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Abstract— Social media platforms, such as X continue to 

increase efforts to reduce harmful content, such as hate speech 

due to their impact on communities. The increase in harmful 

content was even more noticeable in 2020 with COVID-19 

topics. This research systematically examines the impact of 

toxicity on the dynamics of communities on X, such as pro-

vaccine, anti-vaccine COVID-19. Toxicity score calculated and 

social network analysis was performed to extract communities. 

These factors were co-analyzed to understand if the 

communities become more cohesive or more fractured over time 

with varying toxicity levels using Granger causality test. Our 

results demonstrate that in the pro-vaccine dataset, toxicity has 

a more substantial effect on community dynamics by fracturing 

communities as toxicity increases, whereas in the anti-vaccine 

dataset toxicity does not affect the community dynamics as 

much. These results have implications for how social media 

platforms can better moderate content and reduce toxicity 

within communities. 

Keywords- Toxicity; Community dynamics; Social network; 

Granger causality; Network analysis; Community structure. 

I.  INTRODUCTION 

Social media platforms like Facebook and X (formerly 
Twitter) connect users globally but also facilitate the sharing 
of toxic content, which includes impolite or disrespectful 
language. Nockleby  defines the hate speech as “any 
communication that disparages a person or a group on the 
basis of some characteristic such as race, color, ethnicity, 
gender, sexual orientation, nationality, religion, or other 
characteristic” [1]. Such content can harm community health 
and engagement [2]. Platforms have guidelines to manage 
toxic content due to its significant impact [3] [4]. With 48% 
of US adults getting news from social media [5]. Sometimes, 
information on social media can lead to real-life events, and 
vice versa [6]. Communities form and dissolve for various 
reasons, such as friends and family sharing content or 
strangers engaging with unfamiliar posts. Mixed communities 
blend these dynamics, creating networks of communication 
[7]. Users can expand communities by retweeting, 
mentioning, following, liking, or sharing content. However, 
this can evoke emotions in the users [8] . disagreements may 
lead to unfollowing and stopping the sharing of previously 
shared content [9], [10]. 

This research examines the impact of toxicity on 
community dynamics for COVID-19 vaccine content on X. A 
longitudinal analysis of anti- and pro-vaccine hashtags 
investigates differences between these communities. The two 

primary research questions (RQs) addressed are: RQ1: What 
is the role of toxicity in community dynamics? RQ2: Does 
toxic speech fracture a community or make it more cohesive?  

Creating Sankey diagrams for both the anti- and pro-
vaccine datasets, color-coded by average toxicity score, 
reveals toxicity dynamics at the community level. A Granger 
Causality test analyzed the impact of toxicity on community 
structure and average nodes. Results show that in the pro-
vaccine dataset, increased toxicity significantly affects and 
fractures communities, while in the anti-vaccine dataset, 
toxicity has less impact. This difference is due to greater 
opinion diversity in the pro-vaccine data compared to the anti-
vaccine data. This research explores how toxicity affects pro-
vaccine and anti-vaccine communities, offering insights for 
improving online discourse and community management. It 
helps policymakers understand the behavioral differences 
between antagonistic and supportive communities. 

In the following section 2 provides a background on 
existing research in toxicity and polarization, section 3 
describes the details of our methodology. In Section 4, we 
present results and findings. Finally, section 5 summarizes our 
findings and discusses potential future work. 

II. LITERATURE REVIEW 

We review literature on hate speech followed by 
computational studies on community dynamics. 

A. Hate Speech and Community Polarization 

Toxic or hateful speech is common online and 
significantly impacts social network dynamics, particularly by 
shaping online communities and influencing information 
flow, especially when targeted at perceived out-groups [11]. 
The study [12] found that hateful posts spread faster and wider 
than non-hateful ones, and posts with picture attachments 
performed best, suggesting viral memes aid in spreading 
information. Authors in [13] used three measurements of 
graph structure to study the relationship between toxicity and 
the interconnectedness of X communities: connected 
components, modularity, and overall embeddedness.  

