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Abstract—How can we inspect city conditions at low costs? City
infrastructures, such as roads, are elements of great importance
in urban lives. Roads require constant inspection and repair
due to deterioration, but it is expensive to do so with manual
labor. Therefore, these works should be done automatically so
that the cost of inspecting or repairing becomes cheap. While
there are several works to address these road issues, our study
focuses on official city vehicles, especially garbage trucks, to detect
damaged lane markings (lines) which is the simplest case of road
deterioration. Since our proposed system is implemented on an
edge computer, it is easy to attach our system to vehicles. In
addition, our system utilizes a camera, and since garbage trucks
almost run through the entire area of a city every day, we can
constantly obtain road images covering wide areas. Our model,
which we call Deep on Edge (DoE), is a deep convolutional
neural network which detects damaged lines from images. In
our experiments, to evaluate our system, we first compared the
accuracy of line damage detection of DoE with other baseline
methods. Our results show that DoE outperforms previous
approaches. Then, we investigate whether our system can detect
the line damage on a running car. With this demonstration, we
show that our system would be useful in practice.

Keywords–Smart City; Deep Learning; Edge Computing; Image
Recognition;

I. INTRODUCTION

The road is one of the most important infrastructures of a
city in planning and development. For instance, people usually
use them for going somewhere or for planning land utilization
to enrich their livelihoods. However, many roads need repairing
since most of them are built in periods of rapid economic
growth and have been deteriorating since. Thus, to inspect
their condition for road repair, the city administration needs
to employ people for constant inspection. Yet manual road
inspection is expensive and takes a lot of time; for instance, in
order to detect the damage or blur of road markings, people
have to check by eye, whose ability has certain limits. In
addition, in certain regions such as Japan, public funds for
road inspection have been reduced due to current societal
conditions. In short, manual road inspection and repair is not
enough for sufficient maintenance.

Most previous work has therefore focused on making the
cost of road inspection cheaper to increase sustainability. Some
works have focused on road flatteness [1]–[3], potholes [4] [5],
and cracks [6]. In contrast, we aim to detect the damage or
blur of white lines. To our knowledge, only our previous work
addresses this problem [7]. Detecting the damage of white lines
is difficult to do using smartphone accelerometers such as [1]–
[3]. Thus, we use a camera to take pictures/videos [6] [7]. If
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Figure 1. Our system overview. Each city vehicle running in the city detects
white line damage. The cloud computer aggregates the results from them

and monitors the city.

we use participatory sensing [8] as well as [6] and collect the
images, however, the cost issue still remains due to the cost
of platform introduction and labor.

To tackle this issue, we focus on city vehicles, especially
garbage trucks. Since garbage trucks run their services every
day and cover a whole area of the city, if the garbage truck
equips a camera and takes pictures of roads, we can obtain
road images from the whole area. Furthermore, we do not
have to pay additional costs for labor or facilities. However, the
number of running garbage trucks is so large (e.g., hundreds
of trucks) that it is troublesome to storage and manage image
data in a centralized way. Simultaneously, if we upload an
image every time a camera takes pictures, it would take great
communication costs and bandwidth. In summary, our goal is
proposing a system that can be attached to garbage trucks and
detect white line damage on the spot.

In order to achieve our goal, we introduce Deep on Edge
(DoE), which integrates edge computing and deep neural
networks. The overview of our system is depicted in Figure 1.
DoE consists of an edge computer (e.g., Raspberry Pi 3)
with a camera to be attached to garbage trucks. When DoE
detects line damage, the results are reported and sent to cloud
computing. Then, we use those reports and understand city
condition. We treat the task of line damage detection as a
classification problem. We train a convolutional neural network
(CNN), a type of deep neural network, on labeled images
on a GPU server. At inference time, DoE is loaded on an
edge computer and outputs a discrete probability distribution,
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assigning each image a likelihood that the white line in the
image is damaged. There are some constraints to using DoE
on edge computers due to restricted performance, while on
the other hand we do not have to consider the number of
parameters or inference speed when we use DoE on a high-
performance computer. So to use DoE on edge computers, we
design the CNN architecture to be as small as possible but to
keep the accuracy high. To evaluate DoE, we compared it with
baselines on the line damage detection task. As a result, DoE
outperforms baselines on this task while reducing the number
of parameters. Simultaneously, we visualize DoE activation
so that we can understand how it has learned to detect line
damage.

