
On Line Visibility-Based Trajectory Planning in 3D

Dynamic Environments Using Local Point Clouds Data

1,2
Oren Gal and

2
Yerach Doytsher

1
Department of Marine Technologies

University of Haifa

Haifa, Israel

e-mail: orengal@technion.ac.il

2
Mapping and Geo-information Engineering

Technion - Israel Institute of Technology

Haifa, Israel

e-mail:doytsher@technion.ac.il

Abstract - In this paper we present an efficient and fast visible

trajectory planning for unmanned vehicles in a 3D urban

environment based on local point clouds data. Our trajectory

planning method is based on a two-step visibility analysis in

3D urban environments using predicted visibility from point

clouds data. The first step in our unique concept is to extract

basic geometric shapes. We focus on three basic geometric

shapes from point clouds in urban scenes: planes, cylinders

and spheres, extracting these geometric shapes using efficient

RANSAC algorithms with a high success rate of detection.

The second step is a prediction of these geometric entities in

the next time step, formulated as states vectors in a dynamic

system using Kalman Filter (KF). Our planner is based on the

optimal time horizon concept as a leading feature for our

greedy search method for making our local planner safer. We

demonstrate our visibility and trajectory planning method in

simulations, showing predicted trajectory planning in 3D

urban environments based on real LiDAR point clouds data.

Keywords- Visibility; 3D; Urban environment; Spatial

analysis.

I. INTRODUCTION AND RELATED WORK

In this paper we study an efficient and fast visible

trajectory planning for unmanned vehicles in a 3D urban

environment, based on local point clouds data. Recently,

urban scene modeling has become more and more precise,

using Terrestrial/ground-based LiDAR on unmanned

vehicles for generating point clouds data for modeling roads,

signs, lamp posts, buildings, trees and cars. Visibility

analysis in complex urban scenes is commonly treated as an

approximated feature due to computational complexity.

Our trajectory planning method is based on a two-step

visibility analysis in 3D urban environments using predicted

visibility from point clouds data. The first step in our unique

concept is to extract basic geometric shapes. We focus on

three basic geometric shapes from point clouds in urban

scenes: planes, cylinders and spheres, extracting these

geometric shapes using efficient RANSAC algorithms with a

high success rate of detection. The second step is a

prediction of these geometric entities in the next time step,

formulated as states vectors in a dynamic system using

Kalman Filter (KF).

Visibility analysis based on this approximated scene

prediction is done efficiently [1], based on our analytic

solutions for visibility boundaries. Based on this capability,

we present a local on-line planner generating visible

trajectories, exploring the most visible and safe node in the

next time step, using our predicted visibility analysis, which

is based on local point clouds data from the unmanned

LiDAR vehicle. Our planner is based on the optimal time

horizon concept as a leading feature for our greedy search

method for making our local planner safer.

For the first time, we propose a solution to the basic

limitation of the Velocity Obstacle (VO) search and planning

method, i.e., when all the dynamic available velocities for

the next time step are blocked in the velocity space and there

is no legal node at the next time step of the greedy search.

The computation of the minimum time horizon is formulated

as a minimum time problem that generates optimal

trajectories in near-time time to the goal, exploring the most

visible and safest node in the next time step. We demonstrate

our visibility and trajectory planning method in simulations

showing predicted trajectory planning in 3D urban

environments using real LiDAR data from Ford Campus

Project [2].

The main challenge in motion planning is reaching the

goal while searching and selecting only safe maneuvers.

While reaching the goal cannot be guaranteed with an on-

line planner, one can reduce the state space search to only

safe states, i.e., states outside obstacles from which at least

one other safe state is reachable.

Generally, we distinguish between local and global

planners. The local planner generates one step, or a few

steps, at every time step, whereas the global planner uses a

global search toward the goal over a time-spanned tree. We

can divide this work into global and local (reactive) planners.

The global planners generate complete trajectories to the

goal in static [3] and dynamic [4,5] environments.

Visibility problem has been extensively studied over the

last twenty years, due to the importance of visibility in GIS

and Geomatics, computer graphics and computer vision, and

robotics. Accurate visibility computation in 3D environments

is a very complicated task demanding a high computational

effort, which could hardly have been done in a very short

174

International Journal on Advances in Systems and Measurements, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

time using traditional well-known visibility methods [23].

The exact visibility methods are highly complex, and cannot

be used for fast applications due to their long computation

time. Previous research in visibility computation has been

devoted to open environments using DEM models,

representing raster data in 2.5D (Polyhedral model), and do

not address, or suggest solutions for, dense built-up areas.

