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Abstract—In this paper, a new velocity-based finite element
approach for non-linear dynamics of beam-like structures is
introduced. In contrast to standard approaches we here base
the formulation on velocities and angular velocities expressed in
the most suitable basis regarding standard approximation and
interpolation techniques. The additivity of angular velocities in
local frame description brings several benefits, such as trivial
discretization and update procedure for the primary unknowns
and improved stability properties of the time integrator. On the
other hand, different initial orientations of elements connected
together lead to nodal angular velocities that are expressed in
different frames and cannot be directly equalized. The compati-
bility of angular velocities over the finite element boundaries thus
needs to be solved. We avoid introducing constraint equations and
additional degrees of freedom and introduce a computationally
cheap solution instead.

Keywords–non-linear dynamics; spatial beams; finite-element
method; boundary conditions; velocity-based approach; continuity
of velocities.

I. INTRODUCTION

The total set of equations in solid mechanics consists of non-
linear equilibrium, kinematic and constitutive equations that
need to be solved for displacements, strains and stresses. Many
practical problems in solid mechanics deal with structures that
have one dimension larger than the other two, e.g., columns
and girders in civil engineering, robotic arms, rotor blades and
aircraft wings in mechanical engineering, deoxyribonucleic
acid (DNA) molecules in biology and medicine, nanotubes
in nanotechnology. Such structures are usually modelled as
beams. It is of utmost importance to consider properly the
boundary and continuity conditions when proposing a novel
finite element (FE) beam model [1]. We focus in this paper
on a structure of a velocity based beam element and the
computational aspects in satisfying the continuity conditions
over the boundaries.

The paper is structured as follows. Section II presents the
oveview of the beam formultions, while Section III introduces
the governing equations of the Cosserat beam model. In
Section IV, we describe a novel numerical solution method
for Cosserat beams. The treatment of boundary conditions
is presented in Section V. In Section VI, some numerical
examples are given. The paper ends with concluding remarks.

II. BEAM FORMULATIONS

For beam-like structures the kinematics of a body be-
comes simplified but the equations remain non-linear, see,
e.g., Antman [2], Reissner [3] and Simo [4]. Additionally, the
reduced kinematics introduces the three-dimensional rotations
of rigid cross-sections to describe the configuration of a beam.
Spatial rotations are often taken to be the primary variables
in three-dimensional beam formulations, see, e.g., [4]–[15],
despite their demanding mathematical structure. In the solu-
tion algorithms for beams many authors reduce the total set
of equations in such a way that the configuration variables
(displacements and rotations) become the only unknowns of
the problem. For numerical solution methods, such reduction
means that the configuration variables need to be discretized
with respect to space and time. The multiplicative nature of
rotations, characterized by non-additivity, orthogonality and
non-commutativity, needs to be properly considered in the
numerical solution methods to gain a sufficient performance
of calculations and accuracy of the results. Such demands
highly increase the complexity of algorithms and disable direct
applicability of the methods developed for standard Euclidean
spaces, see, e.g., [16]–[21].

Mathematically, rotations are linear transformations in three-
dimensional Euclidean space and can therefore be represented
by 3 × 3 matrices. However, these nine components have six
constraints, which makes a matrix representation of rotations
less convenient for numerical implementations. Widely used
are the three-parameter representations of which the often
chosen “rotational vector” [22] is only one among many possi-
bilities. It is well known that all three-parameter descriptions of
rotations posses singularities. To avoid them a four parameter
representations were also used, e.g., [23]–[25]. Surprisingly, it
was only recently that this ideas were successfully revived, see,
e.g., [14], [15], [26]–[29]. In this paper, rotational quaternions
will be used as a suitable representation of rotations, but they
will not be taken to be the primary unknowns of the problem.
From the perspective of total mechanical energy of the system
the velocities and angular velocities seem to be more natural
quantities.

