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Abstract - In this paper we present an efficient and fast visible 

trajectory planning for unmanned vehicles in a 3D urban 

environment based on local point clouds data. Our trajectory 

planning method is based on a two-step visibility analysis in 

3D urban environments using predicted visibility from point 

clouds data. The first step in our unique concept is to extract 

basic geometric shapes. We focus on three basic geometric 

shapes from point clouds in urban scenes: planes, cylinders 

and spheres, extracting these geometric shapes using efficient 

RANSAC algorithms with a high success rate of detection. 

The second step is a prediction of these geometric entities in 

the next time step, formulated as states vectors in a dynamic 

system using Kalman Filter (KF). Our planner is based on the 

optimal time horizon concept as a leading feature for our 

greedy search method for making our local planner safer. We 

demonstrate our visibility and trajectory planning method in 

simulations, showing predicted trajectory planning in 3D 

urban environments based on real LiDAR point clouds data. 
 

Keywords- Visibility; 3D; Urban environment; Spatial 

analysis.  

I.  INTRODUCTION AND RELATED WORK 

In this paper we study an efficient and fast visible 

trajectory planning for unmanned vehicles in a 3D urban 

environment, based on local point clouds data. Recently, 

urban scene modeling has become more and more precise, 

using Terrestrial/ground-based LiDAR on unmanned 

vehicles for generating point clouds data for modeling roads, 

signs, lamp posts, buildings, trees and cars. Visibility 

analysis in complex urban scenes is commonly treated as an 

approximated feature due to computational complexity.  

Our trajectory planning method is based on a two-step 

visibility analysis in 3D urban environments using predicted 

visibility from point clouds data. The first step in our unique 

concept is to extract basic geometric shapes. We focus on 

three basic geometric shapes from point clouds in urban 

scenes: planes, cylinders and spheres, extracting these 

geometric shapes using efficient RANSAC algorithms with a 

high success rate of detection. The second step is a 

prediction of these geometric entities in the next time step, 

formulated as states vectors in a dynamic system using 

Kalman Filter (KF).  

Visibility analysis based on this approximated scene 

prediction is done efficiently [1], based on our analytic 

solutions for visibility boundaries. Based on this capability, 

we present a local on-line planner generating visible 

trajectories, exploring the most visible and safe node in the 

next time step, using our predicted visibility analysis, which 

is based on local point clouds data from the unmanned 

LiDAR vehicle. Our planner is based on the optimal time 

horizon concept as a leading feature for our greedy search 

method for making our local planner safer.  

For the first time, we propose a solution to the basic 

limitation of the Velocity Obstacle (VO) search and planning 

method, i.e., when all the dynamic available velocities for 

the next time step are blocked in the velocity space and there 

is no legal node at the next time step of the greedy search. 

The computation of the minimum time horizon is formulated 

as a minimum time problem that generates optimal 

trajectories in near-time time to the goal, exploring the most 

visible and safest node in the next time step. We demonstrate 

our visibility and trajectory planning method in simulations 

showing predicted trajectory planning in 3D urban 

environments using real LiDAR data from Ford Campus 

Project [2].  

The main challenge in motion planning is reaching the 

goal while searching and selecting only safe maneuvers. 

While reaching the goal cannot be guaranteed with an on-

line planner, one can reduce the state space search to only 

safe states, i.e., states outside obstacles from which at least 

one other safe state is reachable. 

Generally, we distinguish between local and global 

planners. The local planner generates one step, or a few 

steps, at every time step, whereas the global planner uses a 

global search toward the goal over a time-spanned tree. We 

can divide this work into global and local (reactive) planners. 

The global planners generate complete trajectories to the 

goal in static [3] and dynamic [4,5] environments. 

Visibility problem has been extensively studied over the 

last twenty years, due to the importance of visibility in GIS 

and Geomatics, computer graphics and computer vision, and 

robotics. Accurate visibility computation in 3D environments 

is a very complicated task demanding a high computational 

effort, which could hardly have been done in a very short 
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time using traditional well-known visibility methods [23]. 