Most of these works have focused on approximate visibility

computation, enabling fast results using interpolations of

visibility values between points, calculating point visibility

with the Line of Sight (LOS) method [24]. Other fast

algorithms are based on the conservative Potentially Visible

Set (PVS) [25]. These methods are not always completely

accurate, as they may render hidden objects' parts as visible

due to various simplifications and heuristics.

A vast number of algorithms have been suggested for

speeding up the process and reducing computation time.

Franklin [26] evaluates and approximates visibility for each

cell in a DEM model based on greedy algorithms. Wang et

al. [27] introduced a Grid-based DEM method using

viewshed horizon, saving computation time based on

relations between surfaces and the line of sight (LOS

method). Later, an extended method for viewshed

computation was presented, using reference planes rather

than sightlines [28].

II. VISIBILITY ANALYSIS FROM POINT CLOUDS DATA

As we mentioned, visibility analysis in complex urban

scenes is commonly treated as an approximated feature due

to computational complexity. Recently, urban scene

modeling has become more and more exact, using

Terrestrial/ground-based LiDAR generating dense point

clouds data for modeling roads, signs, lamp posts, buildings,

trees and cars. Automatic algorithms detecting basic shapes

and extraction have been studied extensively, and are still a

very active research field [34].

In this part, we present an unique concept for predicted

and approximated visibility analysis in the next attainable

vehicle's state at a one-time step ahead in time, based on

local point clouds data, which is a partial data set.

We focus on three basic geometric shapes in urban scenes:

planes, cylinders and spheres, which are very common and

can be used for the majority of urban entities in modeling

scenarios. Based on point clouds data generated from the

current vehicle's position in state k-1, we extract these

geometric shapes using efficient RANSAC algorithms [35]

with high success rate detection tested in real point cloud

data.

After extraction of these basic geometric shapes from

local point clouds data, our unified concept, and our main

contribution, focus on the ability to predict and approximate

urban scene modeling at the next view point Vk, i.e.,

attainable location of the vehicle in the next time step. Scene

prediction is based on the geometric entities and Kalman

Filter (KF) which is commonly used in dynamic systems for

tracking target systems [36,37]. We formulate the geometric

shapes as states vectors in a dynamic system and predict the

scene structure the in the next time step, k.

Based on the predicted scene in the next time step,

visibility analysis is carried out from the next view point

model [38], which is, of course, an approximated one. As the

vehicle reaches the next viewpoint Vk, point clouds data are

measured and scene modeling and states vectors are updated,

which is an essential procedure for reliable KF prediction.

Our concept is based on RANSAC and KF, both real-time

algorithms, which can be integrated into autonomous

mapping vehicles that have become very popular. This

concept can be applicable for robot trajectory planning

generating visible paths, by analyzing local point clouds data

and predicting the most visible viewpoint in the next time

step from among several options.

A. Concept's Stages

Our methodology can be divided into three main sub-

problems:

1) Extract basic geometric shapes from point clouds data

(using RANSAC algorithms)

2) Predict scene modeling in the next viewpoint (using KF)

3) Approximated visibility analysis of a predicted scene

Each of the following stages is done after the other, where

the last stage also includes updated measurement of point

clouds data validating KF for the next viewpoint analysis.

B. Shapes Extraction

1) Geometric Shapes:

The urban scene is a very complex one in the matter of

modeling applications using ground LiDAR, and the

generated point clouds is very dense. Due to these inherited

complications, feature extraction can be made very efficient

by using basic geometric shapes. We define three kinds of

geometric shapes planes, cylinders and spheres, with a

minimal number of parameters for efficient time

computation.

Plane: center point (x,y,z) and unit direction vector from

center point.

Cylinder: center point (x,y,z), radius and unit direction

vector of the cylinder axis.

Sphere: center point (x,y,z), radius and unit direction vector

from center point.

2) RANSAC:

The RANSAC [39] paradigm is a well-known one,

extracting shapes from point clouds using a minimal set of

shape's primitives generated by random drawing in point

clouds set. Minimal set is defined as the smallest number of

points required to uniquely define a given type of geometric

primitive.

 For each of the geometric shapes, points are tested and

approximate the primitive of the shape (also known as

"score of the shape"). At the end of this iterative process,

extracted shapes are generated from the current point clouds

data.

175

International Journal on Advances in Systems and Measurements, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Based on the RANSAC concept, the geometric shapes

detailed above can be extract from a given point clouds data

set. In order to improve the extraction process and reduce

the number of points validating shape detection, we

compute the approximated surface normal for each point

and test the relevant shapes.

