
282

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Extended Evaluation of Process Log Analysis for BPEL Test Coverage Calculation

Daniel Lübke

Leibniz Universität Hannover
FG Software Engineering

Welfengarten 1, D-30167 Hannover, Germany
Email: daniel.luebke@inf.uni-hannover.de

Abstract—With today’s requirement of quickly developing dig-
itization solutions, companies often use specialized workflow
languages like the BPEL or BPMN 2.0, which orchestrate
services along the process flow. Because process models are of
critical importance to the functioning of the organization, high
quality and reliability of the implementations are mandatory.
Therefore, testing becomes an even more important activity in the
development process. For judging the quality of developed tests,
Test Coverage Metrics can be used. Current approaches to test
coverage calculation for BPEL either rely on instrumentation,
which is slow, or are limited to vendor-provided unit test
frameworks, in which all dependent services are mocked, which
limits the applicability of such approaches. Our refined approach
relies on analyzing process event logs that are written during
process execution. Within this article we analyze the performance
characteristics of process log analysis versus the instrumentation-
based approach by running an experiment with BPEL processes
and their accompanying test suites developed in an industry
project. According to our findings, the improved version of
process log analysis is significantly faster for all scenarios.

Keywords–Test Coverage; Process Mining; BPEL; Event Log;
Experiment; Performance.

I. INTRODUCTION

This article presents improvements, an extended description
as well as an improved experimental evaluation of using
process log analysis as a method for measuring test coverage
of BPEL processes presented earlier [1].

Having a flexible and fast tool for measuring test coverage
is important due to the rising importance of digital busi-
ness process solutions. Partner networks are being connected
tighter and the integration between different businesses is
often driven by business process needs. For example, offering
fully fledged digital services to customers requires a high
degree of automation, i.e., the implementation of large parts of
business processes in software solutions. Because the failure
of customer- or partner-facing processes can have dramatic
financial and reputational consequences, the required quality,
stability and correctness of process-based software solutions
is an important problem in practice – and as such a relevant
research topic.

Business processes can be digitized by using special work-
flows, which are refered to as executable business processes.
Standards like BPEL or BPMN 2.0 have been developed to
automate business processes in large companies by orches-
trating services. These are software artefacts and can contain
complex orchestration logic. With the increasing demand for
fully digitized solutions, it is likely that more and more

business processes are being implemented in these or similar
orchestration languages.

Because business processes – and as such their software
implementations – are very critical to the functioning and
performance of organizations, it is mandatory to perform good
quality assurance in order to avoid costly problems in pro-
duction [2]. Quality Assurance can include static checking of
process models (e.g., consistency check of service contracts to
executable processes [3]). However, most projects use testing
as their main quality assurance activity. Consequently, they
require an assessment of the adequacy and quality of the tests.
It has been shown by Piwowarski et al. [4] that a) test coverage
measurements are deemed beneficial by testers, although b)
they are rarely applied because of being difficult to use, and
c) that higher coverage values lead to more defects being
found. These findings are supported by Horgan et al. [5], who
linked data-flow testing metrics to reliability, and Braind et
al. [6], who simulated the impact of higher test coverage on
quality. Furthermore, Malaiya et al. [7] and Cai & Lyu [8]
have developed prediction models that can link test coverage
to test effort and software reliability.

Quality Assurance, and thus test coverage measurement,
should be an ongoing activity because executable processes
will evolve over time [9]. One way for continously measuring
test quality is to measure test coverage as part of all testing
activities. Test Coverage then serves as measurement of test
data adequacy [10].

While approaches applicable for developing unit tests for
executable processes have been proposed by academia (e.g.,
[11], [12]) and developed by vendors for their respective pro-
cess engines, there is no practical way to efficiently calculate
test coverage for tests that are not controlled by a unit testing
framework. Also, approaches relying on instrumentation create
significant additional overhead by a factor larger than 2.0
compared with the “plain” test case execution times [13].
This is far more than instrumentation approaches for “normal”
programming languages, e.g., Java, require.

An approach that better guides quality assurance in soft-
ware projects, which develop executable processes, is required.
This approach shall be applicable in several test scenarios,
including unit tests, integration tests and system tests. Ideally,
it is easier to set up than existing methods in order to improve
acceptance by practitioners [4].

Within this article, we evaluate an approach based on
analyzing process event logs, which are automatically written

283

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

by process engines during process execution regardless of
whether testing frameworks are used or not. The evaluation is
done experimentally and compares the execution times of two
test coverage measurement approaches: process log analysis
and process instrumentation. For running the experiment, four
BPEL processes from the commerical Terravis project [14] as
well as two research processes from Schnelle [15] are used.

This article is structured as follows: First, the process
modeling language BPEL is shortly explained in Section II
before related work is presented in Section III. The approach
for mining test coverage metrics is described in detail in
Section IV followed by a short evaluation of its flexibility
in Section V. The main part of this article is presented in
Section VI, which describes the experiment set-up, the gath-
ered results and their interpretation comparing the performance
of our new approach and the existing instrumentation-based
approach. Finally, we conclude and give an outlook on possible
future work.

II. BACKGROUND ON BPEL

BPEL (short for WS-BPEL; Web Services Business Pro-
cess Execution Language) is an OASIS standard that defines
a modeling language for developing executable business pro-
cesses by orchestrating Web services.

BPEL Models consist of Activities, which are divided
into Basic Activities and Structured Activities. Basic Activities
carry out actual work, e.g., performing data transformations
or calling a service, while Structured Activities are controlling
the process-flow, e.g., conditional branching, loops, etc.

Important Basic Activities include the invoke activity
(which calls Web services), the assign activity (which performs
data transformations), and the receive and reply activities
(which offer service others to call a process via service
interfaces). Important Structured Activities are the if, while,
repeatUntil, and forEach activities, which offer the same
control-flow structures like their pendants in general purpose
programming languages, and the flow activity, which allows
process designers to build a graph-based model including par-
allel execution. For building the graph, BPEL defines links that
can also carry conditions for modelling conditional branches.

For handling error conditions and scoped messages, BPEL
provides different kinds of Handlers: Fault Handlers are
comparable to try/catch constructs: Whenever a SOAP Fault is
returned by an invoked service or is thrown within the process,
the Process Engine searches for defined Fault Handlers. These
may trigger Compensation Handlers, which can undo already
executed operations. For receiving events asynchronously out-
side the main process flow, Event Handlers can be defined.
These come in two flavors: onEvent Handlers for receiving
SOAP messages, and onAlarm Handlers for reacting on (pos-
sibly reoccurring) times and time intervals.

BPEL does not define a graphical representation like the
BPMN 2.0 standard does, but standardizes the XML format, in
which it is saved. Vendors have developed their own graphical
representations. Within this article we use the notation of the
Eclipse BPEL Designer. A process that will be used as an
example in this article is shown in Figure 1: A customer places
an order (“receiveInput”). A check is made, whether the cus-
tomer has VIP status or not. In case of a VIP customer, points

are credited to the customer’s account (“SavePointsEarned”).
In both cases appropriate response message to the customer
are prepared (“PrepareReplyFor. . . ”), which is then sent back
to the customer (“reply”). For handling failures while storing
the earned points, a Fault Handler called “catch” is defined,
which prepares (“PrepareTicketCreation”) and creates a help
desk ticket (“CreateHelpDeskTicket”) so that the points can be
manually added later.

BPEL processes are deployed to a Process Engine, which
has the responsibility for executing process instances and
managing all aspects around process versioning, persistence,
etc. The amount of data, which is persisted during process
execution, is vendor-dependent and can be configured in most
engines during the deployment of a process model.

BPEL has been designed to be extensible. Many extensions
by both standard committees and vendors have been made.
For example, BPEL4People allows to interact not only with
services but also with humans during process execution.

III. RELATED WORK

Testing BPEL processes has become subject of many
research projects. For example, Li et al. (BPEL4WS Unit
Testing Framework [11]), Mayer & Lübke (BPELUnit [12]),
and Dong et al. (Petri Net Approach to BPEL Testing [16])
have developed approaches for testing BPEL processes and
published their ideas.

The BPELUnit framework was developed by Mayer &
Lübke [12] and was later extended by Lübke et al. [13]
with test coverage measurement support. First, the coverage
metrics needed to be defined, which is not as straightforward
as for other programming languages due to BPEL’s different
mechanisms for defining the process-flow. Consequently, three
coverage metrics were defined: Activity Coverage, Handler
Coverage, and Link Coverage.