Thus, the alternative approach employed here exploits com-
putationally simpler angular velocities as the primary quan-
tities for the description of rotational degrees of freedom.
Such approach brings several advantages to non-linear beam
dynamics:
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• when expressed in local bases, the components of an-
gular velocity vector become additive, which enables
the use of standard discretization and interpolation tech-
niques;

• the stability of implicit time integrators is improved by
taking the derivative of configuration quantities as the
iterative unknowns, see Hosea and Shampine [30];

• the time discretization, linearization of equations and
the update procedure are much simpler compared to
standard beam elements.

Besides its advantages, this new approach brings some novel
issues that need to be properly solved. The crucial idea of
the finite element method (FEM) lies in subdivision of a
larger structure into smaller parts called finite elements. An
important part of the solution procedure is the assembly of
equations of finite elements into a larger system of equations
that describe the problem at the structural level. The simplest
assumption used in the assembly procedure is that the elements
are rigidly connected so that the displacements and rotations
are continuous over the boundaries. When the displacements
and rotations are chosen as the primary variables, a simple
Boolean identification of degrees of freedom can be used. This
yields that velocities and angular velocities are continuous over
the finite element boundaries as well, but only when expressed
with respect to a fixed basis.

For the sake of computational advantages at the element
level, we express the angular velocities with respect to the
moving frame. Because of this choice, the simple identification
of degrees of freedom that belongs to the joints between ele-
ments can no longer be used due to different initial orientations
of elements. Thus, the continuity of configuration quantities
in a fixed frame leads to a more complicated relation in the
local frame. This relation could be introduced at the structural
level using the method of Lagrange multipliers, but such an
approach would increase the number of degrees of freedom
and the computational complexity of the overall algorithm.
An elegant and computationally cheap alternative is presented
here. Excellent properties of the proposed numerical model are
demonstrated by numerical examples.

III. COSSERAT BEAM MODEL

Among beam models, the Cosserat theory of rods, [2], is
widely used. The numerical implementation of the model is
usually attributed to Reissner [3] and Simo [4], where it is also
called the geometrically exact beam. Only a brief description
of the model is presented here.

The centroidal line
{
⇀
r (x, t) , x ∈ [0, L] , t ≥ 0

}
and the

family of cross-sections {A (x, t) , x ∈ [0, L] , t ≥ 0} of the
beam are parametrized by the arc-length parameter x and the
time t, where L is the length of the beam in its initial position,
see Figure 1. We assume that cross-sections are bounded plane
regions that preserve their shape and area during deformation.

For the description of beam equations and the quan-
tities therein, we introduce the local orthonormal basis
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Figure 1. A three-dimensional beam.

{
⇀

G1 (x, t) ,
⇀

G2 (x, t) ,
⇀

G3 (x, t)

}
, which defines the orienta-

tion of each cross-section, and the global orthonormal basis{
⇀
g 1,

⇀
g 2,

⇀
g 3

}
, which is fixed in time and space. A rotation

between the global and the local basis, defined by the quater-
nion multiplication (◦) reads

⇀

Gi (x, t) = q̂ (x, t) ◦⇀g i ◦ q̂ ∗ (x, t) , i = 1, 2, 3, (1)

where q̂ denotes the rotational quaternion and q̂ ∗ its conjugate.
A comprehensive presentation of the quaternion algebra can
be found, e.g., in the textbook [31]. For more details on the
application of quaternions in beam models please refer to [32]
or [15].

Note that any rotational quaternion q has a firm physical
meaning. It be presented as the sum of a scalar and a vector,

q̂ = cos
ϑ

2
+ sin

ϑ

2

⇀
n,

∣∣∣⇀n∣∣∣ = 1, (2)

where ϑ denotes the angle of rotation and
⇀
n is the unit vector

on the axis of rotation.
In what follows abstract vectors will be replaced by com-

ponent representations. The bold-face letters will be used to
represent vector quantities in the component form. The lower
case letters will be used when a vector is expressed with
respect to the fixed frame and the upper case letters are used for
the local basis description. A hat over the letter denotes a four-
dimensional vector, a member of the algebra of quaternions.
The dependency of quantities on space x and time t will be
mostly omitted for better readability.