Given a point-clouds with associated normals

, the output of the RANSAC algorithm is a set of

primitive shapes and a set of remaining points

.

In this part we briefly introduce the main idea of plane,

sphere and cylinder extraction from point clouds data. An

extended study of RANSAC capabilities can be found in

[35].

Plane: A minimal set in the case of a plane, can be found by

just three points , without considering normals

in the points. Final validation of the candidate plane is

computed from the deviation of the plane’s normal from

. A plane is extracted only in cases where all

deviations are less than the predefined angle .

Sphere: A sphere is fully defined by two points with

corresponding normal vectors. The sphere center is defined

from the midpoint of the shortest line segment between the

two lines given by the points and their normals.

A sphere counts as a detected shape in cases where all three

points are within a distance of from the sphere and their

normals do not deviate by more than degrees.

Cylinder: A cylinder is set by two points and their normals,

where the cylinder axis direction is the projected cross

product of the normals, and a center point is calculated as

the intersection of parametric lines generated from points

and points' normal. A cylinder is verified by applying the

thresholds and to distance and to normal deviation of

the samples.

C. Predicted Scene – Kalman Filter

In this part, we present the global Kalman Filter

approach for our discrete dynamic system at the estimated

state, k, based on the defined geometric shapes formulation

defined in the previous sub-section.

Generally, the Kalman Filter can be described as a filter that

consists of three major stages: Predict, Measure, and Update

the state vector. The state vector contains different state

parameters, and provides an optimal solution for the whole

dynamic system [36]. We model our system as a linear one,

with discrete dynamic model:

 (1)

where is the state vector, F is the transition matrix and k

is the state.

The state parameters for all of the geometric shapes are

defined with shape center , and unit direction vector ,

of the geometric shape, from the current time step and

viewpoint to the predicted one.

In each of the current states k, geometric shape center , is

estimated based on the previous update of shape center

location , and the previous updated unit direction vector

, multiplied by small arbitrary scalar factor c:

 (2)

Direction vector can be efficiently estimated

extracting the rotation matrix T, between the last two states

k, k-1. In case of an inertial system fixed on the vehicle, a

rotation matrix can be simply found from the last two states

of the vehicle translations:

 (3)

The 3D rotation matrix T tracks the continuous extracted

plans and surfaces to the next viewpoint , making it

possible to predict a scene model where one or more of the

geometric shapes are cut from current point clouds data in

state k-1. The discrete dynamic system can be written as:

 (4)

where the state vector is vector, and the transition

squared matrix is . The dynamic system can be

extended to additional state variables representing part of

the geometric shape parameters such as radius, length etc.

We define the dynamic system as the basic one for generic

shapes that can be simply modeled with center and direction

vector. The sphere radius and cylinder Z boundaries are

defined in additional data structure of the scene entities.

III. FAST AND APPROXIMATED VISIBILITY ANALYSIS

In this section, we present an analytic analysis of

visibility boundaries of planes, cylinders and spheres for the

predicted scene presented in the previous sub-section, which

leads to an approximated visibility. For the plane surface,

fast and efficient visibility analysis was already presented in

[38].

1{ .. }NP p p

1{ .. }Nn n

1{ .. }N 

1
\{ .. }

N
R P p p 

1 2 3{ , , }p p p

1 2 3{ , , }n n n






 

, 1 1k k k kx F x 

x

s d

ks

1ks 

1kd 

1 1k k ks s cd  

kd

1k kd Td 

kV

1

1

1

1

1

1

11 12 13

21 22 23

31 32 33

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0

0 0 0

0 0 0

k k

k k

k k

k k

k k

k k

x x

y y

z z

x x

y y

z z

s sc

s sc

cs s

T T Td d

T T Td d
T T T

d d













   
    
    
    
    

     
    
    
    
        

x 6 1

, 1k kF 

176

International Journal on Advances in Systems and Measurements, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In this part, we extend the previous visibility analysis

concept [38] and include cylinders as continuous curves

parameterization .

Cylinder parameterization can be described as:

 (5)

We define the visibility problem in a 3D environment for

more complex objects as:

 (6)

where 3D model parameterization is , and the

viewpoint is given as . Extending the 3D cubic

parameterization, we also consider the cylinder case.

Integrating equation (5) to (6) yields:

 (7)

(8)

As can be noted, these equations are not related to Z axis,

and the visibility boundary points are the same for each x-y

cylinder profile.