Coverage Measurement was done by instrumenting the
BPEL process: For tracing the execution, the process is
changed prior to deployment. Additional service calls are
inserted for every activity. The service calls send the current
execution position (“markers”) to the test framework. This
enables the test framework to know which activities have been
executed in the test run. However, the test framework needs to
run while the instrumented processes are executed in order to
collect the markers, which makes its use limited in practice.
Even more, the overhead introduced by many new service calls
is considerable: The reported overhead in the original paper
is more than 100%, i.e., the test execution times have more
than doubled. This stems from the instrumentation mechanism,
which requires every execution trace point to be sent out of
the process via a service call, which in turn requires XML
serialization and involves the network stack. This also makes
the BPEL process much larger: The number of basic activities
tripples for instrumenting all measurement points for calculat-
ing activity coverage alone. One advantage of the approach is
that it only slightly depends on the Process Engine being used:
The changes to the BPEL process are completely standards-
compliant. Only the new service for collecting markers needs
to be added to the engine-specific deployment descriptor. One
way to migitate the performance problems is to distribute the
tests, e.g., as described by Kapfhammer [17].

284

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Sample BPEL Process for processing an Order.

Process Engine vendors have also developed their own
proprietary solutions for measuring test coverage: Test Cases
are developed in the development environment of the process
engine and can be executed from there or on a server. All
services are mocked and the test frameworks simply inject pre-
defined SOAP messages. Such test frameworks use a striped-
down version of the process engine. This results in a mixture
between simulation and test: The process engine uses the same
logic but not all parts of its code are triggered because some
features are disabled. Also, there is no possiblity of calling
“real” services instead of mocks. While test coverage calcula-
tion is very fast, because the algorithms have access to internal
engine data structures, its use is limited to unit test scenarios
only. Examples of such vendor-provided test frameworks are
Informatica’s BUnit [18] and Oracle’s BPELTest [19].

Endo et al. [20] defined coverage criteria for their test
generation approach. For example, one criterion called All-
nodes is that all activities are executed. Other criteria require
certain activity types to be executed (e.g., All-nodes for all
invoke and reply activities). The authors use these criteria to
guide the test case selection of their generation approach.

On a more general level, test metrics and their publication
by services themselves have been researched in the context of
Service-Oriented Architectures (SOA) by Miranda et al. [21],

Bartolini et al. [22], and Eler et al. [23]. Their approaches
are independent of the language used for implementing the
services and thus more abstract.

Schnelle & Lübke proposed an approach to generate unit
test cases from classification trees, which are designed from
a business perspective [24]. Coverage can be specified as
the coverage of different properties (=leafs) of that tree. The
coverage is not code-based but instead requirements-based.

Other approaches try to generate test cases with good
or optimal coverage: Kaschner & Lohmann [25] developed
an approach that generates test suites that cover all service
interactions. Service Interactions are externally observable
behavior and are thus deemed the most important aspect to
test by the authors. Ji et al. [26] describe another way: They
developed an algorithm that tries to choose the most efficient
test cases by analyzing the data-flow of a BPEL process.

Although many coverage metrics have been defined, Weiser
et al. [27] have shown that “[e]mpirically comparing structural
test coverage metrics reveals that test sets that satisfy one
metric are likely to satisfy another metric as well”. This means
that for practical purposes any of the proposed test coverage
metrics will likely behave as well or as badly as another one.

All test approaches available for BPEL claim that they
achieve – or at least help to achieve – a good test coverage.

285

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

However, no empirical studies have been made whether this is
the case and what typical test coverage values constitute for
BPEL processes. In contrast, there is a huge body of knowl-
edge available for general purpose programming languages, as
has been shown in a survey for the Java programming language
by Yang et al. [28].

In a multiple case study approach Mockus et al. [29]
have shown that with increasing test coverage more defects
are found prior to production but that costs to improve test
coverage increase exponentially while the numbers of found
defects only increases linearily. Therefore, Pavlopoulou &
Young [30] propose to monitor the production environment
for execution of previously untested code sections. By leaving
only instrumentation code for these code areas of interest, they
could reduce the overhead imposed by coverage measurements.

All in all, there is currently no approach available for BPEL
processes that can be used to measure test coverage on code
level with acceptable performance and the ability to be used in
conjunction with manual tests and integration & system tests.

IV. TEST COVERAGE MINING

This section presents the different steps of our approach
that are performed for analyzing process logs in order to
calculate test coverage.

A. Metric Calculation Process

For calculating test coverage, we use process mining tech-
niques. Process Mining is concerned with building “a strong
relation between a process model and ‘reality’captured in the
form of an event log” [31, p. 41]. Although process mining
techniques are usually used to help the business (e.g., [32],
[33], [34]), it is used here to guide the development project:
By having the BPEL process model and the event logs of all
test cases available from the process engine’s database, we are
able to replay the event logs generated from the tests on top of
the BPEL process model. Out of the many possible motivations
to do a replay, our goal is to extend our model with frequency
information [31, p. 43].

Accordingly, our approach is divided into four sub-steps,
which are described in the following sections:

1) Build the BPEL Process Model Syntax Tree from its
XML representation (BPEL Analysis),

2) Wait until the whole event log has been written,
3) Fetch the event log from the Process Engine (Data

Gathering),
4) Replay the event logs on top of the BPEL Process

and calculate coverage metrics (Mining).

B. BPEL Analysis

Within this step, the BPEL XML representation is read
and the control-flow graph is being constructed as described
by the block-based structured activities. For example, activities
contained in sequence activity are chained together by control-
flow links. The construction of the control-flow graph is the
same as for the instrumentation approach to measuring BPEL
test coverage [13] and thus takes the same time to build.
All BPEL Models are accessible via the process engine’s

repository and can be extracted as part of the coverage mining.
This guarantees that the event logs match the process model
versions exactly.

C. Wait for the Event Log

Unfortunately, the used BPEL engine writes the event log
asynchronously and delayed during process execution. This
means that there is a delay between process completion and
the event log being written to the database. The persistence
interval can be configured. In the initial version of process
log analysis for test coverage calculation [1], a fixed delay
before reading the event logs was introduced that was a long as
the configured persistence interval. This configuration specific
delay is a fixed cost penality before test coverage calculation
starts. The improved version of our implementation actually
queries the event log as long as the end event for the last
process instance has been written. This should reduce the wait
time on average by half.

D. Data Gathering

The BPEL processes of the industry project, which we
use in our experiment, uses Informatica ActiveVOS [18] as
its BPMS. ActiveVOS is a process engine fully compliant
with the BPEL 2.0 and BPEL4People standards and stores all
data – especially all available process models in all versions,
active and completed process instances, and event logs –
in a relational database. This allows access to and analysis
of the available data that can be mined for calculating test
coverage metrics. For different persistence settings ActiveVOS
stores different lifecycle events for every BPEL activity, which
include ready to execute, executing, completed, faulting and
will not execute. In addition, there are two more event types for
links (edges for graph-based modeling; link evaluated to true
and link evaluated to false and the same for loop and branching
conditions (condition evaluated to true and condition evaluated
to false). Besides the event type, the event timestamp, the
corresponding process instance, and an internal activity or link
identifier is logged.

Figure 2. Conceptual Data Model of the Process Engine being used.

This means that all necessary data is available for recon-
structing the execution of a process instance and thereby cal-
culating the test coverage metrics: For calculating activity and
handler coverage, all completed, and faulting events need to be
fetched for a given test run. For calculating link coverage both
link evaluated events need to be fetched and for calculating

286

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

branch coverage, both condition evaluated events need to be
fetched as well.

All other event types – especially Will not execute events
can be ignored, which allows to use all engine settings except
for “no logging.” The underlying conceptual data model, as it
is implemented in the ActiveVOS engine, is shown in Figure 2.

E. Replay & Metric Calculation

Test Coverage Metrics – as defined by Lübke et al. [13]
– is calculated with the data extracted in the previous steps.
At first, all activities, handlers and conditional links in the
syntax tree are marked as not executed. In the second step, all
events are being applied to the syntax tree and all activities and
handlers that have a corresponding completed or faulting event
are marked as being executed. Also, conditional BPEL links
for graph-based modeling are marked with the link evaluation
events. However, every link can carry two different markers:
one if the condition was evaluated to true and another if
the condition was evaluated to false. Because links without
a condition are excluded from the coverage metric, they are
ignored from further analysis.