The contributions of the paper are summarized as follows:

• Propose the system, called Deep on Edge, which
integrates city vehicles, edge computing, and deep
convolutional neural networks.

• Pose lane marking (line) damage detection as a clas-
sification problem and proposing our model which
outperforms other baselines on this problem.

• Discuss the ability of the neural networks through ac-
tivation visualization to design network architectures
appropriate for practical use.

The paper is organized as follows. In the next section, we
describe the white line dataset which we use in this paper.
In Section III, we present our system which performs line
damage detection. Then, we explain in detail the experiments
and compare the results with those obtained in a previous
research in Section IV. We discuss the experiment result
and how DoE learned to detect line damage in Section V.
Finally, we introduce related works to compare with our work
in Section VI and conclude the paper in Section VII.

II. SUMMARY OF OUR LANE MARKING DATASET

In this paper, for detecting road damage, we focus on the
damage or blur of white lines, which we assume is the most
common type of lane marking. To collect line images, we
attached a normal camera, which can film by 60 fps, on a
side of a passenger car so that the camera always films the
line. Then, we drove the car within 50km/h for four days from
March 30th, 2016 to April 2nd, 2016 in daytime. Note that it
was sunny days. While we got videos in which each frame is
1024× 768 pixels after filming, we randomly cropped frames
into 224 × 224 pixels. This cropping was done for reducing
the training time until the model convergence and allowing the
model focus on the line damage. One participant annotated
those cropped images with three kind of labels; damaged line,
undamaged line, and no line. After the preprocessing described
above, we obtained 43000 images of lines. At our experiments,
we divide the dataset to 35000:8902. The examples of our
dataset are shown in Figure 2 and described in detail in Table I.

III. DEEP ON EDGE SYSTEM

We pose the task of line damage inspection as a classifi-
cation problem. For this, we use a dataset of images of lines
with three kinds of labels described in the previous section. The
input to DoE are image pixels and the target output is a one-hot
vector encoding those labels. Given an image, the output of this
model is a probability distribution describing the extent of road
damage. The advantage of outputting a probability distribution
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Figure 2. Dataset samples. Each image is 224× 224 pixels by random
clipping from video frames, respectively. The images at top row show

damaged line, the images at mid row undamaged and at bottom row no line.

TABLE I. OUR DATASET WHICH WE COLLECTED, PREPROCESSED
AND ANNOTATED.

Class Type Undamaged Damaged No line Total

Binary Train 10696 14304 – 25000
Test 3829 5073 – 8902

Trinary Train 15445 11568 7987 35000
Test 3932 2957 2013 8902

is that this gives the model the ability to give specific scores
to a line image, taking out the necessity of a human expert to
give specific ratings.

A. Our Model
In order to detect line damage from images, we adopt

a convolutional neural network, which is a special type of
feedforward neural network or multi-layer perceptron and
works well with two-dimensional images. We design our CNN
by referring to the VGG16 architecture [9]. VGG16 is one of
the major CNN architectures which was used to win the ILSVR
competition in 2014, although it has been outperformed by
great advances such as Inception [10] and ResNet [11] [12].
VGG16 only uses convolutional layers with 3 × 3 kernels
and pooling layers with 2 × 2 kernels. This feature is very
significant for DoE since the size of the model is required to
become as small as possible to work on edge computers. Given
an input imageX of width w, height h and c color channels
(usually RGB channels) represented as X ∈ Rw×h×c at each
convolutional layer, it is convolved with d sets of local kernels
W ∈ Rw×h×c×d and bias b ∈ Rd is added:

h = φ(W ∗X+ b), (1)

where ∗ denotes a convolution operation and φ is a non-
linear function that we use the rectified linear unit (ReLU,
max{0, x}). Max-pooling, a form of non-linear downsampling,
is applied to the output of the convolution. Max-pooling
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partitions the input into a set of non-overlapping rectangles
by the kernels and outputs the maximum value in each sub-
region respectively. This operation is very useful because
it reduces the dimensionality of a high-dimensional (high-
resolution) output of the convolutional layer and summarizes
the activations of neighborhood features so that model becomes
robust to local perturbations. Since our input images are filmed
from a driven car, the location of lines in the image are not
fixed. DoE is built by several alternating convolution layers
and max-pooling layers.

In VGG16, the output after some convolution layers and
max-pooling layers is flattened for the input of to the following
layers, which are fully-connected. If the shape of the output
of convolution is Rw×h×c and the output dimension of the
next fully-connected layer is d, the number of parameters in
that FC layer becomes w ∗ h ∗ c ∗ d. This is a problem when
the size of the input image is large, since the larger the image
size is, the larger the number of parameters becomes. To avoid
the increase in number of parameters, we use global average
pooling [13] instead of flattening. Applying global average
pooling allows the number of parameters in the FC layer c ∗ d
to be independent of the input image size. At the last layer of
DoE, the output is a probability distribution over the possible
conditions of the road.

The model of the DoE architecture which we used in our
experiment is depicted in Figure 3.

B. Implementation for Practical Use
While DoE is trained with the road images of size 224×

224, the size of images from a video camera is much bigger
than that. Although our DoE model can take any image res-
olution, our preliminary experiment showed that DoE cannot
detect the line damage accurately at any resolution. In order to
tackle this issue and use DoE for practical use, we implement
a module that divides the input image into 224 × 224 sub-
regions and reshapes these sub-regions to X ∈ Rn×224×224

where n is the number of sub-regions. Even if n is very large,
DoE is able to process it all at once. For instance, if the size
of an input image is 1280 × 720, the number of sub-regions
becomes (1280/224)∗(720/224) ≈ 15 and the input to model
X ∈ R15×224×224. Although our module crops out the top,
bottom, and right sides of the image, this is not a problem
because of two reasons: (a) the top and bottom sides of the
image usually does not contain the road (b) the road contained
on right side is contained in the next input image. Figure 3 also
shows this module.

IV. EXPERIMENT

In this section, we show two kinds of experiments. First,
we compare DoE with baselines which are used in previous
works to evaluate DoE. Then, we examine whether DoE is fit
for practical use.

A. Accuracy Comparison
In order to evaluate DoE and its architecture, we compare it

with previous work [6] [7]. Although Maeda et.al [6] classify
the degree of road condition into three types: “smooth (no-
damaged)”, “need repair” and “not need repair”, its actual
classifications are difficult to distinguish, as different outputs
are produced from visually similar images. To make this
problem more interpretable, we simplify this task as binary

TABLE II. ACCURACY COMPARISON ON THE LINE DAMAGE
BINARY CLASSIFICATION TASK. tHE NUMBER OF PARAMETERS IS

THE SUM OF WEIGHTS AND BIAS.

Method Acc. AUC Recall Pre. F1 Params.

Linear SVM 82.4 0.82 0.87 0.83 0.85 –
Random Forest [7] 84.0 0.83 0.91 0.83 0.87 –
AlexNet [14] 92.5 0.9833 0.92 0.92 0.92 58000K
AlexNet–(d) [6] 92.5 0.9845 0.92 0.92 0.92 1680K
AlexNet–(e) [6] 92.7 0.9859 0.93 0.93 0.93 913K
DoE (ours) 94.1 0.9894 0.94 0.94 0.94 18K

TABLE III. CONFUSION MATRIX OF DOE.