The visibility statement leads to complex equation,

which does not appear to be a simple computational task.

This equation can be solved efficiently by finding where the

equation changes its sign and crosses zero value; we used

analytic solution to speed up computation time and to avoid

numeric approximations. We generate two values of

generating two silhouette points in a very short time

computation. Based on an analytic solution to the cylinder

case, a fast and exact analytic solution can be found for the

visibility problem from a viewpoint.

We define the solution presented in equation (8) as x-y-z

coordinates values for the cylinder case as Cylinder

Boundary Points (CBP). CBP are the set of visible

silhouette points for a 3D cylinder, as presented in Figure 1:

(9)

(a)

(b)

Figure 1. Cylinder Boundary Points (CBP) using Analytic Solution

marked as blue points, Viewpoint Marked in Red: (a) 3D View (Visible

Boundaries Marked with Red Arrows); (b) Topside View.

In the same way, sphere parameterization can be described

as:

 (10)

We define the visibility problem in a 3D environment for

this object as:

ln (, ,)c dC x y z

ln

sin()

(, ,) cos()C d

r const

r

C x y z r

c







 
 

  
 
 

_ max

0 2

1

0 peds

c c

c h

  

 

 

co s co s 0 0 0'(,) ((,) (, ,)) 0
n t n tz zC x y C x y V x y z  

(,)z constC x y 

0 0 0(, ,)V x y z

sincos

sin cos 0

0

x

y

z

r Vr

r r V

c V



 

  
  

     
      



_

_ _ _

1 1 1

1.. 2 0 0 0

, ,
(, ,)

, ,PBP bound

PBP bound PBP bound PBP bound

i N
N N N

x y z
CBP x y z

x y z 

 
  
  

sin cos

(, ,) sin sin

cos

0

0 2

Sphere

r const

r

C x y z r

r

 

 



 

 



 
 

  
 
 

 

 

177

International Journal on Advances in Systems and Measurements, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 (11)

where the 3D model parameterization is , and the

viewpoint is given as . Integrating eq. (10) to

(11) yields:

 (12)

where r is set from sphere parameter, and is

changes from visibility point along Z axis. The visibility

boundary points for a sphere, together with the analytic

solutions for planes and cylinders, allow us to compute fast

and efficient visibility in a predicted scene from local point

cloud data, that being updated in the next state.

This extended visibility analysis concept, integrated with

a well-known predicted filter and extraction method, can be

implemented in real time applications with point clouds

data.

IV. FAST VISIBLE TRAJECTORY PLANNING

Our planner is a local one, generating one step ahead at

every time step reaching toward the goal, which is a depth

first A* search over a tree. We extend previous planners,

which take into account kinematic and dynamic constraints

[16] and present a local planner for an omni-directional

robot, with these constraints mounted with LiDAR in a

constant Z point. As far as we know, for the first time this

planner generates fast and exact visible trajectories based on

an optimal analytic time horizon solution handling blocked

states where all future states are inside VO, and

approximates visibility based on local point clouds data for

the next time step based on incomplete data. The fast and

efficient visibility analysis of our method [38], extended in

Section II for spheres and cylinders, allows us to generate

the most visible trajectory from a starting state to the goal

state in 3D urban environments, based on local decision-

making capabilities, and demonstrates our capability, which

can be extended to real performances in the future.

We assume incomplete data of the 3D urban

environment model as mentioned in Section II, and use an

extended Velocity Obstacles (VO) method with analytic

optimal time horizon.

A. Analytic Optimal Time Horizon – Escaping Mode

The time horizon plays an important role in selecting

feasible avoidance maneuvers. It allows considering only

those maneuvers that would result in a collision within a

specified time interval and efficiently searching for safe

maneuvers in the velocity space. Setting the time horizon

too high would be too prohibitive, as it would mark as

dangerous maneuvers resulting in collision at a distant time;

selecting a too-small time horizon would permit dangerous

maneuvers that are too close and at too high speeds to avoid

the obstacle.

It is essential that the proper time horizon ensures that a

safe maneuver, even if temporarily pointing toward the

obstacle, is selected.

The main significance of the time horizon parameter

using VO was first introduced in [21]. For each obstacle,

time horizon is calculated as the minimum between

stopping and passing time, as approximations to the exact

optimization problem. Numeric solutions of the optimal

time horizon for point mass model with cubic control

constraints were presented in [21], based on external

trajectories generated from the boundary of the control

effort. This formulation of time horizon defines

approximation of VO as the boundary of ICS without

analytic solution escaping VO, in a case of bounded

velocity space.