Similarily, loops are being marked according to the condi-
tion evaluated events. During this phase, loop activities can be
marked as executed twice for calculating the branch coverage
in later stages. For if or ifElse branches and for most loops
markers can be set, whenever the condition is evaluated to
true; except for the repeatUntil, which follows an inverted
boolean logic, and the markers are set if the condition is
evaluated to false. The only exception is the parallel forEach
loop, in which the activity identifier contains the number of
the currently executed parallel branch. If a counter larger than
one is encountered, the forEach activity is marked as executed
at least twice.

After all events have been replayed on top of the syntax
tree, the coverage metrics can be calculated. The easiest test
coverage metric to compute is Activity Coverage CA: The
syntax tree is traversed and all basic activities are counted,
which are marked (Am) and which are not marked (Au) as
shown in equation (1).

CA :=
|Am|

|Am|+ |Au|
(1)

This metric can be filtered by basic activity type. For
example, the coverage of all executed invoke activities can be
calculated as shown in equation (2).

Cinvoke :=
|AInvoke

m |
|AInvoke

m |+ |AInvoke
u |

(2)

Similarily, Handler Coverage CH can be calculated by
searching the syntax tree for handlers that have been success-
fully executed as shown in equation (3): The coverage is the
proportion of executed handlers in relation to all handlers.

CH :=
|Hm|

|Hm|+ |Hu|
(3)

With the given Process Engine it was important to not mark
event handlers when they are ready to execute because this
event will be triggered by the Process Engine whenever the
context of the handler gets activated and the handler might
be triggered and not when the handler really starts executing
or is completed. We use the completion events of the first
contained basic activity in an event handler. A handler has
been executed, if and only if its first basic activity has been
completed successfully or unsucessfully.

This metric can again be filtered for different handler types,
e.g., fault handlers, as shown in equation (4).

CfaultHandler :=
|Hfault

m |
|Hfault

m |+ |Hfault
u |

(4)

Link Coverage CL as defined in equation (5) determines
what fraction of conditional links in flow activities has been
evaluated to true and false respectively.

CL :=
|L+

m|+ |L−
m|

|L+
m|+ |L−

m|+ |L+
u |+ |L−

u |
(5)

The ActiveVOS BPEL engine logs transition condition
evaluated events, which also contain the evaluation results.
This is very different compared to the instrumentation ap-
proach, which requires heavy model modifications in order
to distinguish between links that have been subject to BPEL’s
dead path elimination [35] or which have been really evaluated
to false. Because of this, link coverage can be easily calculated
by traversing the marked syntax tree. The set L is the set of
all conditional links, L+

m are all conditional links that have
been marked as being executed with the condition evaluated
to true, L−

m are all conditional links that have been marked as
being executed with the condition being evaluated to false, L+

u
are all conditional links that are not marked as being executed
with the condition being true, and L−

u are all conditional links
that are not marked as being executed with the condition being
false.

Branch Coverage CB metric complements Link Coverage:
Branch Coverage includes all edges in the control-flow graph
of structured BPEL activities, i.e., if, parallel and sequential
forEach, while, and repeatUntil activities but does not include
the links in the graph-based flow activity, which are only
covered by link coverage as defined above. The main problem
is that this metric needs to count executions of edges that
are not necessarily part of the BPEL model: an if does not
need to have an else and the loops have no edges returning to
the loop start and can even support parallel execution like the
parallel forEach loop. Thus, no completion events can be used
but instead other events or further analysis of the model are
required. In case of the ActiveVOS BPEL engine, all sequential
loops are handeled by using condition evaluation events similar
to the calculation of link coverage. Parallel forEach loops can
be measured by parsing the activity identifier in the event,
which contains an instance number: If the instance counter is
larger than 1 the forEach “loops” more than once.

Branch Coverage can be calculated according to Equa-
tion (6): The number of forEach (F), repeatUntil (R) and
while (W) activities, which have been marked as not executed,

287

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

executed once or executed more than once are divided by all
possible markers, which are three markers for the forEach and
while activities, which can have arbitrary loop counts, and two
markers for the repeatUntil activitiy, which must be looped at
least once.

CL :=
|F 0,1,∗

m |+ |W 0,1,∗
m ||R1,∗

m |
3 · |Fa|+ 3 · |Wa|+ 2 · |Ra|

(6)

Depending on the BPEL modeler’s choice between using
BPEL’s flow activity or the block-structured activities, link or
branch coverage is more meaningful.

When conducting another research project, we accidentially
found that – in contrast to other programming languages – the
branch coverage is not stricter than the activity coverage. If an
event handler – and consequently its basic child activities – is
not executed, branch coverage can be complete but the basic
activity coverage is not. The problems arises due to the original
split of control-flow related coverage metrics into branch, link
and handler coverage.

Therefore, we define the new coverage metric Conditional
Coverage for BPEL processes that unifies all conditional
control-flow metrics. The measurement of all values follows
the rules as described for the other coverage metrics above.

F. Example

To illustrate the replay of the event log on top of the
process model we assume three test cases for the example
BPEL process as shown in Figure 3. The first test case tests
the VIP Customer, the second one the Non-VIP Customer and
the third the VIP Customer with a problem when booking
bonus points.

The “completed” events generated by the Process Engine
for the first test case are

1) Receiving the start message (receive activity “Re-
ceiveInput”),

2) creating a message for storing the points(assign ac-
tivity “PrepareSavePointsEarned”),

3) calling a service to credit points (invoke activity
“SavePointsEarned”),

4) creating the response message (assign activity “Pre-
pareReplyforVIPCustomer”),

5) completing the sequence within the if (sequence
activity “Sequence”),

6) completing the if (if branch “If and if activity
“Is VIP Customer”),

7) sending the reply (reply activity “Reply”), and
8) finally completing the main sequence (sequence ac-

tivity “main”).

As can be seen in the traces in Figure 3, the completion
events are differently ordered than the definition in the BPEL
process model: structured activities like a sequence or an if are
completed after all their child activities have been completed.
The replay algorithm needs to take this into account when
replaying the event log against the process model.

Taking the event log for the first test case and replaying
it on top of the BPEL process model yields the markings as

illustrated in the left of Figure 4. Additionally replaying the
second and third test case yields the markings as shown on
the right hand side of the same figure. The numbers in the
markers denote how often the activity has been executed. With
these three test cases, all basic activities are covered, i.e., all
basic activities have been executed at least once, all branches
are covered, i.e., both the “if” and “else” branch have been
executed, and all handlers are covered, i.e., the “catch” handler
is executed at least once.

V. COMPARISON TO INSTRUMENTATION

When we compare our approach to instrumentation (see
Figure 5), there are many parts of the calculation that are
similar or even the same. Instrumentation would initially load
the BPEL process model and construct a syntax tree. However,
it would then change the process model by introducing service
calls that signal the internal process state to the test framework.
During run-time these service calls are equivalent to log events.
These events are replayed on the process model in both
approaches. Thus, the main differences are that

• instrumentation needs to change the BPEL process
model while process mining does not,

• as a consequence instrumentation needs to build the
syntax tree prior to the test run and a service receiving
all markers must be active during the whole test while
process mining can perform all activities after the test
run is completed, and

• the events are collected in the instrumentation ap-
proach by signaling service calls instead of extracting
all event logs with one database query like in our
approach. For a test run, the instrumentation approach
requires at least as many service calls for signaling
the process state as the number of executed basic
activities depending on the coverage metrics that shall
be calculated.

Due to these conceptual differences, our approach is more
flexible than instrumentation because it defers the decision
whether to calculate test coverage on a given test run: it is
possible that coverage is calculated without preparation after
testing has completed and if the event logs are still available.

We expect our log analysis approach also to be overall
faster than the instrumentation approach: Making and an-
swering many fine-grained service calls is time-consuming as
outlined above. Being able to fetch all events from the Process
Engine’s event log at once should yield better performance. In
addition, our approach does not slow down the execution of the
executable processes because they behave as they are imple-
mented and are not changed by an instrumentation process and
their run-time behavior is not altered by introducing probes.
This means that no additional error sources (e.g., by defects
in the instrumentation) or different behavior (e.g., in parallel
activities by instrumentation code) can occur. This hypothesis
is tested in an experiment described in the next section.

VI. EXPERIMENT

In order to evaluate the presented approach, we conducted
an experiment that is described in this section.

288

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Event Traces for Different Test Cases.

