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Abstract – The article describes the two-stage lossless 

compression method for telemetry data, in which the linear 

prediction method acts as a decorrelator in the first stage, and 

Rice codes act as an entropy coder in the second stage. A 

detailed description of implementing linear prediction is 

presented and applied in experiments on different telemetry 

frame structures, in the Inter-Range Instrumentation Group 

(IRIG) standard 106 format. Telemetry data analysis is 

performed, and compression efficiency is presented based on 

estimates of the gain in variance and entropy of the output 

signal from the decorrelator. Based on the experimental 

results, conclusions are extracted, and recommendations are 

suggested. 

Keywords—telemetry date frame; Rice coding; Linear 

Prediction; IRIG-106; lossless compression. 

I.  INTRODUCTION 

Remote sensed data are widely transmitted in the form of 
telemetry stream to ground stations for analyzing abnormal 
situations, recovering bad sections in the telemetry stream 
and other types of post-processing or real-time data 
processing. Telemetry data has a huge size. So, it should be 
compressed at the telemetry source before transmission 
and/or archived in a compressed form [1]-[6].  

This paper presents results of studies conducted with the 
aim of developing an effective two-stage lossless 
compression method based on linear prediction and Rice 
codes for different structures of telemetry streams.  

The Rice coding algorithm is widely used for lossless 
telemetry data compression, but its effectiveness is largely 
determined by the properties of the encoded information. 
Therefore, it is not suitable in case of highly deviated data 
[4] [7].  

In telemetry systems, the commutator of the data 
acquisition subsystem measures values from multiple 
different sensors and outputs a single stream of pulses, which 
are then modulated and transmitted to a receiving station, 
where the decommutator returns the serial digital stream 
back to a parallel form. One complete acquisition cycle of 
the commutator generates data words, which represent 
values of each measured parameter. These data words and a 
synchronization code, which is needed for the 
decommutation process, establish the telemetry frame.  

In a simple commutator, each data word is sampled once 
per rotation at a rate compatible with the fastest changing 
measured parameter. In many cases, rate of change of the 
measured parameters is different, often by several orders of 
magnitude. Consequently, it is not preferred to perform 
sampling for the slow changing parameters per each rotation. 

These parameters can be sampled in a single data word (i.e., 
a subframe commutation case), e.g., for three slow changing 
parameters, the main commutator will take three rotations to 
sample every parameter at least once. Each rotation of the 
main commutator produces a minor frame, while these three 
minor frames together form a major telemetry frame. In each 
minor frame, an additional synchronization code (usually a 
counter) is added, so the decommutator can distinguish 
between subframe commutated parameters [1] [9].  

In this paper, the process of implementing linear 
predictions as a first stage before Rice codes is presented 
with illustrative figures, implemented, tested and verified 
with real telemetry data in IRIG-106 standard format. This is 
a comprehensive and open telemetry standard, developed 
and maintained by the Telemetry Group of the Range 
Commanders Council (RCC) [8]. 

The statistical characteristics of the telemetry tested data 
are examined, and their effects on the prediction efficiency 
are investigated, and sequentially on the overall compression 
efficiency. The effect of telemetry frame structure on the 
selection of the predictor’s order and, even, on the suggested 
number of predictors is determined. 

In this paper, a literature survey on recent telemetry 
compression methods is presented in Section 2, while in 
Section 3, a survey is provided on successive processes, 
which are involved in applying linear prediction on telemetry 
data for lossless compressing. In Section 4, telemetry data 
preparation and the tested frame structures are described. 
Experimental tests and analysis for the effects of telemetry 
data characteristics and frame structure on compression 
efficiency are demonstrated in Section 5. Finally, in Section 
6, conclusions and future works are suggested.  

II. LITERATURE SURVEY 

The Rice codes method is considered one of the most 
powerful entropy coders, which is used for telemetry data 
compression, e.g., it is recommended by The Consultative 
Committee for Space Data Systems (CCSDS) to compress 
telemetry data [4]. 