The exact visibility methods are highly complex, and cannot 

be used for fast applications due to their long computation 

time. Previous research in visibility computation has been 

devoted to open environments using DEM models, 

representing raster data in 2.5D (Polyhedral model), and do 

not address, or suggest solutions for, dense built-up areas. 

Most of these works have focused on approximate visibility 

computation, enabling fast results using interpolations of 

visibility values between points, calculating point visibility 

with the Line of Sight (LOS) method [24]. Other fast 

algorithms are based on the conservative Potentially Visible 

Set (PVS) [25]. These methods are not always completely 

accurate, as they may render hidden objects' parts as visible 

due to various simplifications and heuristics. 

A vast number of algorithms have been suggested for 

speeding up the process and reducing computation time. 

Franklin [26] evaluates and approximates visibility for each 

cell in a DEM model based on greedy algorithms. Wang et 

al. [27] introduced a Grid-based DEM method using 

viewshed horizon, saving computation time based on 

relations between surfaces and the line of sight (LOS 

method). Later, an extended method for viewshed 

computation was presented, using reference planes rather 

than sightlines [28].  

 

II. VISIBILITY ANALYSIS FROM POINT CLOUDS DATA 

As we mentioned, visibility analysis in complex urban 

scenes is commonly treated as an approximated feature due 

to computational complexity. Recently, urban scene 

modeling has become more and more exact, using 

Terrestrial/ground-based LiDAR generating dense point 

clouds data for modeling roads, signs, lamp posts, buildings, 

trees and cars. Automatic algorithms detecting basic shapes 

and extraction have been studied extensively, and are still a 

very active research field [34]. 

In this part, we present an unique concept for predicted 

and approximated visibility analysis in the next attainable 

vehicle's state at a one-time step ahead in time, based on 

local point clouds data, which is a partial data set. 

We focus on three basic geometric shapes in urban scenes: 

planes, cylinders and spheres, which are very common and 

can be used for the majority of urban entities in modeling 

scenarios. Based on point clouds data generated from the 

current vehicle's position in state k-1, we extract these 

geometric shapes using efficient RANSAC algorithms [35] 

with high success rate detection tested in real point cloud 

data. 

After extraction of these basic geometric shapes from 

local point clouds data, our unified concept, and our main 

contribution, focus on the ability to predict and approximate 

urban scene modeling at the next view point Vk, i.e., 

attainable location of the vehicle in the next time step. Scene 

prediction is based on the geometric entities and Kalman 

Filter (KF) which is commonly used in dynamic systems for 

tracking target systems [36,37]. We formulate the geometric 

shapes as states vectors in a dynamic system and predict the 

scene structure the in the next time step, k. 

Based on the predicted scene in the next time step, 

visibility analysis is carried out from the next view point 

model [38], which is, of course, an approximated one. As the 

vehicle reaches the next viewpoint Vk, point clouds data are 

measured and scene modeling and states vectors are updated, 

which is an essential procedure for reliable KF prediction. 

Our concept is based on RANSAC and KF, both real-time 

algorithms, which can be integrated into autonomous 

mapping vehicles that have become very popular. This 

concept can be applicable for robot trajectory planning 

generating visible paths, by analyzing local point clouds data 

and predicting the most visible viewpoint in the next time 

step from among several options.  

A. Concept's Stages 

Our methodology can be divided into three main sub-

problems: 

1) Extract basic geometric shapes from point clouds data 

(using RANSAC algorithms) 

2) Predict scene modeling in the next viewpoint (using KF) 

3) Approximated visibility analysis of a predicted scene 

Each of the following stages is done after the other, where 

the last stage also includes updated measurement of point 

clouds data validating KF for the next viewpoint analysis. 