Figure 4. Markers for First Test Case (left) and all Test Cases (right).

Figure 5. Comparison of Instrumentation and Mining.

A. Experiment Description & Design

For evaluating the performance implications of our ap-
proach, we conduct an experiment, in which we want to answer
the following research questions:

RQ1: What is the associated overhead for
instrumentation-based coverage calculation?

RQ2: What is the associated overhead for mining pro-
cess coverage?

RQ3: When is the associated overhead for mining pro-

cess coverage less than for instrumentation-based
coverage calculation?

RQ4: Does the size of the test suite influence the over-
head of mining coverage calculation?

RQ5: Does the size of the test suite influence the
overhead of instrumentation-based coverage cal-
culation?

In order to find answers to these questions we define a two
factor/two treatments with-in group experiment design: The
first independent variable is the coverage method (Instrumen-
tation vs. Log Analysis) and the second is the test suite size.
The dependent variable is the execution time of the measured
test suites.

As subjects we used 6 BPEL processes, for which tests
based on classification trees are available [24]. Classification
Trees allow for a generator-based approach for creating test
suites. By randomly selecting a subset of test cases, test
suites of configurable sizes can be generated. This yields the
advantage that test suites of arbitrary sizes can be generated,
so that the test suite size can be controlled in the experiment
and each process can be tested with different test suites. Four
processes have been developed within the industry project

289

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Terravis, which is an industrial project that develops and runs
a process-integration platform between land registers, notaries,
banks and other parties across whole Switzerland [14]. Two ad-
ditional processes, which had classification trees for automated
testing, are taken from Schnelle [15]. Latter were originally
developed using the Eclipse BPEL Designer and Apache ODE
but the vendor-specific configuration was added for ActiveVOS
as part of this experiment in order to use the same environment
including process engine and test coverage tools.

Process descriptions of all processes that were subjects
in this experiment are are shown according to the process
classification proposed by Lübke et al. [36] in Table I.

B. Data Collection

1) Environment and Measurement Process: For running the
experiment we set up a process engine on a dedicated virtual
server together with the required infrastructure, e.g., the tools
for measuring test coverage.

The experiment was conducted by executing the following
steps for every test suite:

1) Reset database and start BPMS,
2) Instrument the deployment unit,
3) Deploy the instrumented deployment unit,
4) Run the test suite with the marker collector,
5) Deploy the original deployment unit,
6) Run the test suite,
7) Wait for process log and calculate coverage,
8) Shutdown BPMS.

We chose to alternate the deployments of the instrumented
and non-instrumented process versions in order to not allow the
BPMS to optimize the deployment by reusing the old process
definitions.

For every process, we generated random test suites with
the sizes n ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 50, 75, 100} if pos-
sible. Some processes had only a smaller number of possible
test cases, thereby the experiment could only use test suites
with max. 25 and respectively 50 test cases for these processes.

We repeated these test runs 20 times in order to build
representative mean values for all time measurements. All in
all, 2920 test suite runs were made.

We used a virtual machine with 2 virtual CPUs and
4 GiByte of RAM running on Kubuntu with Informatica
ActiveVOS 9.2 and MySQL for all our test executions. The
search indexing of both the host and virtual machine operating
system were disabled in order to not have load unrelated to
the experiment and the computer was taken offline in order to
further shield it from unexpected load.

ActiveVOS was configured with all necessary settings
for executing all processes. This especially includes custom
project-specific extensions and service-wide configured set-
tings. The configuration also specified a 1 second write delay
for storing the event log.

2) Sample Implementation: We implemented a tool that
performs the previously defined test coverage calculation.
The tool connects to the database of the process engine and
extracts all relevant information. After the tests have been

completed, the tool extracts the events for all newly created
process instances. It expects that the tested processes have been
configured appropriately to at least store the required events.
The coverage measurement tool, which uses log analysis, is
available as open source1.

The implementation is highly dependent on the process
engine being used. The available process log data and its
format is defined by vendors because it is not specified in any
standard. As outlined in the previous section, post-processing
of the event log data is required in order to properly resolve
the referenced activities.

One additional problem we encountered while develop-
ing the sample implementation was BPEL’s lack of unique
identifiers for activities: The activity labels are not necessarily
unique and can be defined by the designer without uniqueness
constraints. Due to this, BPMS vendors are forced to build
their own ways of identifying activities. We had to reverse-
engineer the way the used process engine creates identifiers
in the process log. Internally, our implementation uses XPath
expressions that evaluate to a single activity by either matching
a unique name – if one exists – or the position of the activity
in BPEL’s XML tree. We wrote a mapper, which rewrites the
event log’s activity identifiers to valid XPath expressions. This
step is highly specific to the process engine being used and
requires reverse-engineering the format and construction rules
for the proprietary identifiers.

In contrast to our first experiment published previously [1],
which used a fixed waiting time, we improved the waiting
process by reading the highest process identifier from the
database and see whether a process completion or failing event
was written for that process instance. Because no other events
can follow, this means that the whole event log is available. In
order to guard against test cases that fail to complete a process,
we added a maximum wait time that equals the write delay of
the process log.

However, we also needed to re-implement the instrumen-
tation tool: Because the original BPELUnit tool for measuring
test coverage [13] did neither support vendor extensions nor
the deployment artefacts of the used process engine, we needed
to re-implement the instrumentation tool with full support for
these features, which are used by the industry project.

C. Results

The mean execution times of our measurements (calculated
in milliseconds) are shown in Table II. T or S indicate the
process set (Terravis or Schnelle), 1 to 4 indicate which process
from this set, and N, I or L indicate normal execution (N) or
the coverage measurement method (I for instrumentation and
L for log analysis.)

For all other chosen test suite sizes, log analysis performs
faster than instrumentation.

By subtracting the normal execution time of a test suite we
derive the absolute overhead (calculated in ms) as shown in
Table III. In general, the numbers for log analysis are much
lower than for instrumentation and do not increase that much.
The highest overhead for log analysis is 4513ms in contrast

1http://www.daniel-luebke.de/net.bpelunit.tools.coveragecalculator.zip

290

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. PROCESS CLASSIFICATION OF SUBJECTS IN THIS EXPERIMENT

Online Shop (S1) Credit
Approval (S2)

Land Register
Notifications (T1)

Depot
Check (T2)

Transfer
Approval (T3)

Register of
Commerce
(T4)

Version - - - - - -
Domain E-Commerce Banking Mortgage Transactions Register of

Commerce
Geography None None Switzerland
Time 2016 2016 2018
Boundaries - - Cross-Organizational Within-Dep. Cross-Organizational
Relationship No call No call Is being called No Call Calls another Calls another/

Is begin called

Scope Core Core Auxilliary Auxilliary Core Core
Purpose Execution
People Involvement None None None None None None
Process Language BPEL 2.0 BPEL 2.0 BPEL 2.0 plus vendor extensions
Execution Engine Apache ODE Informatica ActiveVOS 9.2
Model Maturity Illustrative Illustrative Productive

Basic Activities 19 25 84 46 33 39
Structured Activities 8 12 89 46 34 33
Non-linear Struct.A. 6 14 46 20 9 4

TABLE II. TOTAL MEAN EXECUTION TIME (ms)

#TC S1-N S1-I S1-L S2-N S2-I S2-L T1-N T1-I T1-L T2-N T2-I T2-L T3-N T3-I T3-L T4-N T4-I T4-L

1 1973 3745 2613 1933 3589 2600 4534 7704 5231 2600 5003 3329 3888 6506 4615 4543 8019 5328
2 2244 4958 2941 2181 4473 2808 5190 10123 5927 2975 6675 3731 5421 9759 6196 4825 8535 5533
3 2287 5078 2919 2319 5516 3055 5162 10032 5950 3057 7405 3871 6606 11792 7440 5134 10482 5820
4 2409 5503 3111 2405 5831 3091 5733 11767 6547 3537 10761 4307 8004 14710 8743 5570 13540 6366
5 2471 5645 3107 2389 5890 3050 5499 11863 6427 4035 12886 4968 9405 17883 10132 5562 12774 6317
6 2732 7017 3480 2510 6486 3174 6050 13996 7012 3755 11545 4577 10721 20697 11538 5901 15428 6716
7 2853 7567 3570 3150 10248 3896 6524 15432 7455 4220 14224 5118 12040 23447 12866 5853 15131 6709
8 3156 9411 3795 2706 7668 3373 6827 16618 7828 4288 14442 5176 12967 24095 13740 6452 18699 7294
9 3142 9039 3887 3158 10429 3973 6801 16765 7838 4737 18490 5708 14951 29809 15826 6731 20277 7522
10 3250 9673 3989 3010 9692 3742 7576 18652 8656 5091 19469 6211 15859 30656 16729 7097 21889 7928
25 5164 19569 5914 4725 17369 5522 11187 34880 12874 8060 41445 9368 35033 70271 36183 10623 44380 11731
50 - - - 7193 36245 8113 17349 62530 19976 11727 73215 13571 - - - - - -
75 - - - 7623 37552 8571 23502 90296 27161 15244 105404 17536 - - - - - -
100 - - - - - - 29746 117730 34259 18966 141603 21926 - - - - - -

for up to 122637ms for instrumentation. The overhead is the
largest for the second Terravis process (T2) for process log
analysis while it is the largest for instrumentation with the
first Terravis process (T1).