A. Kinematic compatibility

In Cosserat rod theory the resultant strain measures at the
centroid of each cross-section are directly introduced and ex-
pressed with kinematic variables by the first order differential
equations

Γ = q̂∗ ◦ r′ ◦ q̂ + Γ0, (3)
K = 2q̂∗ ◦ q̂′, (4)
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where Γ and K denote the translational and rotational strain,
respectively, both expressed with respect to the local basis. The
prime (′) denotes the derivative with respect to x. Similarly,
when we measure the rate of change of configuration variables
with time, we have

v =
·
r, (5)

Ω = 2q̂∗ ◦
·
q̂, (6)

introducing velocity v in fixed basis and angular velocity
Ω in local basis description, while the dot denotes the time
derivative. It is important to observe that strains, velocities,
and angular velocities are mutually dependent. Their direct
relation is obtained by comparing mixed partial derivatives.
After a straightforward derivation, we have

Γ̇ = q̂∗ ◦ v′ ◦ q̂ + (q̂∗ ◦ r′ ◦ q̂)×Ω, (7)
·

K = Ω′ + K×Ω. (8)

Equations (7)–(8) describe the kinematic compatibility of
continuous system, [33], [34]. Its importance is obvious:
the relation between the rotational strains and the angular
velocities is described without rotational parameters. Since
the rotational degrees of freedom are usually highly non-
linear when compared to other quantities such modification
of kinematic equations can be numerically advantageous.

B. Governing equations

The continuous balance equations of a three-dimensional
beam in quaternion notation read:

n′ + ñ = ρA
·
v, (9)

m′ + r′ × n + m̃ = q ◦
(

Jρ
·
Ω + Ω× JρΩ

)
◦ q̂ ∗. (10)

Equation (9) is a standard linear momentum balance equation,
while equation (10) represents the angular momentum balance
equation in terms of quaternion algebra as it follows from the
generalized d’Alembert principle considering the unit norm of
rotational quaternion. Here, n and m are the resultant force and
moment vector of the cross-section expressed in fixed frame,
i.e.,

n (x, t) = q̂ (x, t) ◦N (x, t) ◦ q̂ ∗ (x, t) , (11)
m (x, t) = q̂ (x, t) ◦M (x, t) ◦ q̂ ∗ (x, t) , (12)

where N and M are the same vectors expressed in local
basis; ρ is the density of the material; A is the area of the
cross-section; Jρ is the matrix of mass moments of inertia; ñ
and m̃ are vectors of applied distributed force and moment.
Together with balance equations the following conditions at
the boundaries need to be satisfied:

n(0, t) + f0 (t) = 0, (13)
m(0, t) + h0 (t) = 0, (14)
n(L, t)− fL (t) = 0, (15)

m(L, t)− hL (t) = 0, (16)

f0, h0, fL and hL are the external time-dependent point forces
and moments at the two boundaries, x = 0 and x = L.

For constitutive equations various models could be taken,
but here we limit ourselves to the simplest case of linear elastic
material, where

N = diag [ EA GA2 GA3 ]Γ, (17)
M = diag [ GI1 EI2 EI3 ]K. (18)

Here, EA/L is the axial stiffness, EI2 and EI3 denote the
bending stiffness, GI1/L is the torsional stiffness, GA2 and
GA3 are the shear stiffnesses.