Researchers use various techniques to measure and 
analyze social network structure and polarization. A study 
used social network analysis and natural language processing 
to study how political discussions on social media in Japan 
lead to echo chambers and user polarization [14]. Deitrick and 
Hu improved community detection in four X networks by 
integrating sentiment analysis and adding features to tweets 
[15]. In [16], the authors developed an index to evaluate 
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network polarization and used it to reduce polarization by 
promoting content on controversial subjects. 

B. Change in Response to Events 

Online communities, like offline ones, are constantly 
evolving and can shift in response to external factors that 
provoke strong emotions. In [17], the X social network was 
studied before and after the 2015 Charlie Hebdo attack, 
revealing that users became more emotional and negative. In 
[18], polarization in a Swiss social network during the 2011 
federal elections was analyzed using time series and network 
measures, showing that polarization peaked before the 
election and returned to normal afterward. Authors in [19] 
analyzed communities and influential users on X in Slovenia 
during recent political changes and the Covid-19 pandemic, 
finding increased political polarization. In [20], the study of 
blog posts by female bloggers on women’s rights focused on 
broker and bridge nodes and their impact on information flow. 

III. METHODOLOGY 

This section discusses the research methodology used to 

study coordination and dynamic of social media, through 

various types of networks. 

A. Data Collection 

In this study, we focused on two different datasets to 
perform community dynamics analysis that were collected 
using the X academic API to collect tweets related to COVID-
19 from January 1, 2020, to June 30, 2021. The data was 
collected for various sets of hashtags that included subjects 
related to COVID-19. The collected hashtags were classified 
into anti-hashtags and pro-hashtags categories regarding 
vaccination. Some examples of hashtags collected for the anti-
vaccine dataset include #VaccineKill, #nocovidvaccine, and 
#NoVaccineForMe, etc. For the pro-vaccine dataset, some 
hashtags include #vaccinecure, #getthevaccine, etc. 

B. Toxicity Detection 

Toxicity scores for each tweet in the datasets were 
computed using Detoxify, a model created by Unitary [21]. 
This model uses a Convolutional Neural Network (CNN) 
trained with word vector inputs to assess whether text is 
perceived as “toxic.” The Detoxify API returns a probability 
score between 0 and 1, with higher values indicating a greater 
likelihood of toxicity. A threshold of 0.531 was set for 
identifying toxic tweets, balancing precision and recall as 
established by [13]. Texts with toxicity scores above 0.5 are 
labeled as 'toxic'. 

C. Community Dynamics 

The data was processed into a daily time series for analysis 
using NetworkX algorithms, such as the determining 
modularity and clustering coefficient, number of 
communities, and nodes. Modularity is a proposed division of 
that network into communities. It evaluates the quality of 
community division based on the presence of numerous edges 
within communities and the few between them [22], and is 
calculated according to Equation (1). 

                     𝑄 = ∑ [
𝐿𝑐

𝑚
− 𝛾 (

𝐾𝑐

2𝑚
)

2

]
𝑛

𝑐=1
                      (1) 

 
Another characteristic of a network is the clustering 

coefficient, which measures the extent to which nodes within 
a graph tend to form clusters. A high clustering coefficient 
suggests that nodes are closely connected within clusters, with 
many connections among neighboring nodes. Conversely, a 
low clustering coefficient indicates a more dispersed network 
structure. Equation (2) calculates the clustering coefficient. 

 

                               𝐶𝑖 =
2𝑒𝑖

𝑛𝑖(𝑛𝑖−1)
                                    (2) 

 
Calculated statistics included the minimum toxicity score, 

maximum toxicity score, maximum toxicity minus minimum 
toxicity score, toxicity mean, toxicity standard deviation, 
toxicity quantile 1, toxicity quantile 2 and toxicity quantile 3. 

D. The Granger Causality 

The Granger Causality test was used to predict one time 
series from another. A Python script facilitated this test, but 
before it could be conducted, the data were checked for 
stationarity using the Augmented Dickey-Fuller (ADF) and 
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests. The 
Granger Causality test requires both time series to be 
stationary; otherwise, the data were transformed to achieve 
stationarity. Two tests for both the anti- and pro-vaccine data 
were run for the daily data for the Granger Causality test. The 
first test consisted of the average toxicity score of the 
communities and the number of communities. The second 
test consisted of the average toxicity score and the average 
nodes of the communities. 