We calculated the relative overhead for the processes by
dividing the absolute overhead by the normal test suite execu-
tion time as shown in Table IV. While for larger test suites the
relative overhead increases with instrumentation, it decreases
for log analysis. Relative overhead of instrumentation ranges
between 67.3% and 647.3%, while it ranges bwetween 3.3%
and 34.3% for log analysis.

The measurements grouped by coverage calculation
method and process for all test suite runs are shown in Figure 6
side by side for comparison: Test suites with more test cases
expectedly take longer to execute and log analysis is always
faster than instrumentation.

The absolute and relative overhead of both coverage cal-
culation methods are shown in Figure 7. Different colors in
both charts indicate different processes. The absolute overhead
shows clusters of overhead times that are associated with a test
suite. As can be seen the values for both the absolute – and
following from that – the relative overhead is always higher
for the instrumentation approach.

In order to answer RQ3 we performed a paired, two-sided
Wilcoxon hypothesis test with the null hypothesis H0 being
that no difference exists in the test suite execution times when
using instrumentation or log analysis.

We calculcated the effect size as the absolute difference in
execution time between both methods as well as the p-value for
all combinations of test suite size and process (see Table V).

In the next step we analyzed the overhead of test coverage
calculation in relation to the whole test suite size in terms of
test activities, i.e., the activities in a test suite across all test
cases.

Figure 8 shows the relationship between number of test
activities and test execution time. The relationship is nearly
perfectly linear: The more test activities are executed as part
of a test suite the longer test execution takes. However, the
slope of the linear relationship depends on the process under
test.

In the next step we analyzed the relationship between the
number of test activities and the absolute overhead of coverage
calculation as shown in Figure 9 (please note that the y-axis
scale is different for instrumentation and log analysis.) Both
instrumentation and log analysis have a nearly perfectly linear
increase of test duration. However, log analysis has a much

291

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. ABSOLUTE MEAN OVERHEAD OF TEST COVERAGE CALCULATION (ms)

#TC S1-I S1-L S2-I S2-L T1-I T1-L T2-I T2-L T3-I T3-L T4-I T4-L

1 1772 640 1656 666 3170 697 2403 728 727 2617 785 3475
2 2714 697 2291 626 4933 737 3700 757 776 4338 708 3710
3 2791 632 3197 736 4870 788 4348 813 834 5186 686 5348
4 3094 702 3427 687 6034 814 7223 769 739 6705 796 7970
5 3174 636 3502 661 6364 928 8851 933 727 8478 755 7211
6 4284 747 3976 664 7945 962 7790 822 817 9976 815 9527
7 4715 717 7098 746 8908 931 10004 898 827 11408 856 9278
8 6255 639 4962 667 9792 1002 10154 888 773 11128 842 12248
9 5898 746 7272 815 9964 1037 13753 971 875 14857 792 13546
10 6424 739 6681 732 11076 1080 14378 1120 870 14797 831 14792
25 14406 750 12644 797 23693 1687 33385 1309 1151 35238 1108 33757
50 - - 29052 921 45182 2627 61488 1844 - - - -
75 - - 29929 949 66793 3658 90161 2292 - - - -
100 - - - - 87985 4513 122637 2960 - - - -

TABLE IV. RELATIVE MEAN OVERHEAD OF TEST COVERAGE CALCULATION

#TC S1-I S1-L S2-I S2-L T1-I T1-L T2-I T2-L T3-I T3-L T4-I T4-L

1 0.90 0.32 0.86 0.34 0.70 0.15 0.93 0.28 0.19 0.67 0.17 0.77
2 1.21 0.31 1.06 0.29 0.95 0.14 1.25 0.25 0.14 0.80 0.15 0.77
3 1.23 0.28 1.40 0.32 0.95 0.15 1.42 0.27 0.13 0.79 0.13 1.04
4 1.29 0.29 1.43 0.29 1.05 0.14 2.04 0.22 0.09 0.84 0.14 1.43
5 1.29 0.26 1.47 0.28 1.16 0.17 2.20 0.23 0.08 0.90 0.14 1.30
6 1.57 0.27 1.59 0.27 1.31 0.16 2.08 0.22 0.08 0.93 0.14 1.62
7 1.66 0.25 2.26 0.24 1.37 0.14 2.37 0.21 0.07 0.95 0.15 1.59
8 1.99 0.20 1.84 0.25 1.44 0.15 2.37 0.21 0.06 0.86 0.13 1.90
9 1.88 0.24 2.31 0.26 1.47 0.15 2.91 0.21 0.06 0.99 0.12 2.02
10 1.98 0.23 2.22 0.24 1.46 0.14 2.83 0.22 0.05 0.93 0.12 2.09
25 2.79 0.15 2.71 0.17 2.12 0.15 4.15 0.16 0.03 1.01 0.10 3.19
50 - - 4.06 0.13 2.61 0.15 5.25 0.16 - - - -
75 - - 3.92 0.13 2.84 0.16 5.92 0.15 - - - -
100 - - - - 2.96 0.15 6.47 0.16 - - - -

TABLE V. STATISTICAL ANALYSIS OF DIFFERENCES BETWEEN INSTRUMENTATION AND LOG ANALYSIS (EFFECT IN MS, P-VALUES)

#TC S1-delta S1-p S2-delta S2-p T1-delta T1-p T2-delta T2-p T3-delta T3-p T4-delta T4-p

1 1132 1.91 × 10−6 989 1.91 × 10−6 2473 1.91 × 10−6 1674 1.91 × 10−6 1891 1.91 × 10−6 2691 9.56 × 10−5

2 2017 1.91 × 10−6 1665 1.91 × 10−6 4196 1.91 × 10−6 2943 1.91 × 10−6 3563 9.56 × 10−5 3002 1.91 × 10−6

3 2159 1.91 × 10−6 2461 9.56 × 10−5 4082 1.91 × 10−6 3535 1.91 × 10−6 4352 1.91 × 10−6 4662 1.91 × 10−6

4 2392 9.56 × 10−5 2740 1.91 × 10−6 5220 9.56 × 10−5 6454 1.91 × 10−6 5966 1.91 × 10−6 7174 1.91 × 10−6

5 2538 1.91 × 10−6 2841 1.91 × 10−6 5436 1.91 × 10−6 7918 1.91 × 10−6 7751 1.91 × 10−6 6456 1.91 × 10−6

6 3537 1.91 × 10−6 3312 1.91 × 10−6 6984 1.91 × 10−6 6968 1.91 × 10−6 9160 9.56 × 10−5 8712 1.91 × 10−6

7 3998 1.91 × 10−6 6352 1.91 × 10−6 7977 1.91 × 10−6 9106 1.91 × 10−6 10581 1.91 × 10−6 8423 1.91 × 10−6

8 5616 1.91 × 10−6 4295 9.56 × 10−5 8790 1.91 × 10−6 9266 1.91 × 10−6 10355 1.91 × 10−6 11405 1.91 × 10−6

9 5152 9.56 × 10−5 6456 9.56 × 10−5 8927 1.91 × 10−6 12782 1.91 × 10−6 13983 1.91 × 10−6 12754 1.91 × 10−6

10 5685 1.91 × 10−6 5949 1.91 × 10−6 9996 1.91 × 10−6 13258 1.91 × 10−6 13927 1.91 × 10−6 13961 1.91 × 10−6

25 13655 1.91 × 10−6 11847 1.91 × 10−6 22006 1.91 × 10−6 32076 1.91 × 10−6 34087 9.56 × 10−5 32649 1.91 × 10−6

50 - - 28131 1.91 × 10−6 42555 1.91 × 10−6 59645 1.91 × 10−6 - - - -
75 - - 28981 3.81 × 10−6 63135 1.91 × 10−6 87869 1.91 × 10−6 - - - -
100 - - - - 83471 1.91 × 10−6 119677 1.91 × 10−6 - - - -

lower slope, i.e., the overhead increases much less for every
additional test activity than instrumentation does. Again, the
linear increase depends on the process. The initial penality for
log analysis (i.e., test activity count is 0) can be estimated by
the linear fitting to approximately 0.5s, which is the expected
value: Due to the 1s write delay of the event log the average
waiting time for all events to be written to the database is 0.5s.