IV. NUMERICAL SOLUTION METHOD

We will solve the balance equations using the method of
weighted residuals. Equations (9) and (10) are multiplied by
test functions Ip (x), p = 1, 2, ..., N , and integrated along the
length of the beam:

L∫
0

[
n′ − ñ− ρA··

r
]
Ip dx = 0, (19)

L∫
0

[m− (r′ × n)− m̃− q̂ ◦
(

Jρ
·
Ω

)
◦ q̂ ∗Ip

+ Ω× (q̂ ◦ (JρΩ) ◦ q̂ ∗) ]Ip dx = 0. (20)

The terms nIp and mIp are integrated by parts, which after
considering the boundary conditions (13)–(16) gives:

L∫
0

[
nI ′p − ñIp + ρA

··
rIp

]
dx− δpf = 0, (21)

L∫
0

[mI ′p − (r′ × n) Ip − m̃Ip + q̂ ◦
(

Jρ
·
Ω

)
◦ q̂ ∗Ip

+ ω × (q̂ ◦ (JρΩ) ◦ q̂ ∗) Ip] dx− δph = 0. (22)

Here

δpf =


f0, p = 1

fL, p = N

0, otherwise

,

δph =


h0, p = 1

hL, p = N

0, otherwise

.

Equations (21)–(22) represent a system of 6N algebraic equa-
tions that is in general too demanding to be solved analytically.
In our approach, we express all the unknown quantities with
velocity and angular velocity. The approximative solution in
both time and space is then spanned on these two quantities.
for completeness the details on discretization will be briefly
introduced.
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A. Time discretization

For the time discretization, we use the approximation of
displacements at tn+1 following from the mean value theorem:

r[n+1] = r[n] + h
v[n] + v[n+1]

2
,

which yields

r[n+1] = r[n] + hv,

where v denotes the average velocity

v =
v[n] + v[n+1]

2

and h = tn+1 − tn is the time step of the scheme.

For accelerations we can similarly employ

a[n] + a[n+1]

2
=

v[n+1] − v[n]

h
.

After some rearrangement of terms, the scheme for transla-
tional degrees of freedom reads

r[n+1] = r[n] + hv,

v[n+1] = −v[n] + 2v, (23)

a[n+1] = −a[n] − 4

h
v[n] +

4

h
v.

This scheme can be interpreted as a modification of the
classical implicit Newmark scheme, where the average velocity
becomes the iterative unknown, see [8] and [35].

A similar approach can be used for rotational degrees of
freedom with an important exception stemming from the non-
linear relationship between angular velocities and rotational
quaternions. The exponential mapping is used to map from
incremental angular velocities to incremental rotations. The
incremental rotation is then multiplied with the current one.
The scheme for rotational degrees of freedom reads

q̂[n+1] = q̂[n] ◦ exp
(
h

2
Ω

)
,

Ω[n+1] = −Ω[n] + 2Ω, (24)

α[n+1] = −α[n] − 4

h
Ω[n] +

4

h
Ω,

where exp denotes the quaternion exponential

exp (x̂) = 1̂ +
x̂

1!
+

1

2!
x̂ ◦ x̂ +

1

3!
x̂ ◦ x̂ ◦ x̂ + .... (25)

The above presented time-discretization scheme describes
the assumptions taken regarding displacements, rotations and
their time derivatives. For deformable structures time dis-
cretization of strain quantities is also needed. We derive

the discrete compatibility equations analogously as for the
continuous case. This gives

Γ[n+1] = exp∗
(
h

2
Ω

)
◦
(
Γ[n] − Γ0

)
exp

(
h

2
Ω

)
+ hq̂∗[n+1] ◦ v′ ◦ q̂[n+1] + Γ0, (26)

K[n+1] = exp∗
(
h

2
Ω

)
◦K[n] ◦ exp

(
h

2
Ω

)
+ 2 exp∗

(
h

2
Ω

)
◦ exp′

(
h

2
Ω

)
. (27)

When the governing equations of a beam are evaluated at
discrete time tn+1 and the schemes (23)–(24) are taken into
account, we obtain the system of equations dependent only on
the arch-length parameter x. In order to solve these equations
at each particular time step we need to introduce the spatial
discretization.