E. Sankey Diagrams and Five Point Statistical Summary 

Sankey diagrams illustrate node flow within communities 
and transitions between them over time. The Jaccard 
Similarity Index (Equation 3) measures the data similarity, 
with scores ranging from 0 to 1, where higher scores indicate 
greater similarity [23]. 

 
                  𝐽(𝐴, 𝐵) =  |𝐴 ∩ 𝐵|/|𝐴 ∪ 𝐵|                       (3) 

 
The data from the statistical analysis was used to develop 

the Sankey diagrams and five-point statistical summary. Ten 
dates were randomly selected for the anti-vaccine and pro-
vaccine datasets. The largest community was used for the 
analysis if the sample date had more than one community with 
greater than two nodes. The date selected in the sample and 
the following three days were used for the data to create the 
Sankey diagrams to look at the community dynamics. 

The five-point statistical summary was calculated for the 
communities for the sample data for anti- and pro-vaccine 
datasets. This included the minimum toxicity, maximum 
toxicity, and toxicity quantiles 1, 2 (median), and 3. The five-
point statistical summary provides insight into toxicity score 
distribution within communities. Toxicity quantile 2 shows us 
the median for the data, while toxicity quantiles 1 and 3 show 

18Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-198-5

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SOTICS 2024 : The Fourteenth International Conference on Social Media Technologies, Communication, and Informatics



 

the spread of the toxicity scores, and the minimum and 
maximum toxicity create the data range. 

IV. RESULTS AND FINDINGS 

Correlation analysis examined weekly modularity scores, 
clustering coefficients, and average toxicity scores in anti- and 
pro-vaccine datasets. Sankey diagrams and Granger causality 
tests were also applied. 

A. Modularity and Toxicity 

Analysis was conducted for several datasets by looking at 
the daily modularity scores for the user communication 
network (i.e., retweets and mentions) combined with the 
average toxicity scores, to see if toxicity is a factor in causing 
a community to fracture. The higher the modularity score of a 
network, the more modular (i.e., cohesive/well-knit) the 
community is. The lower the modularity score of a network, 
the less modular (i.e., loosely-knit) the community is. When 
there is a spike in toxicity in the time series, and the 
modularity score dips within a period of a few days, toxicity 
could be the cause of the fracturing of the community. A dip 
in modularity is noticed within a few days, because there can 
be a lag in the time series. The daily time series for several 
months of the datasets shows spikes in the toxicity mean score 
and dips in the modularity score the same day or day after the 
toxicity mean spikes. This can indicate that as toxicity rises 
over the network, it causes the modularity to drop, which is a 
sign of community fracturing. 

Occurrences of significant toxicity spikes and subsequent 
modularity dips were observed at various points in time across 
the different datasets. For instance, in the anti-vaccine dataset, 
such occurrences were noted in January, June, and September 
of 2020, as well as in November 2020. In March 2021, a 
notable increase in toxicity was followed by a significant 
decrease in modularity, indicating a strong indication of 
community fragmentation due to increased toxicity. Similarly, 
even though the pro-vaccine dataset exhibited less toxicity 
overall—notably in January, August, October, and November 
2020—the pro-vaccine results still showed frequent spikes in 
toxicity and corresponding dips in modularity; namely, the 
pro-vaccine dataset experienced mild but frequent spikes in 
toxicity and modularity dips, primarily occurring in April and 
June 2020. These findings show toxicity within a community 
affects modularity and has an impact on community 
fragmentation for both datasets. 

B. Clustering Coefficient and Toxicity 

The analysis examined from the multiple datasets the 
weekly clustering coefficient of a user communication 
network alongside the average toxicity scores. This 
investigation aimed to detect whether toxicity plays a role in 
community fragmentation. A high clustering coefficient 
indicates dense connections among nodes within clusters, 
implying strong cohesion and frequent interactions among 
neighboring nodes. In contrast, a low clustering coefficient 
signifies a more scattered network structure, suggesting 
weaker ties and less frequent interactions among nodes.  