The different slopes of instrumentation and log analysis
lead to different relative overhead as shown in Figure 10.
Because the the overhead of instrumentation increases more
than the unmeasured test duration, the relative overhead in-
creases when more test activities are executed. In contrast, log
analysis increases slower. This results in a decreasing – or
for one process nearly constant – relative overhead. However,
the relative overhead does not increase or decrease linearly. A
logarithmic regression model provides a good fit.

D. Interpretation

1) RQ1: Overhead of Instrumentation: Our measurements
for the overhead of instrumentation is in line with already
published metrics [13]: The absolute overhead ranges between
1656ms and 122600ms. However, the overhead increases with
larger test suites. Thus, the relative overhead increases from
67% to 647% for large test suites. In practice this overhead is
considerably large. For nightly builds even a 200% increase of
test time would in many environments be deemed impractical.
Also research projects, which execute many test suites, e.g., for
evaluating different test generation approaches, are impacted
heavily.

2) RQ2: Overhead of Log Analysis: Our measurements for
the overhead of log analysis demonstrate that the absolute
overhead increases and the relative overhead decreases with
more test cases. The maximum absolute overhead of 4.5s for

292

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

● ●● ●● ● ●●
●

● ●● ● ● ●●● ●● ●● ● ●●● ●

●

●
●

●

● ●● ● ●●

●

● ● ●

●●
●

●●

● ● ●● ●●

●

●

● ● ● ●

● ● ●

●●●● ● ● ● ● ● ●

● ● ● ●● ● ●● ●●●

●

● ● ●
●●

●●
●

● ● ● ● ●●

Instrumentation Log Analysis
S

chnelle 1
S

chnelle 2
Terravis 1

Terravis 2
Terravis 3

Terravis 4

1 2 3 4 5 6 7 8 9 10 25 50 75 10
0 1 2 3 4 5 6 7 8 9 10 25 50 75 10
0

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

0

50

100

150

E
xe

cu
tio

n
T

im
e

(s
)

Figure 6. Overall Execution Times (s)

100 test cases the performance penalty is little. This means
that measuring approx. 130 test suites of such size would only
impose a ten minute overhead (e.g., during nightly builds.)
This overhead is much more tolerable in industry projects and
research projects, which execute many test suites.

3) RQ3: Relationship between Overhead of Instrumentation
and Log Analysis: Our measurements clearly show that log
analysis is significantly faster than instrumentation. In the
improved version presented in this article, this is also true
for trivial test suites, i.e., test suites with only one test case,
which were sometimes slower [1] in the unoptimized original

version.

While the relative overhead of instrumentation increases
with more test cases and reaches 391% (i.e., nearly quintuples
the test suite execution time), log analysis imposes 68%
overhead in the worst case of a small test suite but decreases
to 16% for large test suites. For a further interpretation typical
test case sizes in industry are required in order to evaluate
typical overhead ranges. Unit test suites for an executable
business process in Terravis contain between 1 and 296 test
cases. On average a business process is covered by 27.7
test cases. If we take our measurements for 25 test cases

293

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

●●
●●
●
●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●

●

●

●

●
●

●
●

●

●●●●●●

●

●●
●

●

●

●●
●
●
●●●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●

●

●
●
●●
●

●

●
●

●

●

●

●●●

●

●●
●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●
●
●●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●●

●

●●
●●●

●

●●●

●

●
●
●

●

●●

●

●●

●

●
● ●●

●●●●

●

●

●●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●
●

●●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●●
●
●●●●●●

●
●

●

●●
●

●

●
●

●●

●●

●

●

●

●

●

●

●

●●
●

●

●
●
●
●●
●●

●

●
●

●

●
●●

●

●

●●

●●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●
●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●
●●

●

●

●●

●

●

●●●

●

●●
●

●

●

●

●

●●
●
●
●
●
●

●

●●

●

●

●

●

●
●

●

●
●●●

●

●●

●●
●●●●●
●

● ●

●

●
●
●

●●
●
●●

●

●

●

●

●

●
●

●

●

●
●●●●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●
●

●

●
●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●
●●●●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●●

●

●●

●

●●
●
●●

●

●
●●

●
●

●

●

●

●

●

●

●

●●●

●

●●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●
●

●●

●

●●

●

●

●●●

●●

●

●

●

●●●●●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●

●●
●

●

●

●
●●
●●

●

●
●

●
●
●●

●
●

●

●●●

●

●●
●

●●

●●●

●

●

●

●
●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●

●

● ●

●●

●●

●

●
●

●

●
●

●

●
●

●●
●
●

●
●

●
●

●

●

●
●●●

●
●
●

●

●●

●

●●●●
● ●

●●
●

●

●

●
●

●●

●●
●●

●

●

●
●
●●●●●

●●

●

●

●

●●

●

●

●
●

●

●
●
●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●
●

●

●

●
●

●

●●●●
●

●●●

●

●

●

●

●
●

●

●

●
●
●

●

●
●●
●

●
●

●

●

●

●●●

●

●

●
●

●

●
●

●

●
●●●
●
●
●●

●

●

●●
●●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●

●

●

●
●

●
●●

●
●

●
●
●

●
●
●

●

●●

●

●
●
●
●

●
● ●

●

● ●
●●
●

●

●●
●●●

●

●●●

●

●
●●●

●●
●
●

●

●●●●●
●●

●●
●●●
●
●

●●

●

●●●

●
●
●
●

●

●
●
●

●

●
●●●

●
●

●

●●●

●

●●
●

●●●
●

●

●

●
●

●

●
●●

●

●
●

●
●
●
●
●

●

●
●●

●
●●

●
●●●●

●

●●

●

●

●
●

●
●

●
●
●●

●

●

●
●

●

●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●●●

●●
●●●●

●
●
●●●
●●

●
●

●

●

●

●
●●

●

●●●●
●●
●
●

●

●

●

●
●
●

●

●

●

●
●
●●

●

●

●●●●

●

●

●
●●
●

●

●

●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

1000

2000

3000

4000

5000

 0 50000 100000

Instrumentation

Lo
g

A
na

ly
si

s
Absolute Overhead

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●
●

●
●

●
●
●

●

●●

●

●
●

●

●

●

●

● ●
●

●
●●

●

●

●●

● ●

●●●●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●
●

●

●
●

● ●
●●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

● ●●
●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●
●●●

●
●●

●

●●●●●●

●●●

●
●
●

●

●

●

●

●

●

●●●

●

●●
● ● ●●●

●

●●●

●

●

●
●
●

●

●●
●●

●

●

●●
●
●

●

●
●●

●●

●
●●●

●

●●
●

●

●●
●

●●

●

●

●
●●●●●●

●

●

●

●

●
●

●

●

●

●●●
●

●●

●

●

●●

●●
●

●

●

●
●●
●

●

●

●
●

●
●

●
●

●
●

●

●●●

●

●●
●

●●●●●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●

●
●

●

●

●

●

●

●

●

● ●●
●

●

●

● ●

●
●

●

●

●

●●

●
●●

●

●● ●●
●

●●
●●
●

●
●

●
●

●

●

●
●●●●●

●

●

●

●
●

●

●
●

● ● ● ●

●

●

●

●
●

●●

●
●

●
●
● ●
●
●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●
●●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●● ●

●
●●●

●
●

●
●●

●
●

●

●
●

●

●●
●

●
● ●●● ●
●● ●●●●

●

●●
● ●

●
●●
●

●●●
●●●●

● ●● ●●● ●●●
●

●
●

●

●
●●

●
●
●

●

●
●●●

●

●
●●●

●

●●●●
●

●

●

●

●●●●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●●
● ●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●●●

●

●

●
●

●

●
●●

●

●●
●

●
●●● ●●

●
●

●

●●

●

●

●
●

●
●

●
●●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●●
●

●●

●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

● ●● ●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0.2

0.4

0.6

 2 4 6

Instrumentation

Lo
g

A
na

ly
si

s

Relative Overhead

Figure 7. Coverage Measurement Overhead

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●●●
●●

●●

10

20

30

0

20
0

40
0

Number of Test Activities

E
xe

cu
tio

n
T

im
e

(s
)

Figure 8. Relationship between Test Suite Execution Time and Number of
Test Activities

as a reference the relative overhead is between 24% and
55% for log analysis while it already is between 144% and
268% for instrumentation. This means log analysis has a huge
performance benefit when measuring test coverage.