B. Spatial discretization

After the time discretization introduced, the average veloci-
ties v and Ω are the only unknown functions along the length
of the beam for any particular discrete time. They are replaced
by a set of nodal values vp, Ω

p
at discretization points xp,

p = 1, . . . , N , with x1 = 0 and xN = L, and interpolated by
a set of interpolation functions Ip(x) in-between:

v (x) =

N∑
p=1

Ip (x)vp, (28)

Ω (x) =

N∑
p=1

Ip (x)Ω
p
. (29)

The same discretization procedure is performed at every finite
element of the structure. Thus, boundary nodes x1 and xN
become members of the global notes important at the structural
level, while x2,... xN−1 are internal points of the element, often
but not necessarily condensed at the elements level. Angular
velocities in local basis description are additive quantities and
the standard aditive-type interpolation used is in complete
accord with the properties of the configuration space.

C. Newton iteration

After time and space discretization, the governing equations
(21)–(22) are replaced by a set of nonlinear algebraic equations
that need to be solved at each discrete time for all the nodal
values. The non-linear equations are solved iteratively using
the Newton-Raphson method

K[i]δy = −f [i], (30)

where K[i] is the global Jacobian tangent matrix, f [i] the resid-
ual vector of discretized equations (21)–(22), both in iteration
i, and δy a vector of corrections of all nodal unknowns

δy =
[
δv1 δΩ1 · · · δvM δΩM

]T
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A suitable choice of nodal variables allows the kinematically
admissible additive update:

v[i+1] = v[i] + δv, (31)

Ω
[i+1]

= Ω
[i]

+ δΩ (32)

at each discrete point of the structure. Further details on
linearization of equations can be found in [36].

V. CONTINUITY OF BOUNDARY VALUES

Finite elements have equal displacements and rotations at the
rigid joints. However, the initial rotations of different elements
are not necessarily equal. When the initial orientations differ,
we need to distinguish between the initial and the relative
rotations. Let us start with two elements having different initial
orientations, described by quaternions q̂I

0 and q̂II
0 at the joint:

q̂I
0 6= q̂II

0 . When the joint is rigid the position vectors are equal,
but the total rotations differ

rI = rII and q̂I 6= q̂II, (33)

as shown in Figure 2.

element I

element II

node 1

node 2

node 3
...

...
r, qII

r, qII II

Figure 2. A rigid joint of two differently oriented elements.

The total rotations can be expressed as a composition of
initial and relative rotation

q̂I = q̂I
0 ◦ k̂I and q̂II = q̂II

0 ◦ k̂II, (34)

where the relative rotations are equal:

k̂I = k̂II. (35)

The continuity condition, which could also be called the
compatibility of rotations at the element boundaries, thus reads

q̂I ◦ q̂I∗
0 = q̂II ◦ q̂II∗

0 .

In configuration based approach we usually avoid enforcing
this condition by introducing the relative rotational quaternion
k̂ as the nodal variable. For the velocity-based approach, we
can similarly observe that

vI = vII and Ω
I 6= Ω

II
,

as the angular velocities are expressed in different local frames.
We will derive the compatibility condition for angular veloci-
ties at the joints and propose a similar strategy as for rotational
quaternions to avoid the use of Lagrange multipliers method by
the substitution of the primary unknowns of Newton’s iteration
at the structural level. The details are presented in the sequel.

A. Relation between boundary angular velocities

The angular velocity vector expressed in the local frame is
defined as

Ω = 2q̂∗ ◦
·
q̂, (36)

which yields the expressions for the nodal angular velocities
of elements I and II at the joint

Ω
I
= 2q̂I∗ ◦

·
q̂I and Ω

II
= 2q̂II∗ ◦

·
q̂II.

After considering (34), we have

Ω
I
= 2q̂I∗

0 ◦ k̂I∗ ◦
·

k̂I ◦ q̂I
0,

Ω
II
= 2q̂II∗

0 ◦ k̂II∗ ◦
·

k̂II ◦ q̂II
0 .