Number of Parameters Prediction Recall18171 Undamaged Damaged No line

Ground Truth
Undamaged 2795 162 0 0.945
Damaged 196 3734 2 0.950
No line 0 1 2012 1.00

Precision 0.945 0.950 0.999 0.980

classification problem: the road which is photographed in given
images is whether damaged or not. Therefore, we used the
dataset we use consists of images labeled “damaged” and
“undamaged” in Table I.

As baselines, we adopt two kinds of methods. The first
method tests classic machine learning algorithms: a support
vector machine classifier (SVM) that can achieve good perfor-
mance at binary classification, and a random forest which can
detect the line damage [7] as well as our work. The second
method is a deep neural network. We choose the AlexNet
which is proposed in [14] and won the ILSVR competition in
2012, and has been used quite actively since [6]. Further, since
the aim of our study is road detection on an edge computer, the
smaller model is desirable and we also examine the alternative
models that are proposed in [6]: AlexNet–(d) and AlexNet–(e).

Before training DoE, we initialize the weights of DoE
with random values and use the Adam [15] stochastic gradient
descent algorithm with a learning rate of 0.0005, a momentum
of 0.9 and a batch size of 32. Meanwhile, those of baseline
networks use respective values of 0.0001, 0.9 and 100. We
then trained models with early stopping, which is a training
procedure that stops training if the error on the validation set
stops decreasing.

Table II shows the experiment result. DoE outperformed
baseline methods, even though the number of parameters is
quite less than others. This result shows that deep architectures
do not necessarily have good performance in computer vision
tasks, even if it has been reported as good architecture. In
short, it is necessary to tweak model architectures for specific
tasks.

B. Practice Investigation
For practical use, we examine whether DoE is able to

detect line damage from an actual image from a camera. For
this, we retrain DoE from a binary classification problem to
a 3-class classification problem; “undamaged (no-damaged)”,
“damaged”, “no line”. When we use DoE that solves a binary
classification problem, it may cause false detection when there
is no line. The result confusion matrix of 3-class classification
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Figure 3. Our model on DoE architecture. “Conv + MP” denotes that convolutional operation with 3× 3 kernels with strides 1 and max pooling operation
with 2× 2 kernels with strides 2. After four convolution and pooling, applying global average pooling [13].

is shown in Table III and actual detection in Figure 4. As a
result, DoE can classify the road condition with 98% accuracy.
Furthermore, in the case of Figure 4(a) (b), DoE classifies
the patches perfectly. Note that in (b), at the location of the
yellow font, the left upper patch is classified as “undamaged”
correctly, while patches right side hand of it is classfifed as
“damaged”. On the other hand, DoE misclassifies “undam-
aged” patches as “damaged”. This might happen if the line is
dirty or something is on the line (e.g. the shoe is photographed
in Figure 4(d)).

V. DISCUSSION

A. Activation Visualization

In general, while it is said that CNNs are useful for image
recognition, it is difficult to understand what the network learn.
For instance, Figure 5 is the visualization of the kernel of first
convolution layer of DoE before training and after. To tackle
this problem, we visualize the activation of each kernel of
DoE when the input damaged road image comes as shown
in Figure 6. From the visualization, we can see that the model
activates the part of damaged line like noisy dots, while there
are only a few activated on the undamaged line. Remarkably,
at the fifth layer, the activation of each unit in each image is
mostly opposite. This result shows that DoE correctly learns
the damage of line.

B. Input Image Generation

Furthermore, to understand the model in detail, we generate
the image that DoE is likely to classify to damaged and
undamaged. This method is inspired by [16]. The output of
DoE is through a sigmoid function which has the asymptote
y = 0 and y = 1 and the nature:

lim
x→∞

sigmoid(x) = 1 (2)

lim
x→−∞

sigmoid(x) = 0. (3)

Therefore, sigmoid is likely to output nearly 1 when it receives
a large input and vice versa. Utilizing this nature, we can
observe the output of DoE changes with fixed model param-
eters when we change the input. Beginning with a randomly

initialized image, we use gradient ascent:

x← x+ η
∂ai(x)

