] S. Chen et al., ―Twig2stack: Bottom-Up Processing of

Generalized-Tree-Pattern Queries over XML Documents‖,

Proc. Int‘l conf. on Very Large DataBases,(VLDB‘06), 2006,

pp. 283-294.

[10] B. Bhargavi and K.P. Supreethi, ―Graph pattern mining: A

survey of issues and approaches‖, International Journal of IT

and Knowledge Management, Vol.5, No. 2, pp. 401-407, Jul.

2012.

[11] A. Schmidt, F. Waas, M. Kersten, M.J. Carey, I. Manolescu

and R. Busse, ―XMark: A Benchmark for XML Data

Management,‖ Proc.28th Int‘l Conf. Very Large Data Bases

(VLDB ‘02), 2002.

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-228-8

SOTICS 2012 : The Second International Conference on Social Eco-Informatics