Since the relative rotation k̂ is continuous over the boundaries
of elements, eq. (35), we are able to express the constraint
relation between the boundary angular velocities

q̂I
0 ◦Ω

I ◦ q̂I∗
0 = q̂II

0 ◦Ω
II ◦ q̂II∗

0 . (37)

For the clarity of further derivation, it is convenient to express
(37) in terms of rotation matrices:

RI
0Ω

I
= RII

0 Ω
II
, (38)

where RI
0 and RII

0 denote the standard rotation matrices
equivalent to quaternion-based rotations expressed with q̂I

0 and
q̂II
0 .

B. Algorithmically enforced boundary conditions

A solution of two moment equilibrium equations (22) ex-
pressed at the same node, here formally written as

MI
(
Ω

I
)
= 0 and MII

(
Ω

II
)
= 0, (39)

needs to be found. The solution must also satisfy the algebraic
constraint

RI
0Ω

I −RII
0 Ω

II
= 0. (40)

Following the method of Lagrange multipliers the constraint
equation is multiplied by a multiplier λ and linearized. The
corresponding partial derivatives are then added to the initial
variational problem to obtain the weak form of Lagrange
function. For the present case it reads

MI
(
Ω

I
)
+ RI

0λ = 0, (41)

MII
(
Ω

II
)
−RII

0 λ = 0, (42)

RI
0Ω

I −RII
0 Ω

II
= 0. (43)

The method thus increases the size of the system and the
computational demands. It introduces three additional scalar
unknowns and three additional equations for each rigid joint
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between two elements. To avoid this, we introduce the follow-
ing change of variables describing the nodal rotation-related
unknowns:

Ω
I

R = RI
0Ω

I
and Ω

II

R = RII
0 Ω

II
. (44)

Based on the substitution of unknowns (44), the method of
Lagrange multipliers gives

MI
(
RIT

0 Ω
I

R

)
+ λ = 0, (45)

MII
(
RIIT

0 Ω
II

R

)
− λ = 0, (46)

Ω
I

R −Ω
II

R = 0. (47)

The system (45)–(47) can be easily reduced since the nodal
unknowns are now identical: ΩR = Ω

I

R = Ω
II

R. These new
variables can be interpreted as the relative angular velocities
in a relative local frame. It is important to observe that the
equations (45)–(46) represent the moment equilibrium equa-
tions, both written with respect to the same fixed basis. This
fact allows us to sum the first two equations which directly
leads to the reduced moment equilibrium equation at the joint:

MI
(
ΩR

)
+MII

(
ΩR

)
= 0.

Translational degrees of freedom are left unchanged. The
vector of nodal unknowns now becomes

yR =
[

v1 ΩR,1 · · · vM ΩR,M

]T
,

while its iterative correction vector reads

δyR =
[
δv1 δΩR,1 · · · δvM δΩR,M

]T
.

Note that the corrections of newly introduced variables (44)
can still be directly summed up to the current iterative values.
This property follows from the distributivity of multiplication
of time-constant matrix R0 with the sum of angular velocity
and its update. The original quantities Ω

I
and Ω

II
remain to

be the interpolated quantities at the elements level. Hence in
each iteration step i the variables Ω

I
and Ω

II
are extracted

from Ω
I

R = Ω
II

R and applied for further calculations.
In order to adapt a block of the corresponding tangent

stiffness matrix at an arbitrary boundary node of a element,
we express it with four submatrices appurtenant to translational
and rotational degrees of freedom

KI
node =

[
KI

vv KI
vΩ

KI
Ωv KI

ΩΩ

]
,

KII
node =

[
KII

vv KII
vΩ

KII
Ωv KII

ΩΩ

]
,

where Kvv and KvΩ denote the partial derivatives of (21)
with respect to velocities and angular velocities, respectively.
Similarly, KΩv and KΩΩ denote the partial derivatives of
(22). While the matrices Kvv and KΩv are left unchanged,
the derivatives with respect to angular velocities need to be
transformed in accord with the newly introduced variable
leading to

K̃I
node =

[
KI

vv KI
vΩ

(
RI

0

)T
KI

Ωv KI
ΩΩ

(
RI

0

)T
]

K̃II
node =

[
KII

vv KII
vΩ

(
RII

0

)T
KII

Ωv KII
ΩΩ

(
RII

0

)T
]
.