B. Shapes Extraction 

1) Geometric Shapes: 

The urban scene is a very complex one in the matter of 

modeling applications using ground LiDAR, and the 

generated point clouds is very dense. Due to these inherited 

complications, feature extraction can be made very efficient 

by using basic geometric shapes. We define three kinds of 

geometric shapes planes, cylinders and spheres, with a 

minimal number of parameters for efficient time 

computation. 

Plane: center point (x,y,z) and unit direction vector from 

center point.  

Cylinder: center point (x,y,z), radius and unit direction 

vector of the cylinder axis. 

Sphere: center point (x,y,z), radius and unit direction vector 

from center point. 

2) RANSAC: 

The RANSAC [39] paradigm is a well-known one, 

extracting shapes from point clouds using a minimal set of 

shape's primitives generated by random drawing in point 

clouds set. Minimal set is defined as the smallest number of 

points required to uniquely define a given type of geometric 

primitive.  

    For each of the geometric shapes, points are tested and 

approximate the primitive of the shape (also known as 

"score of the shape"). At the end of this iterative process, 

extracted shapes are generated from the current point clouds 

data. 
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Based on the RANSAC concept, the geometric shapes 

detailed above can be extract from a given point clouds data 

set. In order to improve the extraction process and reduce 

the number of points validating shape detection, we 

compute the approximated surface normal for each point 

and test the relevant shapes.  

Given a point-clouds with associated normals 

, the output of the RANSAC algorithm is a set of 

primitive shapes  and a set of remaining points 

. 

In this part we briefly introduce the main idea of plane, 

sphere and cylinder extraction from point clouds data. An 

extended study of RANSAC capabilities can be found in 

[35]. 

 

Plane: A minimal set in the case of a plane, can be found by 

just three points , without considering normals 

in the points. Final validation of the candidate plane is 

computed from the deviation of the plane’s normal from 

. A plane is extracted only in cases where all 

deviations are less than the predefined angle . 

Sphere: A sphere is fully defined by two points with 

corresponding normal vectors. The sphere center is defined 

from the midpoint of the shortest line segment between the 

two lines given by the points and their normals.  

A sphere counts as a detected shape in cases where all three 

points are within a distance of  from the sphere and their 

normals do not deviate by more than  degrees. 

Cylinder: A cylinder is set by two points and their normals, 

where the cylinder axis direction is the projected cross 

product of the normals, and a center point is calculated as 

the intersection of parametric lines generated from points 

and points' normal. A cylinder is verified by applying the 

thresholds  and  to distance and to normal deviation of 

the samples. 

 

C. Predicted Scene – Kalman Filter 

In this part, we present the global Kalman Filter 

approach for our discrete dynamic system at the estimated 

state, k, based on the defined geometric shapes formulation 

defined in the previous sub-section. 

Generally, the Kalman Filter can be described as a filter that 

consists of three major stages: Predict, Measure, and Update 

the state vector. The state vector contains different state 

parameters, and provides an optimal solution for the whole 

dynamic system [36]. We model our system as a linear one, 

with discrete dynamic model: 

 

                                      (1) 

where  is the state vector, F is the transition matrix and k 

is the state.  

The state parameters for all of the geometric shapes are 

defined with shape center , and unit direction vector , 

of the geometric shape, from the current time step and 

viewpoint to the predicted one. 

In each of the current states k, geometric shape center , is 

estimated based on the previous update of shape center 

location , and the previous updated unit direction vector 

, multiplied by small arbitrary scalar factor c: 

 

                                  (2) 

 

Direction vector  can be efficiently estimated 

extracting the rotation matrix T, between the last two states 

k, k-1. In case of an inertial system fixed on the vehicle, a 

rotation matrix can be simply found from the last two states 

of the vehicle translations: 

 

                                 (3) 

 

The 3D rotation matrix T tracks the continuous extracted 

plans and surfaces to the next viewpoint , making it 

possible to predict a scene model where one or more of the 

geometric shapes are cut from current point clouds data in 

state k-1. The discrete dynamic system can be written as: 

 

      (4) 

 

where the state vector  is  vector, and the transition 

squared matrix is . The dynamic system can be 

extended to additional state variables representing part of 

the geometric shape parameters such as radius, length etc. 