Many recent researches are involved in the preprocessing 
layer before entropy coding in order to improve compression 
efficiency [10]. In [11], a method based on displaying the 
original data onto geometric surfaces planes is suggested as a 
preprocessor layer. Another method based on performing 
XOR operation on subsequent telemetry frames is suggested 
for preprocessing data before entropy coding [12] [13]. A 
Neural Network (NN)-based telemetry classification method 
is suggested in [14].  
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Prediction based preprocessor layer are widely suggested 
and used for telemetry compression. Prediction methods 
based on NN models are illustrated in [15] [16]. An adaptive 
prediction layer based on the Normalized Least Mean Square 
(NLMS) algorithm is proposed in [17]. This method depends 
on the value of the convergence parameter and the 
smoothing parameter of the NLMS algorithm. It shows 
results very close and slightly better than those of the non-
adaptive prediction method, however, it may be worse for 
more complex telemetry frame structures (i.e., telemetry 
frames which contain sub-commutated parameters). As the 
total length of the major telemetry frame increases, the 
suggested prediction order of the NLMS based filter should 
be increased to match the total frame length for a better 
compression.  

III. LINEAR PREDICTION AND RICE CODES BASED TWO-

STAGE COMPRESSION METHOD  

The effectiveness of any compression algorithm is 

affected by the statistical characteristics of the data to be 

compressed and generally, if the compression algorithm can 

adapt to these characterises, it will generate better results. 

So, recent lossless compression algorithms are generally 

described by a series of two stages as shown in Figure 1:  

1) Decorrelation stage, which figures out the correlation 

in the original data to be encoded. 

2) Entropy coding stage, in which entropy coding will 

be performed on decorrelated data, which in general has 

lower variance and lower entropy value than of the original 

ones [18]-[24]. 

 
Figure 1. Two stage lossless compression scheme. 

A. Rice coding algorithm overview 

The efficiency of Rice codes depends on a controllable 

parameter k, which depends on the variance of symbols in 

the message. 

A code word for an encoded number (v) by Rice coding 

algorithm is divided into two parts, i.e., v=vi+vf , where 

 2
k

i vv   and 2mod k
f vv  . The coded word is formed by 

the value of (vi +1), provided by unary code, and the value 

of vf , represented by (k) bit binary code. 

In this paper, the following formula [23] [25] is used in 

experiments: 

 k= ( (2)×E( x ))log log2 e , (1) 

where E(|x|) is the average value of symbols of the encoded 

message. 

Rice codes are effective for coding values, which are 

close to 2k, and are recommended for the encoding data, 

whose distribution matches the geometric one. 

B. Linear prediction method as a decorrelator 

This paper presents a detailed description of applying 

linear prediction as a decorrelator for reducing correlational 

dependences in a telemetry stream. 

In linear prediction, the value of the sample xi is 

predicted by the known values of the previous 

samples x ,x ,…,xi 1 i 2 i p   by the formula: 

 
p

x̂ =Q a xi j i j
j=1

 
  
 
 

, (2) 

where x̂i is the predicted value of sample xi  , Q  is a non-

linear operator, which denotes level quantization, a j  is the 

prediction coefficients and p is the linear prediction order. 

At each step, the prediction error 
ie is calculated by:  

 ˆe =x xi i i .  (3) 

To perform a two-stage lossless compression of 

telemetry data, the following scheme presented in Figure 2 is 

implemented, where â i  represent the quantized values of 

prediction coefficients ai . 

 
a) 

 
b) 

Figure 2. The scheme of two-stage lossless data compression (a) and 

reconstruction of the original data from the compressed ones (b) [26]. 

The prediction coefficients are required at the decoder to 

reconstruct the original signal samples xi from the prediction 

error values ei . So, they are added to the output of the 

decorrelator.  