The above transformation allows the direct summation of nodal
tangent matrices within the Boolean identification technique to
be admissible for the chosen formulation:

K̃node = K̃I
node + K̃II

node.

With this procedure only six variables per node are needed
and computational complexity is only slightly increased due
to transformation of tangent stiffness matrices and the recon-
struction of average angular velocities at the element’s level
from the relative ones at the structural level. This procedure
is done by applying a simple time-independent rotation. The
main advantage, i.e., the additivity of the iterative and the
interpolated unknowns, is preserved. The size of the problem
for each element thus remains equal to 6N , which means
that on the structural level we need to solve 6(N · E − n)
equations, where E denotes the number of elements and n the
number of rigid joints. To enforce the boundary conditions,
the proposed method requires n additional matrix products
of the initial transposed rotation matrix, RT

0 , and the relative
angular velocity, ΩR. As we will show by numerical example,
these costs are negligible with respect to the overall numerical
procedure.

VI. NUMERICAL STUDIES

The applicability and excellent performance of the proposed
method will be demonstrated by standard benchmark examples
for flexible beam-like structures with finite strains where the
structure undergoes large displacements and rotations. Equidis-
tant discretization points were chosen for spatial discretization
and standard Lagrangian polynomials were taken to be inter-
polation functions. Integrals were evaluated numerically using
the Gaussian quadrature rule. The Newton-Raphson iteration
scheme was terminated when the Euclidean norm of the vector
of corrections of all primary unknowns was under 10−9. The
geometric and material data chosen in the examples are

EA = GA2 = GA3 = 106 N,

GI1 = EI2 = EI3 = 103 Nm2,

ρA = 1 kg/m.

Other data are provided separately for each example.

A. Free flight of a beam: the computational performance

In our first example, we analyse the computational perfor-
mance of the present approach when solving a problem similar
to the one introduced by Simo and Vu-Quoc [18]. The beam
is initially inclined and subjected to a piecewise linear point
force fX and point moments hY and hZ at the lower end, as
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shown in Figure 3. The mass-inertia matrix of the cross-section
is taken to be: Jρ = diag [ 10 10 10 ] kgm.

For this particular problem, all elements have equal initial
orientations. A simple Boolean identification of degrees of
freedom is therefore reasonable even if angular velocities in
local frame description are the primary unknowns, which is
the case in our approach. This allows us to solve the problem
in two different ways: i) with Boolean identification and ii)
using the proposed algorithm. By doing so, we will be able to
compare the computational times and demonstrate the demands
of the presented algorithm. Note that the Boolean identification
is not appropriate when solving problems, where elements have
different initial inclinations, which limits its applicability and
generality.

200
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6 m

8 m

f

f� t h t( )= ( )/10/m
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3

g
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*
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Figure 3. Unsupported beam that is initially straight but inclined.

To compare both methods, a dense mesh of 100 linear
elements has been used. For this problem a small number of
elements would be sufficient, but by increasing their number
the complexity of the overall algorithm raises so the additional
demands of the proposed algorithm can be easier observed.
Besides that, the computational error of the results becomes
negligible with very dense mesh. The average computational
times of the same evaluation in seconds are presented in Table
I.

TABLE I. COMPUTATIONAL TIMES OF INITIALLY STRAIGHT BEAM.

Method initial time step ten time steps
Boolean identification 3.415 42.820
proposed algorithm 3.508 34.011

We can observe that computational times of the proposed
method are only slightly larger after the first time step. How-
ever, in the time stepping procedure the proposed algorithm be-
haves better since the newly introduced relative velocities seem
to be more suitable computational unknowns, which leads to a
lower number of total iterations needed and, therefore, lower
computational times.