We define the dynamic system as the basic one for generic 

shapes that can be simply modeled with center and direction 

vector. The sphere radius and cylinder Z boundaries are 

defined in additional data structure of the scene entities. 

 

III. FAST AND APPROXIMATED VISIBILITY ANALYSIS 

In this section, we present an analytic analysis of 

visibility boundaries of planes, cylinders and spheres for the 

predicted scene presented in the previous sub-section, which 

leads to an approximated visibility. For the plane surface, 

fast and efficient visibility analysis was already presented in 

[38]. 
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In this part, we extend the previous visibility analysis 

concept [38] and include cylinders as continuous curves 

parameterization . 

Cylinder parameterization can be described as: 

 

 
 

                             (5) 

 

We define the visibility problem in a 3D environment for 

more complex objects as: 

 

  (6) 

 

where 3D model parameterization is , and the 

viewpoint is given as . Extending the 3D cubic 

parameterization, we also consider the cylinder case. 

Integrating equation (5) to (6) yields: 

 

                  (7) 

 

(8) 

As can be noted, these equations are not related to Z axis, 

and the visibility boundary points are the same for each x-y 

cylinder profile. 

The visibility statement leads to complex equation, 

which does not appear to be a simple computational task. 

This equation can be solved efficiently by finding where the 

equation changes its sign and crosses zero value; we used 

analytic solution to speed up computation time and to avoid 

numeric approximations. We generate two values of  

generating two silhouette points in a very short time 

computation. Based on an analytic solution to the cylinder 

case, a fast and exact analytic solution can be found for the 

visibility problem from a viewpoint. 

We define the solution presented in equation (8) as x-y-z 

coordinates values for the cylinder case as Cylinder 

Boundary Points (CBP). CBP are the set of visible 

silhouette points for a 3D cylinder, as presented in Figure 1: 

 

(9) 

 

 
(a) 

 

 
(b) 

Figure 1.  Cylinder Boundary Points (CBP) using Analytic Solution 

marked as blue points, Viewpoint Marked in Red: (a) 3D View (Visible 

Boundaries Marked with Red Arrows); (b) Topside View. 

In the same way, sphere parameterization can be described 

as: 

 

        (10) 

 

We define the visibility problem in a 3D environment for 

this object as: 
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          (11) 

 

where the 3D model parameterization is , and the 

viewpoint is given as . Integrating eq. (10) to 

(11) yields: 

 

  (12) 

 

where r is set from sphere parameter, and  is 

changes from visibility point along Z axis. The visibility 

boundary points for a sphere, together with the analytic 

solutions for planes and cylinders, allow us to compute fast 

and efficient visibility in a predicted scene from local point 

cloud data, that being updated in the next state. 

This extended visibility analysis concept, integrated with 

a well-known predicted filter and extraction method, can be 

implemented in real time applications with point clouds 

data. 

 

IV. FAST VISIBLE TRAJECTORY PLANNING 

Our planner is a local one, generating one step ahead at 

every time step reaching toward the goal, which is a depth 

first A* search over a tree. We extend previous planners, 

which take into account kinematic and dynamic constraints 

[16] and present a local planner for an omni-directional 

robot, with these constraints mounted with LiDAR in a 

constant Z point. As far as we know, for the first time this 

planner generates fast and exact visible trajectories based on 

an optimal analytic time horizon solution handling blocked 

states where all future states are inside VO, and 

approximates visibility based on local point clouds data for 

the next time step based on incomplete data. The fast and 

efficient visibility analysis of our method [38], extended in 

Section II for spheres and cylinders, allows us to generate 

the most visible trajectory from a starting state to the goal 

state in 3D urban environments, based on local decision-

making capabilities, and demonstrates our capability, which 

can be extended to real performances in the future. 