4) RQ4: Influence of Test Suite Size on Instrumentation
Overhead: The absolute overhead of an instrumented test run
increases linearly with the number of test activities contained

in the test suite. However, the linear increase is larger than
the linear increase of a normal test run. Therefore, relative
overhead of test suite execution time increases non-linearly
with an increasing number of test activities. As a result, the
instrumentation method does not scale: The larger test suites
are getting, the larger the absolute and relative overhead gets.
Especially when using test coverage to assess the quality of
generated tests, which can easily generate large test suites, the
bad scalability will need to be dealt with. For example, test
execution needs to be parallalized much sooner than would be
otherwise necessary.

5) RQ5: Influence of Test Suite Size on Log Analysis
Overhead: Like with instrumentation, the absolute overhead
of log analysis increases linearly with the number of test
activities. However, the slope is less. The relative increase there
gets not-linearly less with more test activities executed as part
of a test suite run. Therefore, log analysis can better scale with
larger test suites.

E. Threats to Validity

As with every empirical research there are associated
threats to validity. While we could increase the number of
processes from our initial study [1], our sample mainly consists
of processes developed in one project. Thus, the question of
generalizability arises.

Since we research technical effects only, the findings
should be generalizable to all BPEL processes that execute
a minimum threshold number of activities or test cases. The
p-value for rejecting the null hypothesis and accepting that log
analysis is faster than instrumentation for all test suite sizes
is so low that we are confident that replications will find the
same results.

294

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●●

0

25

50

75

100

125

0

20
0

40
0

Number of Test Activities

A
bs

ol
ut

e
O

ve
rh

ea
d

of
 In

st
ru

m
en

ta
tio

n
(s

)

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●
●

●

●

●

●
●

●
● ●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●
●

●

●

1

2

3

4

0

20
0

40
0

Number of Test Activities

A
bs

ol
ut

e
O

ve
rh

ea
d

of
 L

og
 A

na
ly

si
s

(s
)

Figure 9. Relationship between Test Suite Execution Time and Absolute Overhead of a) Instrumentation and b) Log Analysis

However, our sample is also constrained to one process
engine. This poses the threat of non-portability to other process
engines. Therefore, we analyzed Apache ODE, which is an
open-source BPEL engine, and found that it emits all necessary
events as well [37].

As long as the process engine stores all relevant events
that are required for calculating the test coverage metrics, the
log analysis can be implemented for such a process engine.
To our knowledge, all BPEL engines are able to write event
logs that contain the required event types. For every newly
supported BPEL engine, a new interpreter of these events
needs to be developed. The analysis and replay components
can be reused. However, as part of our study we also found
that this is also true for instrumentation tools despite the claim
that this approach is portable: While BPEL is standardized, its
extensions and especially the deployment artefacts are not as
we encountered when we tried to measure industry projects.

The presented numbers are clearly only applicable to
automated unit tests. While we think it is safe to generalize the
absolute overhead to other test scenarios, we expect that the
relative numbers to be much smaller: Manual tests take longer
for executing the same number of processes, because user
interactions require time, which makes the process duration
longer. Thus, we do not think that the relative overhead can be
generalized to other test types. Even automated integration and
system tests are slower because real services usually respond
much slower than mocked services that reply a predefined
message. For example, automated acceptance tests written for
Behavior-Driven Development [38] in the same project take
up to 2 minutes to complete per test case [39].

Another threat is the presence of configuration options that
heavily impact performance: In the case of the used BPMS
- Informatica ActiveVOS - the configurable write delay of
the event log can impose longer waiting times. Therefore,

environments with a higher configured delay will experience
worse log analysis performance because the event log is not
immediately available after unit tests are completed. When
configured extremely enough, this can lead to a worse per-
formance of log analysis compared to instrumentation.

VII. CONCLUSION & FUTURE WORK

Within this article we evaluated a new approach to mine
process event logs – which are usually already written when
using a process execution engine – to calculate test coverage
metrics of BPEL processes. We demonstrated that the new
approach utilizing log analysis is significantly faster than the
instrumentation approach. With the enhanced waiting strategy
for the event log, this is even true for small test suites, which
was not the case in the original version.

Furthermore, the log analysis approach can be used in
more scenarios than the instrumentation approach: Because
all activities for mining test coverage are performed after the
tests are run, it does not matter how the tests are run and
when they were run. In contrast, coverage calculation needs
a marker collection service running the whole time, which in
practice is only feasible during unit tests. Mining the process
logs is completely independent of any test automation and can
be used for automatic unit tests, automatic integration tests but
also manual integration and system tests. The only drawback
is, however, that the Process Engine needs to be configured to
write the event log for all measured processes.

Although we have implemented test coverage mining for
BPEL processes, the approach can be applied to other exe-
cutable process languages as well: Process engine architectures
are the same, e.g., BPMN 2.0 as the successor to BPEL defines
other activities and is completely graph based. However, pro-
cess engines executing BPMN 2.0 are also logging events for
executed activities, which can be replayed on top of BPMN 2.0

295

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

●

●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

2

4

6

0

20
0

40
0

Number of Test Activities

R
el

at
iv

e
O

ve
rh

ea
d

of
 In

st
ru

m
en

ta
tio

n
(s

)

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1

0.2

0.3

0.4

0

20
0

40
0

Number of Test Activities

R
el

at
iv

e
O

ve
rh

ea
d

of
 L

og
 A

na
ly

si
s

(s
)

Figure 10. Relationship between Test Suite Execution Time and Relative Overhead of a) Instrumentation and b) Log Analysis

process models. Writing the process mining algorithm should
be even simpler, because BPMN 2.0 defines process-wide
unique identifiers for activities that are hopefully contained
in the event log making reverse-engineering of vendor-specific
identifiers obsolete.

Our research implementation is available as open source
and is free to use for both researchers and practitioners. Being
able to quickly and easily calculate test coverage for many
test types allows further research into executable process test
methods, e.g., experiments on the influence of different testing
approaches on test coverage.

Acknowledgment

This research was not funded by any institution or research
grant. The author is neither affiliated with Informatica nor
involved in the development of ActiveVOS in any way. The
author is part of the Terravis development team.

REFERENCES

[1] D. Lübke, “Calculating Test Coverage for BPEL Processes With
Process Log Analysis,” in BUSTECH 2018, The Eighth International
Conference on Business Intelligence and Technology, 2018, pp. 1–7.

[2] D. Lübke, “Unit Testing BPEL Compositions,” in Test and Analysis of
Service-Oriented Systems, L. Baresi and E. D. Nitto, Eds. Springer,
2007, ch. Unit Testing BPEL Compositions, pp. 149–171.

[3] E. Cambronero, J. C. Okika, and A. P. Ravn, “Consistency Checking
of Web Service Contracts,” Int’l Journal Advances in Systems and
Measurements, vol. 1, no. 1, 2008, pp. 29–39.

[4] P. Piwowarski, M. Ohba, and J. Caruso, “Coverage Measurement Expe-
rience During Function Test,” in Proceedings of the 15th International
Conference on Software Engineering, ser. ICSE ’93. Los Alamitos,
CA, USA: IEEE Computer Society Press, 1993, pp. 287–301.

[5] J. R. Horgan, S. London, and M. R. Lyu, “Achieving software quality
with testing coverage measures,” Computer, vol. 27, no. 9, Sept 1994,
pp. 60–69.

[6] L. C. Briand, Y. Labiche, and Y. Wang, “Using simulation to empirically
investigate test coverage criteria based on statechart,” in Proceedings.
26th International Conference on Software Engineering, May 2004, pp.
86–95.