C. Calculation of predictor coefficient(s) 

The optimal values of linear prediction coefficients are 

obtained by minimizing the Mean Square Error (MSE) of 

the estimate: 

 
2ˆe(n) = x(n)  x(n)  min ( E (e (n) ) )  ,   (4) 

and based on the principle of orthogonality, thus: 

        ˆE x n L ×e n = E x n L × x(n) x(n) = 0         ,  (5) 

which can equivalently be written as: 

    
p

α R L  t = R Lt xx xx
t=1

  ,  (6) 

where L=1…p , Rxx[L] is the autocorrelation of x(n), t is a 

vector of length p, Rxx[L-t] is a matrix of size p×p and 

Rxx[L] is a vector of length p. These t equations are Toeplitz 
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and known as the Yule-Walker equations. A quick and 

efficient way to solve this matrix is the Levinson-Durbin 

algorithm, which uses the symmetry of the Rxx[L-t] matrix 

to simplify the calculations from {O3} to {O2} [27]. 

D. Coding of linear predictor coefficients 

Direct quantization of the obtained prediction 
coefficients has several disadvantages. This operation leads 
to significant distortions in the frequency domain. Instead, 
their reflections, using a nonlinear procedure, will be 
quantized.  

Since the values of the prediction coefficients are in the 

range [–1, + 1], a nonlinear procedure y = arcsin(x), shown 

in Figure 3, has been implemented [26]. 

 
Figure 3. Function diagram of  Y=arcsin(X). 

The values â =arcsin(a )i i are in the range [-π/2,+π/2]. 

Each value of â i  is converted to an 8-bit integer (one bit to 

represent the sign, and seven bits to represent the output of 
the arcsin function, which is in the range from 0 to 90). The 
successive functions, in Figure 4, illustrate the coding 
process for prediction coefficients for lossless compression. 

 
Figure 4. Coding scheme of prediction coefficient using arcsin function. 

E. Prediction error transformation 

Prediction errors are determined by using (3), which can 

take both positive and negative values. Therefore, a 

conversion process is required, which preserves the original 

range of signal values. The range of error values is equal to 

the range of values of the input signal to the converter. The 

error ei  is recalculated into a value δi according to the 

formula: 

 

2e , 0 e ,i i i

2 e 1, e 0,i i ii
e , otherwise,i i

  


     
 

 (7) 

where ˆ ˆθ =min(x x ,x x )i i min max i  , xmin is the 

minimum value of the input signal, xmax is the maximum 

value of the input signal. The prediction error is in the range 

ˆ ˆx x e x xmin i i max i    . The number of bits required to 

represent errors ei is the same to represent the signal xi . If 

the input signal is represented by positive 8-bit numbers, 

then x =0min , 8x =2   1max  . 
The inverse transformation is performed according to the 

following formula: 

 

if 2 , then
i i

/2, if even,i i
ei

( 1)/2, if odd;i i

if 2 , theni i

ˆ, if x x ,i i mini i
e
i ˆif x x ., i max ii i

  

 


   

  

   
 

   

  (8) 

To convert a prediction error to a positive integer value, 
an error transform block is applied at the output of the 
decorrelator [28], as shown in Figure 5-a and Figure 5-b at 
the compressor side and at the decompressor side, 
respectively. 

 
a) 

 
b) 

Figure 5. Transformation scheme (a) and inverse transformation scheme (b) 

of prediction errors. 

IV. PREPARING DATA FOR EXPERIMENTS 

The telemetry data of automatic control systems have 
been used in experiments. They are presented in time series 
of digitized samples of analog sensors, which represent 
typical telemetry system parameters including temperature, 
pressure, position data, and so on. These telemetry 
parameters were obtained in laboratory conditions from real 
sources. A timed portion of the data samples acquired from 
nine physical real sensors is shown in Figure 6. 

 
Figure 6.  A timed portion of the acquired data samples. 