Figure 1 illustrates the cross-correlation between toxicity 
scores and clustering coefficients for various time lags, aiming 

to identify the time lag at which the highest correlation 
between toxicity and clustering coefficient occurs. In Figure 
1-A, showing the anti-vaccine dataset, a correlation is -0.23 
with an 8-week lag. And Figure 1-B, representing the pro-
vaccine dataset, a correlation of -0.34 is observed with a 7-
week lag. This temporal aspect enriches the analysis, 
revealing how toxicity over time affects online community 
cohesion. Negative correlations (-0.23 and -0.34) indicate 
that, as toxicity increases, communities tend to become more 
fragmented. A decrease in the clustering coefficient signifies 
weaker member connections and reduced interaction 
frequency. For the anti-vaccine Figure 1-A, the correlation of 
-0.23 with an 8-week lag suggests that there is a modest 
negative association between toxicity levels and community 
cohesion. This means that, as toxicity increases, the 
community tends to become less cohesive, but this effect is 
observed with an 8-week delay. In contrast, in the pro-vaccine 
dataset Figure 1-B, the correlation of -0.34 with a 7-week lag 
indicates a slightly stronger negative relationship between 
toxicity and community cohesion compared to the anti-
vaccine dataset. This implies that increases in toxicity levels 
are associated with more immediate and stronger decreases in 
community cohesion in pro-vaccine discussions, with a lag of 
around 7 weeks. The findings help us understand how toxicity 
affects the fundamental structure and behavior of online 
communities. 

 

 
 
 

 

 

 
 

Figure 1. Cross correlation between toxicity and clustering coefficient. 

 

C. Sankey Diagrams 

Sankey diagrams were created to deeply investigate the 

dataset’s community dynamics and to look specifically at the 

community dynamics for the anti-vaccine and pro-vaccine 

datasets. These diagrams help visualize what happens on the 

first day of a time series to the communities with an average 

B. Cross correlation for Pro vaccine 

A. Cross correlation for Anti vaccine 
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toxicity score of greater than 0.5. Community 2020-06-11 

started with two nodes that split into four different 

communities in the time series (Figure 2-A). The first node 

transitioned from the community with ID 2 on 2020-06-11 

(2020-06-11:2) to the community with ID 2 on 2020-06-12 

(2020-06-12:2). And the second node went to the 2020-06-

12:3, 2020-06-13:2, and 2020-06-14:3 communities. These 

nodes' changes in community reflect the fragmentation of the 

original community. The tweet/retweet was the same for all 

nodes of the 2020-06-11:2 community, giving it the same 

score across the five-point statistical summary and for 

community 2020-06-14:2. 
For the 2020-06-12:2 community, toxicity scores ranged 

from 0.0004 to 0.9894. In the 2020-06-12:3 community, 
scores ranged from 0.0007 to 0.0012. The 2020-06-14:2 
community had scores ranging from 0.0004 to 0.8495. 
Additionally, community 2020-06-19:2 saw four out of 
twenty-three nodes flow into five different communities over 
the time series (Figure 2-B). On 2020-09-10:2, all nodes in the 
community retweeted the same tweet, resulting in a median 
toxicity score of 0.7142, with uniform quantiles and minimal 
variability. The 2020-06-21:2 community had a toxicity range 
from 0.0004 to 0.1646. On 2020-08-17:2, a community began 
with a median toxicity score of 0.8629, and two of its four 
nodes later moved to non-toxic communities (Figure 2-C). 
Communities 2020-08-17:2, 2020-08-18:3, and 2020-08-19:2 
had identical toxicity scores due to the same retweet. The non-
toxic community 2020-08-18:2 had toxicity scores ranging 
from 0.0004 to 0.2999. In the 2020-09-23:2 community, two 
nodes flowed to other communities; one node entered all 
subsequent communities but remained toxic, while the other 
moved directly to the 2020-09-26:3 community (Figure 2-D). 
Three additional days were analyzed, and no further 
connections from the 2020-09-26:3 community were found. 
Only the 2020-09-24:2 community had consistent five-point 
statistical scores. The 2020-09-23:2 community had toxicity 
scores ranging from 0.8765 to 0.9689, the 2020-09-25:2 
community had scores between 0.7455 and 0.9842, and the 
2020-09-26:3 community ranged from 0.3512 to 0.9516. 