B. Large deflections of right-angle cantilever

This classical example introduced by Simo and Vu-Quoc
[18] was studied by many authors. A right-angle cantilever
beam is subjected to a triangular pulse out-of-plane load at the
elbow, see Figure 4. Each part of the cantilever is dicretized
with two third-order elements. A dynamic response of the
cantilever involves very large magnitudes of displacements
and rotations together with finite strains. After removal of
the external force, the cantilever undergoes free vibrations
and the total mechanical energy of the cantilever should
remain constant. Therefore, the stability of the algorithm
is here checked through the energy behaviour. The cen-
troidal mass-inertia matrix of the cross-section is diagonal:
Jρ = diag [ 20 10 10 ] kgm. Originally, the solution
was computed on the time interval [0, 30] s with fixed time
step 0.25 s, later the interval was extended to [0, 50] s by
Jelenić and Crisfield [37] claiming that most of the algorithms
encounter numerical stability problems between times 30 s and
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Figure 4. The right-angle cantilever subjected to out-of-plane loading.
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Figure 5. The out-of-plane displacements at free-end and at elbow for the
right-angle cantilever.
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Figure 6. The time history of the total mechanical energy for the right-angle
cantilever.

50 s. Here on a longer time interval [0, 100] s solution was
obtained without any numerical problems noticed, see Figure
5. However, the time step used had to be reduced by half,
h = 0.125 s, otherwise the iteration could not achieve the
prescribed tolerance condition at time 51.5 s. From Figure 6
we can observe almost constant total mechanical energy after
time t = 5 s; only slight discrepancy of about 0.2% can be
observed, which indicates good stability of calculations. The
present results on the time interval [0, 30] s agree well with
the results reported by other authors.

C. Large overall motion of a flexible cross-like structure

The large overall motion of completely free “cross” was first
presented by Simo et al. [38] to illustrate the performance of
the algorithm when calculating the dynamics response of a
reticulated structure. The geometry and the applied external
out-of plane forces are depicted in Figure 7. The centroidal
mass-inertia matrix of the cross-section is taken to be Jρ =
diag [ 10 10 10 ] kgm.

M t( )
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F t( ) F t( )

F t( ) F t( )

200
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Figure 7. The geometry and the loading of the “cross”.

In this example, four finite elements are rigidly connected
at the central point sharing the same velocities and the same
relative angular velocities. Thus, it is very suitable for the
demonstration of the appropriateness of the proposed approach.
The solution was computed on a very large time interval
[0, 1000] s with time step h = 0.1 s. We observed perfect
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Figure 8. The displacements of the “cross” at point A at the beginning and
at the end of calculation.
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Figure 9. The time history of the total mechanical energy for the “cross”.

quadratic convergence of the algorithm during the whole
calculation. Because the interval of calculation is so extremely
long we present only displacements on short intervals at the
beginning and at the end of calculation, see Figure 8.

After removal of external forces at time t = 5 s the cross
vibrates freely in a periodic-like dynamic pattern and the total
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mechanical energy is almost constant as expected, see Figure
9. The calculations remain stable even after 10 000 time steps.
More detailed results are, to author’s best knowledge, not
available in literature. However, almost the same response is
obtained by finer mesh and/or smaller time step indicating that
the computational errors for this problem are small.

VII. CONCLUSION

A novel finite-element approach for the beam dynamics has
been presented. The proposed method exploits the benefits of
the favourable properties of angular velocity in the local frame
description. The computational advantages of the quaternion
representation of rotations are preserved, but additionally with
the replacement of the primary unknowns we gain the consider-
able increase of numerical stability and robustness of the model
without any other measures needed. The issue of the continuity
of the structural unknowns over the element boundaries has
been resolved with minimal computational cost. The classical
benchmark examples demonstrate the excellent performance of
the proposed method. Even for large number of time steps a
reliable results were obtained and almost perfect preservation
of the total mechanical energy is gained for sufficiently dense
meshes and sufficiently small time-step sizes.
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