We assume incomplete data of the 3D urban 

environment model as mentioned in Section II, and use an 

extended Velocity Obstacles (VO) method with analytic 

optimal time horizon.  

A.  Analytic Optimal Time Horizon – Escaping Mode 

The time horizon plays an important role in selecting 

feasible avoidance maneuvers. It allows considering only 

those maneuvers that would result in a collision within a 

specified time interval and efficiently searching for safe 

maneuvers in the velocity space. Setting the time horizon 

too high would be too prohibitive, as it would mark as 

dangerous maneuvers resulting in collision at a distant time; 

selecting a too-small time horizon would permit dangerous 

maneuvers that are too close and at too high speeds to avoid 

the obstacle. 

It is essential that the proper time horizon ensures that a 

safe maneuver, even if temporarily pointing toward the 

obstacle, is selected.  

The main significance of the time horizon parameter 

using VO was first introduced in [21]. For each obstacle, 

time horizon is calculated as the minimum between 

stopping and passing time, as approximations to the exact 

optimization problem. Numeric solutions of the optimal 

time horizon for point mass model with cubic control 

constraints were presented in [21], based on external 

trajectories generated from the boundary of the control 

effort. This formulation of time horizon defines 

approximation of VO as the boundary of ICS without 

analytic solution escaping VO, in a case of bounded 

velocity space. 

B. Analytic Optimal Time Horizon - Examples 

In this part, we focus on the efficiency of our analytic 

time horizon solution via classic VO demonstrated in 

simulations. The analytic solution extends the traditional 

VO planner search method and defines the strategy search in 

cases of blocked attainable velocity space for the next time 

step in velocity space. 

We use a planner similar to the one presented by [21] 

with the same cost function, and the Omni-directional robot 

model mentioned above. The search is guided by a cost 

function planner applying the safest maneuver at every time 

step. Unsafe states ahead in time are recognized before the 

robot enters into unsafe states, also called ICS. For one 

obstacle, our planner can ensure safety, but the planner is 

not a complete one. By using an analytic search, the planner 

computes near-time optimal and safe trajectory to the goal.  

 

 

Figure 2.  Avoiding Two Obstacles Using Analytic Time Horizon. 

0 0 0'( , , ) ( ( , , ) ( , , )) 0C x y z C x y z V x y z  
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Figure 3.  Blocked Velocity Space Avoiding Two Obstacles. 

 
Figure 4.  Final Trajectory Avoiding Two Obstacles Using Analytic Time 

Horizon. 

 

 
Figure 5.  Escaping Blocked Velocity Space Using Analytic Time 

Horizon. 

The main contribution of this section is to demonstrate 

cases of blocked nodes in the velocity space in the search 

tree for the next time step. In cases of blocked nodes, i.e., all 

of the nodes located inside the VO, the planner choose the 

node that leads outside VO as soon as possible, avoiding 

collision and formulated as analytic time horizon based 

search. Without using analytic time horizon formulation, 

there is no safe and legitimate option for the next node to be 

explored. As a result, conservative trajectories are 

computed, and in some cases safe trajectory to the goal 

cannot be found and collision eventually occurs. 

In a two-obstacles case shown in Figure 2, the robot, 

represented by a point, starts near point (0,-4) at zero speed, 

attempting to reach the goal at point (0,4) (marked by a 

yellow triangle) at zero speed, while avoiding two static 

obstacles. The trajectory is dotted with a red dot 

representing the current position of the robot. The bounded 

velocity space, representing velocity obstacles as yellow 

cycles and velocity vector (with green triangles), can be 

seen in Figure 3, relating to the state space position as 

shown in Figure 2. 

 

 
Figure 6.  Conservative Solution of Avoiding Two Obstacles Using 

Constant Time Horizon: Blocked Velocity Space Caused to Conservative 

Trajectory Turning Left vs. Sliding on their Edges and Passing Between 

them. 