The pro-vaccine results were similar to the anti-vaccine 
sample dataset. In the first pro-vaccine sample dataset, the 
community 2021-05-28:2 started with eight nodes and then 
split into two different communities (see Figure 2-E). Two 
nodes went to other communities, while one node went 

straight to the non-toxic community.  Two communities, 
2021-05-28:2 and 2021-05-29:2, had the same score for the 
five-point statistical analysis. The other two communities 
were skewed. The 2021-05-30:2 community had a minimum 
toxicity score of 0.0178 and maximum toxicity score of 
0.0433. The 2020-05-30:3 community had a minimum and 
maximum toxicity score of 0.0004 and 0.0993, respectively. 

For the 2020-06-23:2 community, additional days were 
added to see if the toxic communities had more flowed 
additions. After analyzing the additional days, all the toxic 
communities ended in a non-toxic community for the time 
series (see Figure 2-F). Three of the six communities, 2021-
06-24:3, 2021-06-26:2, and 2021-06-29:2, had the same score 
for the five-point statistical analysis. The other three 
communities were skewed. The 2021-06-23:2 community had 
a minimum toxicity score of 0.0004 and maximum toxicity 
score of 0.6074. The 2021-06-28:2 community had a 
minimum and maximum toxicity scores are 0.0004 and 
0.9832, respectively. The 2021-06-30:2 community had a 
minimum toxicity score of 0.0004 and maximum toxicity 
score of 0.6074. 

Overall, our analyses indicate seven out of the ten anti-
vaccine communities with nodes that had connections to other 
communities in the time series flowed into non-toxic 
communities by the end of the time series for each sample. For 
the pro-vaccine communities, eight of the ten communities’ 
nodes ended flowing into in non-toxic communities. This 
Sankey diagram analysis in Figure 2 shows that toxicity can 
cause the fracturing of a community. 

D. Granger Causality Test 

The Granger Causality test was conducted on both the 
anti-vaccine and pro-vaccine datasets to explore the 
relationship between the communities’ average toxicity 
scores and characteristics/values, such as number of 
communities and number of nodes. 

Initially, for the anti-vaccine dataset, the first test was 
between the average toxicity score of the communities and 
the number of communities. The ADF test was run on the 
toxicity and community column data, and this test was 
performed to assess data stationarity. For data to be 
considered stationary, the p-value must be less than 0.05. The 
p-value for the toxicity and community were 3.4056e-5 and 
0.0147, respectively. So, the data series was stationary. Since 

Figure 2. Community Sankey flows for different time periods. 
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the data passed the ADF test, the next step was to conduct the 
KPSS test to verify if the data exhibited stationarity. For the 
data to be stationary, the p-value must be greater than 0.05. 
The p-value for the toxicity and community were 0.015392 
and 0.015392. So, in this case, the data series were not 
stationary.  

Since the data did not pass the KPSS as stationary for the 
time series, we addressed this issue by transforming the data 
through differencing. After performing the differencing 
process, we conducted the ADF and KPSS tests again, 
confirming that all data series now exhibited stationarity. 
With both the ADF and KPSS tests passed, we proceeded to 
conduct the Granger Causality test using four lags. In the 
Granger Causality test, for either the toxicity value or the 
community value to Granger-cause the other variable, the p-
value must be less than 0.05. The results indicated that 
toxicity did not Granger-cause the community values, as 
evidenced by p-values of 0.8127, 0.9343, 0.9898, and 0.9794 
for lags 1 to 4, respectively. Similarly, the community factor 
did not Granger-cause toxicity for all four lags, with p-values 
of 0.4724, 0.7906, 0.9101, and 0.9238. 

For the pro-vaccine data, the ADF test was run on the 
toxicity column data and the number of community column 
data. The toxicity data series were stationary, but the 
community data were not, with p-values 2.0483e-13 and 
0.795, respectively. The next test performed to see if the data 
was stationary was the KPSS test; the toxicity, with a p-value 
0.100, was stationary, but the community, with p-value 
0.010, data series was not stationary. Since the community 
data did not pass the KPSS as stationary for the time series, 
the data was transformed by differencing the time series data. 
After the difference was performed, the ADF and KPSS tests 
were rerun, and all the data series passed as stationary. The 
Granger Causality test was performed using four lags. The 
outcome of the data was that toxicity does not Granger-cause 
the community values, and that the community values do not 
Granger-cause the toxicity for all four lags for toxicity and 
community with the p-values that are way greater than 0.05 
in both cases for 4 different lags. 