B. Analytic Optimal Time Horizon - Examples

In this part, we focus on the efficiency of our analytic

time horizon solution via classic VO demonstrated in

simulations. The analytic solution extends the traditional

VO planner search method and defines the strategy search in

cases of blocked attainable velocity space for the next time

step in velocity space.

We use a planner similar to the one presented by [21]

with the same cost function, and the Omni-directional robot

model mentioned above. The search is guided by a cost

function planner applying the safest maneuver at every time

step. Unsafe states ahead in time are recognized before the

robot enters into unsafe states, also called ICS. For one

obstacle, our planner can ensure safety, but the planner is

not a complete one. By using an analytic search, the planner

computes near-time optimal and safe trajectory to the goal.

Figure 2. Avoiding Two Obstacles Using Analytic Time Horizon.

0 0 0'(, ,) ((, ,) (, ,)) 0C x y z C x y z V x y z  

(, ,)C x y z

0 0 0(, ,)V x y z

0 0 0(, ,)V x y z

178

International Journal on Advances in Systems and Measurements, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Blocked Velocity Space Avoiding Two Obstacles.

Figure 4. Final Trajectory Avoiding Two Obstacles Using Analytic Time

Horizon.

Figure 5. Escaping Blocked Velocity Space Using Analytic Time

Horizon.

The main contribution of this section is to demonstrate

cases of blocked nodes in the velocity space in the search

tree for the next time step. In cases of blocked nodes, i.e., all

of the nodes located inside the VO, the planner choose the

node that leads outside VO as soon as possible, avoiding

collision and formulated as analytic time horizon based

search. Without using analytic time horizon formulation,

there is no safe and legitimate option for the next node to be

explored. As a result, conservative trajectories are

computed, and in some cases safe trajectory to the goal

cannot be found and collision eventually occurs.

In a two-obstacles case shown in Figure 2, the robot,

represented by a point, starts near point (0,-4) at zero speed,

attempting to reach the goal at point (0,4) (marked by a

yellow triangle) at zero speed, while avoiding two static

obstacles. The trajectory is dotted with a red dot

representing the current position of the robot. The bounded

velocity space, representing velocity obstacles as yellow

cycles and velocity vector (with green triangles), can be

seen in Figure 3, relating to the state space position as

shown in Figure 2.

Figure 6. Conservative Solution of Avoiding Two Obstacles Using

Constant Time Horizon: Blocked Velocity Space Caused to Conservative

Trajectory Turning Left vs. Sliding on their Edges and Passing Between

them.

Clearly, there is no gap to enter between VO's in Figure

3 and the velocity vector is bounded in the velocity space.

The trivial VO, with a conservative and constant time

horizon, cannot find the ultimate solution in such a case, and

as a result, a conservative trajectory will be computed. The

robot avoids the obstacles to the left with high time horizon

values, as shown in Figure 6. Moreover, in some other cases

of dense and bounded velocity space, no solution will be

available at all. By using an analytic time horizon, the robot

escapes velocity obstacles and searches for a safe maneuver

in state space, as shown in Figure 4, and velocity space,

respectively, as shown in Figure 5.

C. The Planner

By using RANSAC algorithm, at each time step point

clouds data are extracted into three possible objects: plane,

cylinder and sphere. The scene is formulated as a dynamic

system using KF analysis for objects' prediction. The

objects are approximated for the next time step, and each

safe attainable state that can be explored is set as candidate

viewpoint. The cost for each node is set as the total visible

surfaces, based on the analytic visibility boundary, where

the optimal and safe node is explored for the next time step.

179

International Journal on Advances in Systems and Measurements, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

At each time step, the planner computes the next

Attainable Velocities (AV). The safe nodes not colliding

with objects such as cubes, cylinders and spheres, i.e., nodes

outside Velocity Obstacles are explored. Where all nodes

are inside VO, a unified analytic solution for time horizon is

presented, generating an escape option for these radical

cases without considering visibility analysis. The planner

computes the cost for these safe nodes based on predicted

visibility and chooses the node with the optimal cost for the

next time step. We repeat this procedure while generating

the most visible trajectory.

1) Attainable Velocities

The set of maneuvers that are dynamically feasible over a

time step is represented by AV. At each time step during the

trajectory planning, we map the attainable velocities that the

robot can choose under the effort control envelope.

Attainable Velocities, , are integrated from the

current state (,) by applying all admissible controls

 . The geometric shape of AV depends on system

dynamics. In our case,as described in (13):

 (13)

where .