The telemetry data samples used in our experiments are 
transmitted in frames with a fixed length and a 

23Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-694-1

SPACOMM 2019 : The Eleventh International Conference on Advances in Satellite and Space Communications



predetermined fixed internal structure in IRIG-106 standard. 
In frames, different readings of several sources, i.e., digitized 
analog sensor readings and readings of digital devices, can 
be transmitted. Each data source is transmitted in a separate 
channel of telemetry data recording system in an 8-bit data 
word in the telemetry frame. The telemetry stream is 
generated by the telemetry simulation software presented in 
[29]. The simulator is used to generate different telemetry 
data streams, based on different telemetry frame structures, 
in IRIG-106 standard.  

Experiments are carried out on two different telemetry 
frame structures: tf1 and tf2, as shown in Figure 7 and Figure 
8, respectively. Telemetry frame structure tf1 consists of 9 
channels (DataWords) in one major frame without any 
subframes, i.e., one level of commutation. An additional 
piece of information (SYNC_F) of 16 bit (according to 
IRIG-106 standard) to provide frame synchronization in the 
telemetry stream, is added. 

 
Figure 7. Telemetry frame tf1 without subframes. 

 
The second structure tf2 in Figure 9 is a telemetry frame 

structure, which contains a subframe of length 4, resulting 
from a second level of commutation attached to the 4th 
DataWord. A counter as an additional subframe 
synchronization (SYNC_SF1) is added to each minor frame. 

 
Figure 8. Telemetry frame tf2 with a subframe at the 4th DataWord. 

V. EXPERIMENTAL TESTS AND ANALYSIS 

The efficiency of the decorrelation stage can be evaluated 
by two parameters:  

 Prediction gain in variance Prediction_Gain, which 

is the relation between the variance 2
Xσ of the 

original data (X) and the variance 2
Eσ  of the 

prediction error (E): 

 Prediction_G 2 2/σX
ai =

E
n σ .  (9) 

 The entropy H (in bits / symbol): 

 
Z

H = × )log (PPi 2 i
i=1

  , (10) 

where Z is the number of symbols in encoded data 
and Pi is the probability of each symbol i.  

For evaluating the efficiency of the compression 
algorithm, the compression ratio (R) is checked: 

 R=S Sinput output ,   (11) 

where Sinput is the size of the original data (X), and Soutput is 

the size of compressed data at the system output (output of 

entropy coder). 

Probability distribution of telemetry data samples is 
shown in Figure 9. According to this histogram, the values 
are distributed throughout the scale. The histogram has 
several pronounced peaks typical of telemetry information, 
in which the monitored parameters for a long time retain 
values close to constant, and deviate slightly from them 
under the influence of noise. It has entropy value Hx = 7.45 

(bits/symbol) and variance 2σx  = 6085.77. 

 
Figure 9. Probability distribution of data samples in telemetry stream. 
 
Applying Rice codes only to the original data (X) leads to 

a compression ratio R = 1.03 at parameter k = 7, which 
means nearly no compression. 

The linear prediction method is applied on the original 
data (X), in the first telemetry frame structure tf1. 
Experimental dependencies of linear prediction efficiency, 
using (9) and (10), on different prediction orders are shown 
in Table I. 

TABLE I.  LINEAR PREDICTION EFFICIENCY AT DIFFERENT 

PREDICTION ORDERS APPLIED ON TELEMETRY FRAME TF1 

Prediction Efficiency 
Predictor 

Order 1 Order 2 Order 8 Order 9 Order 18 

σE
2 5599.01 5565.08 4394.12 78.32 82.42 

Prediction_Gain 1.08 1.09 1.38 77.70 73.83 

HE 7.86 7.78 7.71 3.06 3.79 

 

The best results in Table I, i.e., the highest value of 
prediction gain and the lowest of entropy, are obtained using 
the 9th order of linear prediction. The probability distribution 
of the prediction errors of the 9th order predictor is shown in 
Figure 10, in which the graph has an expressed peak at zero. 

 
Figure 10. Probability distribution of prediction errors of 9th order predictor 

applied on telemetry frame tf1. 
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Applying Rice codes as a second stage, after a 9th order 
linear predictor at a first stage, leads to a compression ratio 
value R = 2.13 at parameter k = 3. 