The second test conducted was the average toxicity score, 
and the average nodes of the communities. 

The ADF test was run on data for the anti-vaccine dataset. 
The average toxicity and average nodes data series were 
stationary with the p-value of 3.4056e-5 and 0.049 
respectively. Since the data passed the ADF test, the next test 
performed was KPSS to see if the data was stationary. The 
toxicity and average nodes data series were not stationary 
with p-value 0.01. Since the data did not pass the KPSS as 
stationary for the time series, the data was transformed by 
differencing the time series data. After the difference was 
performed, the ADF and KPSS tests were rerun, and all the 
data series passed as stationary. The Granger Causality test 
was performed using four lags. The outcome of the data 
shows toxicity does not Granger-cause the average nodes, as 
observed by p-values 0.81,0.93,0.98,0.97 for four lags. 

For the pro-vaccine data, the ADF and KPSS tests were 
run on the toxicity column data and the average nodes column 
data. All the data series passed as stationary, expect KPSS for 
the average nodes. After the difference was performed, the 

ADF and KPSS tests were rerun, and all the data series passed 
as stationary. The Granger Causality test was performed 
using four lags. The outcome of the data was that toxicity 
does not Granger-cause for the average toxicity lag one (p-
value 0.495) and four (p-value 0.07), but it does Granger-
cause on lag two (p-value 0.033) and three (p-value 0.036). 
Toxicity does affect the average number of nodes in a 
community. Lag two has the strongest effect since its p-value 
is lower than lag three. This demonstrates that as toxicity 
increases, it affects the average nodes in a community with a 
lag, which is to be expected. One shouldn’t see Granger 
Cause at the same time. When looking at how the average 
nodes affect toxicity, the lag two, three, and four all Granger-
caused. Out of all the lags, the strongest one was lag two. 

V. CONCLUSION AND FUTURE WORKS 

For the anti- and pro-vaccine datasets, several months 
show that, as the toxicity mean score rises or spikes, the 
modularity toxicity score decreases within a few days. When 
the modularity score is high and then decreases after the rise 
or spike of toxicity, the community becomes less tight-knit, 
and this shows toxic that an increase in toxicity can cause the 
community to fracture. Similarly, the clustering coefficient 
exhibits a similar trend, with an increase in toxicity 
corresponding to a decrease in the clustering coefficient, 
signifying community fracture. In the pro-vaccine dataset, an 
increase in toxicity leads to earlier and higher fragmentation 
compared to the anti-vaccine dataset. When examining 
community dynamics, communities starting with a toxicity 
score above 0.5 tend to fracture. These toxic communities 
often break into smaller groups, including primarily non-toxic 
ones. Even when members join other toxic groups, their new 
toxicity scores are lower than the original. Thus, a less toxic 
community is preferable to a highly toxic one. When the anti- 
and pro-vaccine sample datasets were combined, fifteen of the 
twenty toxic communities ended up in fully non-toxic 
communities by the end of the time series for those samples. 
This indicates that toxicity can fracture communities. The 
Granger Causality test on the pro-vaccine dataset revealed that 
toxicity affects average nodes in a community and vice versa. 
This may be due to greater opinion diversity in positive 
conversations, while negative conversations have low opinion 
diversity. Our results show that in the pro-vaccine dataset, 
increasing toxicity significantly fractures communities, 
whereas in the anti-vaccine dataset, toxicity has less impact on 
community dynamics. Other factors, such as user suspensions 
or disinterest in evolving topics (e.g., political discussions), 
can also cause communities to fracture. 

This research reveals how toxicity shapes online 
communities, offering insights for researchers, policymakers, 
and community managers. By analyzing pro-vaccine and anti-
vaccine discussions, it shows how toxic behavior influences 
community dynamics. These findings are crucial for 
improving online discourse and community management, 
helping to predict healthier communities and mitigate toxicity. 

In future work, we plan to analyze a broader range of 
datasets from diverse sources to enhance our findings' 
robustness. We also aim to conduct comparative studies 
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across multiple online platforms to further explore toxicity’s 
impact on community dynamics. 
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