[7] Y. K. Malaiya, M. N. Li, J. M. Bieman, and R. Karcich, “Software
reliability growth with test coverage,” IEEE Transactions on Reliability,
vol. 51, no. 4, Dec 2002, pp. 420–426.

[8] X. Cai and M. R. Lyu, “Software Reliability Modeling with Test
Coverage: Experimentation and Measurement with A Fault-Tolerant
Software Project,” in The 18th IEEE International Symposium on
Software Reliability (ISSRE ’07), Nov 2007, pp. 17–26.

[9] D. Lübke, “Using Metric Time Lines for Identifying Architecture Short-
comings in Process Execution Architectures,” in Software Architecture
and Metrics (SAM), 2015 IEEE/ACM 2nd International Workshop on.
IEEE, 2015, pp. 55–58.

[10] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software Unit Test Coverage
and Adequacy,” ACM Comput. Surv., vol. 29, no. 4, Dec. 1997, pp. 366–
427. [Online]. Available: http://doi.acm.org/10.1145/267580.267590

[11] Z. Li, W. Sun, Z. B. Jiang, and X. Zhang, “BPEL4WS Unit Testing:
Framework and Implementation,” in ICWS ’05: Proceedings of the
IEEE International Conference on Web Services (ICWS’05). Wash-
ington, DC, USA: IEEE Computer Society, 2005, pp. 103–110.

[12] P. Mayer and D. Lübke, “Towards a BPEL unit testing framework,” in
TAV-WEB ’06: Proceedings of the 2006 workshop on Testing, analysis,
and verification of web services and applications. New York, NY, USA:
ACM Press, 2006, pp. 33–42.

[13] D. Lübke, L. Singer, and A. Salnikow, “Calculating BPEL Test Cov-
erage through Instrumentation,” in Workshop on Automated Software
Testing (AST 2009), ICSE 2009, 2009, pp. 115–122.

[14] W. Berli, D. Lübke, and W. Möckli, “Terravis – Large Scale Business
Process Integration between Public and Private Partners,” in Lec-
ture Notes in Informatics (LNI), Proceedings INFORMATIK 2014,
E. Plödereder, L. Grunske, E. Schneider, and D. Ull, Eds., vol. P-232,
Gesellschaft für Informatik e.V. Gesellschaft für Informatik e.V., 2014,
pp. 1075–1090.

[15] T. Schnelle, “Generierung von BPELUnit-Testsuites aus Klassifikations-
bäumen,” Master’s thesis, Leibniz Universität Hannover, Fachgebiet
Software Engineering, 2016.

[16] W. l. Dong, H. Yu, and Y. b. Zhang, “Testing BPEL-based Web
Service Composition Using High-level Petri Nets,” in 2006 10th IEEE

296

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Enterprise Distributed Object Computing Conference (E-
DOC’06), Oct 2006, pp. 441–444.

[17] G. M. Kapfhammer, “Automatically and Transparently Distributing
the Execution of Regression Test Suites,” in Proceedings of the 18th
International Conference on Testing Computer Software, June 2001.

[18] Informatica. BPEL Unit Testing. [Online]. Avail-
able: http://infocenter.activevos.com/infocenter/ActiveVOS/v92/index.
jsp?topic=/com.activee.bpep.doc/html/UG21.html (2016)

[19] Oracle. Oracle BPEL Process Manager Developer’s Guide: Testing
BPEL Processes. [Online]. Available: https://docs.oracle.com/cd/
E11036 01/integrate.1013/b28981/testsuite.htm (2007)

[20] A. T. Endo, A. da Silva Simao, S. d. R. S. de Souza, and P. S. L.
de Souza, “Web services composition testing: a strategy based on struc-
tural testing of parallel programs,” in Testing: Academic & Industrial
Conference-Practice and Research Techniques (taic part 2008). IEEE,
2008, pp. 3–12.

[21] B. Miranda, “A Proposal for Revisiting Coverage Testing Metrics,”
in Proceedings of the 29th ACM/IEEE International Conference
on Automated Software Engineering, ser. ASE ’14. New York,
NY, USA: ACM, 2014, pp. 899–902. [Online]. Available: http:
//doi.acm.org/10.1145/2642937.2653471

[22] C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti, “Whitening
SOA Testing,” in Proceedings of the the 7th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ser.
ESEC/FSE ’09. New York, NY, USA: ACM, 2009, pp. 161–170.
[Online]. Available: http://doi.acm.org/10.1145/1595696.1595721

[23] M. M. Eler, A. Bertolino, and P. C. Masiero, “More testable service
compositions by test metadata,” in Proceedings of 2011 IEEE 6th
International Symposium on Service Oriented System (SOSE), Dec
2011, pp. 204–213.

[24] T. Schnelle and D. Lübke, “Towards the Generation of Test Cases
for Executable Business Processes from Classification Trees,” in Pro-
ceedings of the 9th Central European Workshop on Services and their
Composition (ZEUS) 2017, 2017, pp. 15–22.

[25] K. Kaschner and N. Lohmann, “Automatic test case generation for
interacting services,” in International Conference on Service-Oriented
Computing. Springer, 2008, pp. 66–78.

[26] S. Ji, B. Li, and P. Zhang, “Test Case Selection for Data Flow
Based Regression Testing of BPEL Composite Services,” in Services
Computing (SCC), 2016 IEEE International Conference on. IEEE,
2016, pp. 547–554.

[27] M. D. Weiser, J. D. Gannon, and P. R. McMullin, “Comparison of
Structural Test Coverage Metrics,” IEEE Software, vol. 2, no. 2,
Mar 1985, pp. 80–85, copyright - Copyright IEEE Computer Society
Mar/Apr 1985; Last updated - 2014-05-17; CODEN - IESOEG.
[Online]. Available: https://search.proquest.com/docview/215840674?
accountid=14486

[28] Q. Yang, J. J. Li, and D. M. Weiss, “A survey of coverage-based testing
tools,” The Computer Journal, vol. 52, no. 5, 2009, pp. 589–597.

[29] A. Mockus, N. Nagappan, and T. T. Dinh-Trong, “Test coverage
and post-verification defects: A multiple case study,” in 2009 3rd
International Symposium on Empirical Software Engineering and Mea-
surement, Oct 2009, pp. 291–301.

[30] C. Pavlopoulou and M. Young, “Residual Test Coverage Monitoring,”
in Proceedings of the 21st International Conference on Software
Engineering, ser. ICSE ’99. New York, NY, USA: ACM, 1999,
pp. 277–284. [Online]. Available: http://doi.acm.org/10.1145/302405.
302637

[31] W. van der Aalst, Process Mining – Data Science in Action. Springer,
2016.

[32] S. Schönig, M. Seitz, C. Piesche, M. Zeising, and S. Jablonski, “Process
observation as support for evolutionary process engineering,” Interna-
tional Journal on Advances in Systems and Measurements Volume 5,
Number 3 & 4, 2012, 2012.

[33] M. Jäntti, A. Cater-Steel, and A. Shrestha, “Towards an improved it
service desk system and processes: a case study,” International Journal
on Advances in Systems and Measurements, vol. 5, no. 3 & 4, 2012,
pp. 203–215.

[34] E. Bruballa Vilas, Á. Wong, D. I. Rexachs del Rosario, E. Luque,
and F. Epelde Gonzalo, “Evaluation of response capacity to patient
attention demand in an Emergency Department,” International journal
on advances in systems and measurements, vol. 10, no. 1&2, 2017, pp.
11–22.

[35] C. Ouyang, E. Verbeek, W. M. Van Der Aalst, S. Breutel, M. Dumas,
and A. H. Ter Hofstede, “Formal semantics and analysis of control
flow in WS-BPEL,” Science of computer programming, vol. 67, no.
2-3, 2007, pp. 162–198.

[36] D. Lübke, A. Ivanchikj, and C. Pautasso, “A Template for Sharing
Empirical Business Process Metrics,” in Business Process Management
Forum - BPM Forum 2017, 2017.

[37] Apache Software Foundation, “ODE Execution Events,” 2018.
[Online]. Available: http://ode.apache.org/ode-execution-events.html,
lastaccessed2018-08-07

[38] D. North, “Introducing BDD,” 2006, http://dannorth.net/introducing-
bdd. [Online]. Available: http://dannorth.net/introducing-bdd

[39] D. Lübke and T. van Lessen, “Modeling Test Cases in BPMN for
Behavior-Driven Development,” IEEE Software, vol. Sep/Oct 2016,
Sep/Oct 2016, pp. 17–23.