The attainable velocities at time apply to the position

 Thus, the attainable velocities, when intersected

with VO that correspond to the same position, would

indicate those velocities that are safe if selected at time

 .

2) Cost Function

Our search is guided by minimum invisible parts from

viewpoint V to the approximated 3D urban environment

model in the next time step, set by KF after

extracting objects from point clouds data using the

RANSAC algorithm. The cost function for each node is a

combination of IRV and ISV, with different weights as

functions of the required task.

The cost function presented in (14) is computed for each

safe node, i.e., node outside VO, considering the robot's

future location at the next time step (,
) as viewpoint:

) +) (14) (34)

where are coefficients, affecting the trajectory's

character. The cost function produces the total

sum of invisible parts from the viewpoint to the 3D urban

environment, meaning that the velocity at the next time step

with the minimum cost function value is the most visible

node in our local search, based on our approximation.

We divide point invisibility value into Invisible Surfaces

Value (ISV) and Invisible Roofs Value (IRV). This

classification allows us to plan delicate and accurate

trajectories upon demand. We define ISV and IRS as the

total sum of the invisible roofs and surfaces (respectively).

Invisible Surfaces Value (ISV) of a viewpoint is defined as

the total sum of the invisible surfaces of all the objects in a

3D environment, as described in (15):

 (15)

In the same way, we define Invisible Roofs Value (IRV)

as the total sum of all the invisible roofs' surfaces, as

described in (16):

 (16)

Extended analysis of the analytic solution for visibility

analysis for known 3D urban environments can be found in

[37].

V. SIMULATIONS

We have implemented the presented algorithm and

tested some urban environments on a 1.8GHz Intel Core

CPU with Matlab. We computed the visible trajectories

using our planner, with real raw data records from LiDAR

as part of the Ford Campus Project.

Point clouds data are generated by Velodyne HDL-64E

LiDAR [39]. Velodyne HDL-64E LiDAR has two blocks of

lasers, each consisting of 32 laser diodes aligned vertically,

resulting in an effective 26:8 Vertical Field Of View (FOV).

The entire unit can spin about its vertical axis at speeds up

to 900 rpm (15 Hz) to provide a full 360 degree azimuthal

field of view. The maximum range of the sensor is 120 m

and it captures about 1 million range points per second. We

captured our data set with the laser spinning at 10 Hz.

Due to these huge amounts of data, we planned a limited

trajectory in this urban environment for a limited distance.

In Figure 7, point clouds data from the start point can be

seen, also marked as start point "S" in Figure 10. Planes

extracted by RANSAC can be recognized. As part of the

Ford Project, these point clouds are also projected to the

panoramic camera's systems, making it easier to understand

the scene, as seen in Figure 8.

As described earlier, at each time step the planner

predicts the objects in the scene using KF. In Figure 9(a),

objects in the scene are presented from a point clouds data

set. These point clouds predicted using KF, and predicted to

the next time step in Figure 9(b).

1.. 1

1.. 10 0 0

1

(, ,)
obj

j Nbound
i
j Nbound

i

N

VP

VP
i

ISV x y z IS
 

 





0 0 0

1

(, ,)
obj

j Nbound
i
j Nbound

i

N

VP

VP
i

IRV x y z IS








180

International Journal on Advances in Systems and Measurements, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Point Clouds Data set at Start Point.

Figure 8. Point Clouds Data Projected to Panoramic Camera Set at Start

Point.

(a)

(b)

Figure 9. (a) Objects in point clouds data set. (b) Predicted objects using

KF in the next time step.

Figure 10. Vehicle Planned Trajectory Colored in Purple.

The planned trajectory presented in Figure 10 with a

purple line. The starting point, marked as "S", presented in

Figure 10, where the cloud points in this state are presented

in Figure 8. An arbitrary state during the planned trajectory,

which is marked with an arrow, is also presented in Figure

10, where point clouds prediction using KF in this state are

presented in Figure 9. For this trajectory, ,

robot velocity is set to

 In this case, the robot

avoided two other cars, without handling cases of analytic

optimal time solution for deadlocks with bounded velocity

space.

VI. CONCLUSION AND FUTURE WORK

In this research, we have presented an efficient trajectory

planning algorithm for visible trajectories in a 3D urban

environment for an Omni-directional model, based on an

incomplete data set from LiDAR, predicting the scene at the

next time step and approximating visibility.