The dependences of the compression ratio, (resulting from 
linear prediction based decorrelation and Rice codes entropy 
coding), on the order of the linear predictor are shown in 
Figure 11. We notice that the compression ratio increases 
dramatically when the order of the linear predictor becomes 
equal to the count of data words in the repeating structure of 
the information flow. In this case, this count is equal to the 
frame length of the main commutator (i.e., order = 9). 

 
Figure 11. Experimentally obtained dependences of the compression ratio on 

the order of the predictior for telemetry frame tf1. 
 

Experiments are carried out on the second telemetry frame 
structure tf2. Based on results obtained, shown in Figure 12, 
the compression ratio increases explicitly when the predictor 
order becomes equal to the count of words contained in the 
four frames of the main commutator (i.e., Best compression 
ratio R = 1.65 with a linear prediction of order 24). 

 
Figure 12. Experimentally obtained dependences of the compression ratio on 

the order of the predictior for telemetry frame tf2. 

From the obtained results, it can be seen that, between 
readings of the same parameter, located in adjacent frames, 
there is a strong correlational dependency, and there are 
usually no such dependencies between adjacent words in the 
telemetry stream. On the other hand, increasing the order of 
the predictor to identify these dependencies leads to more 
complex calculations. In general, the use of the linear 
prediction method for data decorrelation in a telemetry 
stream is justified in the case of a small frame length and a 
simple one level of commutation. If these conditions are not 

met, then this method of decorrelation is not very efficient or 
requires significant computational resources.   

From the above and based on the fact that the output 

frames from the main commutator have a fixed length and a 

constant predetermined internal structure, a linear prediction 

based decorrelation method is presented. In this method, a 

decorrelation stage is applied for each telemetry parameter 

channel, as described in Figure 13. For a given telemetry 

frame structure in Figure 13-a, a linear prediction is applied 

on each parameter channel, as shown in Figure 13-b. 

 
a) 

 
b) 

Figure 13. Description of linear prediction of each parameter’s channel. 

Additional experiments, based on the proposed method, 

are applied on telemetry frame tf2. It should be noted that the 

use of first order predictors to predict values of each channel 

is quite effective. 

In experiments, applying 9 linear predictors, each of order 

1, for each parameter channel in telemetry frame tf2 leads to 

a better prediction efficiency than the other obtained from 

applying a single predictor, as shown in Table II.  

TABLE II.  LINEAR PREDICTION EFFICIENCY OF DIFFERENT 

PREDICTORS APPLIED ON TELEMETRY FRAME TF2 

Prediction Efficiency 

Single linear 

predictor of order 

24 for the stream 

First order linear 

predictor for each 

parameter channel 

Prediction_Gain 28.31 40.84 

HE 4.57 3.34 

 
Applying single first order predictor for each channel, in a 

two stage Rice based compression method for telemetry 
frame tf2 achieves compression ratio R=1.96. 
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VI. CONCLUSION AND FUTURE WORK 

Applying linear prediction method as a decorrelator is 

sufficient enough to transform the probability distribution 

model of the encoded data samples into a model which is 

more efficient when implementing entropy coding. 

For telemetry major frames without subframes, a single 

linear predictor of order equal to the length of the major 

frame (i.e., total number of data words) is an efficient 

decorrelator, while for telemetry major frames with 

subframes, applying first order linear predictor for each 

telemetry parameter channel in the major frame is more 

effective. 

Applying linear prediction for each channel transfers the 

problem of decorrelation into a parallel one, which can be 

implemented on Graphics Processing Units (GPUs) for high 

performance parallel computations. 

A preprocessor stage of noise removal from measured 

telemetry signals can lead to a better efficiency in the 

subsequent stage (i.e., prediction based decorrelation stage). 

Recent deep learning algorithms based on Convolutional 

Neural Networks (CNN) are promising to provide better and 

worthy prediction efficiency. As for applying CNNs on 

onboard systems, a recent method of deep compression 

should be visited [30]. 
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