Clearly, there is no gap to enter between VO's in Figure 

3 and the velocity vector is bounded in the velocity space. 

The trivial VO, with a conservative and constant time 

horizon, cannot find the ultimate solution in such a case, and 

as a result, a conservative trajectory will be computed. The 

robot avoids the obstacles to the left with high time horizon 

values, as shown in Figure 6. Moreover, in some other cases 

of dense and bounded velocity space, no solution will be 

available at all. By using an analytic time horizon, the  robot 

escapes velocity obstacles and searches for a safe maneuver 

in state space, as shown in Figure 4, and velocity space, 

respectively, as shown in Figure 5. 

 

C. The Planner 

By using RANSAC algorithm, at each time step point 

clouds data are extracted into three possible objects: plane, 

cylinder and sphere. The scene is formulated as a dynamic 

system using KF analysis for objects' prediction. The 

objects are approximated for the next time step, and each 

safe attainable state that can be explored is set as candidate 

viewpoint. The cost for each node is set as the total visible 

surfaces, based on the analytic visibility boundary, where 

the optimal and safe node is explored for the next time step. 
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At each time step, the planner computes the next 

Attainable Velocities (AV). The safe nodes not colliding 

with objects such as cubes, cylinders and spheres, i.e., nodes 

outside Velocity Obstacles are explored. Where all nodes 

are inside VO, a unified analytic solution for time horizon is 

presented, generating an escape option for these radical 

cases without considering visibility analysis. The planner 

computes the cost for these safe nodes based on predicted 

visibility and chooses the node with the optimal cost for the 

next time step. We repeat this procedure while generating 

the most visible trajectory. 

 

1) Attainable Velocities 

The set of maneuvers that are dynamically feasible over a 

time step is represented by AV. At each time step during the 

trajectory planning, we map the attainable velocities that the 

robot can choose under the effort control envelope. 

Attainable Velocities,         , are integrated from the 

current state (  ,  ) by applying all admissible controls 

      . The geometric shape of AV depends on system 

dynamics. In our case,as described in (13): 

 

       

                                                 
                                                                                          (13) 

where        . 

 

                                                

 

The attainable velocities at time      apply to the position 

         Thus, the attainable velocities, when intersected 

with VO that correspond to the same position, would 

indicate those velocities that are safe if selected at time 

    . 

 

2) Cost Function 

Our search is guided by minimum invisible parts from 

viewpoint V to the approximated 3D urban environment 

model in the next time step,       set by KF after 

extracting objects from point clouds data using the 

RANSAC algorithm. The cost function for each node is a 

combination of IRV and ISV, with different weights as 

functions of the required task.  

The cost function presented in (14) is computed for each 

safe node, i.e., node outside VO, considering the robot's 

future location at the next time step (        ,     
   ) as viewpoint: 

 

                           ) +              )    (14) (34) 

 

where     are coefficients, affecting the trajectory's 

character. The cost function           produces the total 

sum of invisible parts from the viewpoint to the 3D urban 

environment, meaning that the velocity at the next time step 

with the minimum cost function value is the most visible 

node in our local search, based on our approximation. 

We divide point invisibility value into Invisible Surfaces 

Value (ISV) and Invisible Roofs Value (IRV). This 

classification allows us to plan delicate and accurate 

trajectories upon demand. We define ISV and IRS as the 

total sum of the invisible roofs and surfaces (respectively). 

Invisible Surfaces Value (ISV) of a viewpoint is defined as 

the total sum of the invisible surfaces of all the objects in a 

3D environment, as described in (15): 

 

            (15) 

 

In the same way, we define Invisible Roofs Value (IRV) 

as the total sum of all the invisible roofs' surfaces, as 

described in (16):  

                (16) 

 

Extended analysis of the analytic solution for visibility 

analysis for known 3D urban environments can be found in 

[37]. 