Our planner is based on two steps visibility analysis in

3D urban environments using predicted visibility from point

clouds data. The first step is to extract the basic geometric

shapes: planes, cylinders and spheres, using RANSAC

algorithms. The second step is a prediction of these

geometric entities in the next time step, formulated as states

vectors in a dynamic system using the Kalman Filter (KF).

We extend our analytic visibility analysis method to

cylinders and spheres, which allows us to efficiently set the

visibility boundary of predicted objects in the next time

step, generated by KF and RANSAC methods. Based on

these fast computation capabilities, the on-line planner can

approximate the most visible state as part of a greedy search

method.

As part of our planner, we extended the classical VO

method, where the velocity space is bounded and the robot

velocity cannot escape from the velocity obstacles in the

current state. We presented an escape mode based on an

analytic time-optimal minimization problem which, for the

first time, defines time horizon for these cases.

The visible trajectory is an approximated one, allowing us to

configure the type of visible objects, i.e., roof or surfaces

visibility of the trajectory, and can be used for different

kinds of applications.

Further research will focus on advanced geometric

shapes, which will allow precise urban environment

181

International Journal on Advances in Systems and Measurements, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

modeling, facing real-time implementation with on-line data

processing from LiDAR.

VII. REFERENCES

[1] O.Gal, Y.Doytsher, Fast Visible Trajectory Spatial Analysis
in 3D Urban Environments Based on Local Point Clouds
Data, GeoProcessing 2017.

[2] G.Pandey, J.R. McBride and R.M. Eustice, Ford campus
vision and lidar data set. International Journal of Robotics
Research, 30(13):1543-1552, November 2011.

[3] J.-C. Latombe, Robot Motion Planning. Kluwer Academic
Publishers, 1990.

[4] M. Erdman and T. Lozano-Perez, On multiple moving
objects, Algorithmica, vol. 2, pp. 447–521, 1987.

[5] K. Fugimura and H. Samet, A hierarchical strategy for path
planning among moving obstacles, IEEE Transactions on
Robotics and Automation, vol. 5, pp. 61–69, 1989.

[6] L. Ulrich and J. Borenstien, Vfh+: Reliable obstacle
avoidance for fast mobile robots, in Proceedings of the IEEE
International Conference on Robotics and Automation, pp.
1572–1577, 1998.

[7] N. Ko and R. Simmons, The lane-curvature method for local
obstacle avoidance, in International Conference on
Intelligence Robots and Systems, pp. 1615–1621, 1998.

[8] J. Minguez and L. Montano, Nearest diagram navigation. a
new real-time collision avoidance approach, in International
Conference on Intelligence Robots and Systems, pp. 2094–
2100, 2000.

[9] T. Fraichard, Planning in dynamic workspace: a state-time
space approach, Advanced Robotics, vol. 13, pp. 75–94,
1999.

[10] H. R. K. J.-C. Latombe and S. Rock, Randomized
kinodynamic motion planning with moving obstacles,
Algorithmics and Computational Robotics, vol. 4, pp. 247–
264, 2000.

[11] O. Brock and O. Khatib, Real time replanning in high-
dimensional configuration spaces using sets of homotopic
paths, in Proceedings of the IEEE International Conference on
Robotics and Automation, pp. 550–555, 2000.

[12] N. S. J. Minguez L. Montano and R. Alami, Global nearest
diagram navigation, in Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 33–39, 2001.

[13] M.D. Feron and E. Frazzoli, Real time motion planning for
agile autonomous vehicles, AIAA Journal of Guidance
Control and Dynamics, vol. 25, pp. 116–129, 2002.

[14] W. Fox, E. Burgard, and S. Thrun, The dynamic window
approach to collision avoidance, IEEE Robotics and
Automation Magazine, vol. 4, pp. 23–33, 1997.

[15] T. Wikman and W. N. M.S. Branicky, Reflexive collision
avoidance: a generalized approach, in Proceedings of the
IEEE International Conference on Robotics and Automation,
pp. 31–36, 1993.

[16] S. Lavalle. J. Kuffner, Randomized kinodynamic planning,
International Journal of Robotics Research, vol. 20, pp. 378–
400, 2001.

[17] T. Fraichard, A short paper about safety, in Proceedings of the
IEEE International Conference on Robotics and Automation,
pp. 1140–1145, 2007

[18] S. P. T. Fraichard, Safe motion planning in dynamic
environment, in International Conference on Intelligence
Robots and Systems, pp. 885–897, 2005.

[19] T. Fraichard and H. Asama, Inevitable collision state-a step
towards safer robots? Advanced Robotics, vol. 18, pp. 1001–
1024, 2004.