∂x
(4)

to change an input image. Note that x denotes generated
image input and η denotes learning rate. Furthermore, ai(x)
represents the output of the ith layer and we use the last
layeri = 7. Then, we maximize and minimize the output of
a7(x) by Eq. (4). To emphasize the features which model
learned, we applied Lp norm regularization:

||x||p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p (5)

and total variation:

V (x) =
∑
i,j

√
|xi+1,j − xi,j |2 + |xi,j+1 − xi,j |2, (6)

which smoothed the images. The results are depicted in Fig-
ure 7. The image in the left of Figure 7 is classified by DoE as
“undamaged”, and the right image is classified as “damaged”.
There are much more white parts in the “undamaged” image
than the “damaged” image. This shows that DoE recognizes
line damage. In summary, from these visualizations, we found
that DoE has learned to extract patterns and differentiate
“damage” and “no damage” from the dataset, without any clues
except from given labels.

VI. RELATED WORKS

Smart City. There are numerous of works that tackle
city/urban problems from a point of smart city view. Zheng
et.al [17] have contributed to urban energy issue and city
planning by estimating the location of gas stations from the
trajectories of taxis. Simultaneously, other works analyze urban
livelihood from a geographic aspect [18] and detect where
crime occurs [19]. These works are very important for citizens
and the administration of cities to make their livelihood much
better. Our work is an example of smart city work which makes
transportation in cities more comfortable.

Road Inspection. From the point of the road inspection,
there are a lot of points to inspect roads. One of those points is
flatteness. To detect the flatteness, the use of accelerometer de-
vices or the smartphones accelerometers is the straightforward
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Figure 4. The result of the line damage detection with actual images. Each number denotes the classes, respectively; 0: undamaged, 1: damaged, 2: no line. (a)
(b) DoE classifies all patches correctly. (c) Although DoE mistakes classifying “undamaged” as “no line” (at red fonts), it correctly detects damage at yellow

fonts.

Before
After

Figure 5. The visualization of kernels of first convolution layer of DoE
before training and after.

approach [1]–[3]. Our goal of this study is line damage/blur
detection, which is difficult to detect with accelerometers since
the value of accelerometers do not change with respect to
line damage. The other point of roads inspection is cracking.
Concurrent to our method, Maeda et.al [6] used deep CNNs
to detect road damage from images which are uploaded by
citizens. Although they succeeded in detecting road damage
on the application of smartphones, the model size is still too
large to work on edge computer because of insufficient RAM.
Furthermore, they relied on people to give image data, which is
called participatory sensing [8] and depends on the motivation
of participants. While there are numerous works to invent the
incentive to make people more likely to participate [20] [21],
the cost to offer the platform for participatory sensing still
remains a problem. In contrast, we propose a system which
collects images by using city vehicles, so that constant image
data comes in daily.

The Aspect of Deep Learning. In order to run DoE on edge
computers, a small model size is preferred. In the aspect of
model compression, there is a lot of approaches [22] [23] and
those are in progress. While our system divides the images
into 224×224 patches in order to let DoE focus on the line, a
model with an attention mechanism can be introduced to find
the place where it should focus on in the image [24] [25].
Furthermore, while DoE classifies whole images, semantic
segmentation [26] [27] can perform pixel-wise classification.
In summary, we designed DoE to be simple, but there are a lot
of improvements which can be made using new architectures.

VII. CONCLUSION

We presented DoE, a system that detects line damage
via deep convolutional neural network working on an edge
computer. Regarding the problem as a classification task,
DoE produces a probability distribution over possible road
conditions. This allows it to express its uncertainty about the
damage of road. While previous work focused on detecting
road flatteness, potholes or cracks, DoE is able to detect
the damage or blur of lines. Our experiments show that
DoE outperforms other methods for road damage detection,
even though it has less parameters than other models. We
further investigated how DoE learns to detect line damage by
visualizing their activations over certain kinds of images, and
generating images which the system is more likely to estimate
as having damage. Furthermore, we show that it is practical
to attach DoE to official city vehicles.
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