 

V. SIMULATIONS 

We have implemented the presented algorithm and 

tested some urban environments on a 1.8GHz Intel Core 

CPU with Matlab. We computed the visible trajectories 

using our planner, with real raw data records from LiDAR 

as part of the Ford Campus Project. 

Point clouds data are generated by Velodyne HDL-64E 

LiDAR [39]. Velodyne HDL-64E LiDAR has two blocks of 

lasers, each consisting of 32 laser diodes aligned vertically, 

resulting in an effective 26:8 Vertical Field Of View (FOV). 

The entire unit can spin about its vertical axis at speeds up 

to 900 rpm (15 Hz) to provide a full 360 degree azimuthal 

field of view. The maximum range of the sensor is 120 m 

and it captures about 1 million range points per second. We 

captured our data set with the laser spinning at 10 Hz. 

Due to these huge amounts of data, we planned a limited 

trajectory in this urban environment for a limited distance. 

In Figure 7, point clouds data from the start point can be 

seen, also marked as start point "S" in Figure 10. Planes 

extracted by RANSAC can be recognized. As part of the 

Ford Project, these point clouds are also projected to the 

panoramic camera's systems, making it easier to understand 

the scene, as seen in Figure 8.  

As described earlier, at each time step the planner 

predicts the objects in the scene using KF. In Figure 9(a), 

objects in the scene are presented from a point clouds data 

set. These point clouds predicted using KF, and predicted to 

the next time step in Figure 9(b).  
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Figure 7.  Point Clouds Data set at Start Point. 

 

 
Figure 8.  Point Clouds Data Projected to Panoramic Camera Set at Start 

Point. 

 
(a) 

 

 
(b) 

Figure 9.   (a) Objects in point clouds data set. (b) Predicted objects using 

KF in the next time step. 

 

 
Figure 10.  Vehicle Planned Trajectory Colored in Purple.  

The planned trajectory presented in Figure 10 with a 

purple line. The starting point, marked as "S", presented in 

Figure 10, where the cloud points in this state are presented 

in Figure 8. An arbitrary state during the planned trajectory, 

which is marked with an arrow, is also presented in Figure 

10, where point clouds prediction using KF in this state are 

presented in Figure 9. For this trajectory,        , 

robot velocity is set to       
  

  
   In this case, the robot 

avoided two other cars, without handling cases of analytic 

optimal time solution for deadlocks with bounded velocity 

space.  

VI. CONCLUSION AND FUTURE WORK 

In this research, we have presented an efficient trajectory 

planning algorithm for visible trajectories in a 3D urban 

environment for an Omni-directional model, based on an 

incomplete data set from LiDAR, predicting the scene at the 

next time step and approximating visibility. 

Our planner is based on two steps visibility analysis in 

3D urban environments using predicted visibility from point 

clouds data. The first step is to extract the basic geometric 

shapes: planes, cylinders and spheres, using RANSAC 

algorithms. The second step is a prediction of these 

geometric entities in the next time step, formulated as states 

vectors in a dynamic system using the Kalman Filter (KF).  

We extend our analytic visibility analysis method to 

cylinders and spheres, which allows us to efficiently set the 

visibility boundary of predicted objects in the next time 

step, generated by KF and RANSAC methods. Based on 

these fast computation capabilities, the on-line planner can 

approximate the most visible state as part of a greedy search 

method. 

As part of our planner, we extended the classical VO 

method, where the velocity space is bounded and the robot 

velocity cannot escape from the velocity obstacles in the 

current state. We presented an escape mode based on an 

analytic time-optimal minimization problem which, for the 

first time, defines time horizon for these cases. 

The visible trajectory is an approximated one, allowing us to 

configure the type of visible objects, i.e., roof or surfaces 

visibility of the trajectory, and can be used for different 

kinds of applications.  

Further research will focus on advanced geometric 

shapes, which will allow precise urban environment 

181

International Journal on Advances in Systems and Measurements, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



modeling, facing real-time implementation with on-line data 

processing from LiDAR.  
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