[20] N. Chan and M. Z. J. Kuffner, Improved motion planning
speed and safety using region of in- evitable collision, in
ROMANSY, pp. 103–114, July 2008.

[21] O. Gal, Z. Shiller, and E. Rimon, Efficient and safe on-line
motion planning in dynamic environment, in Proceedings of
the IEEE International Conference on Robotics and
Automation, pp. 88–93, 2009.

[22] Z. Shiller. F. Large and S. Sekhavat, Motion planning in
dynamic environments: Obstacle moving along arbitrary
trajectories, in Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 3716–3721,
2001.

[23] H. Plantinga, and R. Dyer, Visibility, Occlusion, and Aspect
Graph, The International Journal of Computer Vision, vol. 5,
pp. 137-160, 1990.

[24] Y. Doytsher, and B. Shmutter, Digital Elevation Model of
Dead Ground, Symposium on Mapping and Geographic
Information Systems (Commission IV of the International
Society for Photogrammetry and Remote Sensing), Athens,
Georgia, USA, 1994.

[25] F. Durand, 3D Visibility: Analytical Study and Applications,
PhD thesis, Universite Joseph Fourier, Grenoble, France,
1999.

[26] W.R. Franklin, Siting Observers on Terrain, in Proc. of 10th
International Symposium on Spatial Data Handling. Springer-
Verlag, pp. 109–120, 2002.

[27] J. Wang, G.J. Robinson, and K. White, A Fast Solution to
Local Viewshed Computation Using Grid-based Digital
Elevation Models, Photogrammetric Engineering & Remote
Sensing, vol. 62, pp. 1157-1164, 1996.

[28] J. Wang, G.J. Robinson, and K. White, Generating Viewsheds
without Using Sightlines, Photogrammetric Engineering &
Remote Sensing, vol. 66, pp. 87-90, 2000.

[29] C. Ratti, The Lineage of Line: Space Syntax Parameters from
the Analysis of Urban DEMs', Environment and Planning B:
Planning and Design, vol. 32, pp. 547-566, 2005.

[30] L. De Floriani, and P. Magillo, Visibility Algorithms on
Triangulated Terrain Models, International Journal of
Geographic Information Systems, vol. 8, pp.13-41, 1994.

[31] B. Nadler, G. Fibich, S. Lev-Yehudi, and D. Cohen-Or, A
Qualitative and Quantitative Visibility Analysis in Urban
Scenes, Computers & Graphics, vol. 5, pp. 655-666, 1999.

[32] B. Mederos, N. Amenta, L. Velho, L.H. Figueiredo, Surface
reconstruction from noisy point clouds. In: Euro- graphics
Symposium on Geometry Processing, pp. 53-62, 2005.

[33] J.P. Grossman, Point sample rendering. In: Rendering
Techniques, pp. 181-192, 1998.

[34] G. Vosselman, B. Gorte, G. Sithole, and T. Rabbani.
Recognizing structure in laser scanner point clouds. The
International Archives of the Photogrammetry Remote
Sensing and Spatial Information Sciences (IAPRS), vol. 36,
pp. 33–38, 2004.

[35] R. Schnabel, R. Wahl, R. Klein, Efficient RANSAC for Point-
Cloud Shape Detection, Computer Graphics Forum, vol. 26,
no.2, pp. 214-226, 2007.

[36] R. Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME-Journal of Basic
Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[37] J. Lee, M. Kim, and I. Kweon. A kalman filter based visual
tracking algorithm for an object moving, In IEEE/RSJ
Intelligent Robots and Systems, pp. 342–347, 1995.

[38] O. Gal, and Y. Doytsher, Fast Visibility Analysis in 3D
Procedural Modeling Environments, in Proc. of the, 3rd
International Conference on Computing for Geospatial
Research and Applications, Washington DC, USA, 2012.

182

International Journal on Advances in Systems and Measurements, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[39] H. Boulaassal, T. Landes, P. Grussenmeyer, and F. Tarsha-
Kurdi. Automatic segmentation of building facades using
terrestrial laser data. The International Archives of the
Photogrammetry Remote Sensing and Spatial Information
Sciences (IAPRS), vol. 36, no. 3, 2007.

[40] Velodyne 2007: Velodyne HDL-64E: A high definition
LIDAR sensor for 3D applications. Available at:
http://www.velodyne.com/lidar/products/white paper.

183

International Journal on Advances in Systems and Measurements, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/systems_and_measurements/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

