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Abstract—High Performance Computing (HPC) applications can
spend a significant portion of their execution time doing In-
put/Output (I/O) operations into files. Improving I/O performance
becomes more important for the HPC community, as parallel
applications produce more data and use more computing re-
sources. One of the methods used to evaluate and understand
the I/O performance behavior of such applications in new I/O
systems or for different configurations is using modeling and
simulation techniques. In this paper, we present a simulation
model of the HPC I/O system by using Agent-Based Modeling
and Simulation (ABMS) based on the functionality of the I/O
Software Stack. Our proposal is modeled using the concept of
white box so that the specific behavior of each of the modules
or layers in the system can be observed. The interaction between
the layers of the I/O software stack are analyzed by monitoring
the internal functions using proprietary parallel file system tools.
This allows obtaining the functional and temporal characteristics
corresponding to the I/O operations. These characteristics allowed
the design and implementation of a representative model of
I/O system components. Furthermore, measurements are used
to obtain the necessary data sets in the verification, fine-tuning
and validation stages. The resulting implementation has shown
similar behaviors for measured and simulated values when using
the IOR benchmark with various file sizes.

Keywords–Agent-Based Modelling and Simulation (ABMS);
HPC-I/O System; Parallel File System.

I. INTRODUCTION

Many scientific applications benefit considerably from the
rapid advance of processor architectures used in the modern
High Performance Computing (HPC) systems. However, they
can spend a significant portion of their execution time doing
Input/Output (I/O) operations into files. Inefficient I/O is one
of the main bottleneck for scientific applications in a large-
scale HPC environment.

In the HPC field, the I/O strategy recommended is the
parallel I/O that is a technique used to access data in one or
more storage devices simultaneously from different application
processes so as to maximize bandwidth and speed up opera-
tions. For its implementation, a parallel file system is required;
otherwise the file system would probably process the I/O
requests it receives sequentially, and no specific advantages in
relation to parallel I/O would be gained. Generally, evaluating
the performance offered by a HPC I/O system with different
configurations and the same application allows selecting the

best settings. However, analyzing application performance can
also be a useful before configuring the hardware.

One of the methods used to predict the applications behav-
ior under different configurations of the HPC I/O system is
using modeling and simulation techniques. That is, analyzing
and designing simulation models based on the parallel I/O ar-
chitecture allows reducing complexity and fulfilling application
requirements in HPC by identifying and evaluating the factors
that affect performance. In our previous work [1], we presented
a methodology for modeling the HPC system, and validated a
first simulation design phase focused on components simula-
tion on the client side. Additionally, the code instrumentation
method [2] was used to obtain the calibration parameters for
the initial version of the simulator. In this work, we expand
our model and description by showing the main agents on both
client and server sides in a parallel file system. On the other
hand, we apply a more accurate method to obtain calibration
parameters using system tools to monitor the internal functions
of the file system.

In this article, an HPC I/O system is modeled and im-
plemented using the Agent-Based Modelling and Simulation
(ABMS) paradigm. The model was built using the I/O software
stack functionality. The different layers were ”sensed” by
enabling the system’s debugging tools. Thus, the necessary
data sets were obtained for simulator verification, calibration
and validation.

The rest of this paper is organized as follows. Section II
briefly describes key I/O concepts, Section III presents the cur-
rent context of simulation tools for HPC I/O systems, Section
IV addresses a functionality analysis for the development of
the conceptual model, Section V describes the proposed model,
and Section VI describes the computational model of the I/O
system. Finally, Section VII presents our conclusion and future
work.

II. BACKGROUND

The I/O subsystem in the HPC area consists of two
abstraction levels, software and hardware. Usually, the I/O
Software includes parallel file system and high level I/O
libraries and the I/O hardware refers to servers, storage devices
and networks. However, modern HPC I/O system can include
more components increasing the complexity of the I/O system.
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Figure 1. A typical HPC System and the I/O Software Stack

Figure 1 illustrates the structure of the hardware com-
ponents and the I/O software stack. An I/O operation goes
through the software stack from the user application up until
it obtains access to the disk from where data are read or on
which data are written. Since this parallelism is complex to
coordinate and optimize, the implementation of intermediate
several layers was designed as a solution.

A. HPC I/O Strategies
The most common I/O strategies in HPC are the serial or

parallel accesses into files. Serial I/O is carried out by a single
process and it is a non-scalable method because operation time
grows linearly with the volume of data and even more with
the number of processes, since more time will be required to
collect all data in a single process [3].

Parallel I/O usually presents two methods or varia-
tions of them: One file per process and a single
shared file. In one file per process, each pro-
cess reads/writes data on its own file on disk and no coordi-
nation is required among processes. One single shared
file is more convenient to implement Parallel I/O, where
all processes write to the same file on disk, but on different
sections of that file. This method requires a shared file system
that is accessible to all processes.

There are two ways in which multiple processes can access
a shared file: independent access and collective access. In the
first case, each process accesses the data directly from the
file system without communicating or coordinating with the
other processes. In collective access, small and fragmented
accesses are combined into larger ones to the file system that
helps significantly reduce access times. Our aim is to identify
this kind of optimizations to explain the I/O behavior, for this
reason, we propose a white box model.

B. Middleware
MPI is an interface and communications protocol used to

program applications in parallel computers. It is designed to
provide basic virtual topology, synchronization, and commu-
nication functionalities within a set of processes in an abstract
way that is independent from the programming language used
to develop the application.

MPI-IO functions work in similar way to those of MPI:
writing MPI files is similar to sending MPI messages, and
reading MPI files is like receiving MPI messages. MPI-IO also

allows reading and writing files in a normal (blocking) mode,
as well as asynchronously, to allow performing computation
operations while the file on storage device is being read or
written on the background. It also supports the concept of
collective operations: each process can access MPI files on
its own or all together, simultaneously. The second alternative
offers greater reading and writing optimizations that can be
implemented on several levels. Most of MPI distribution
provides MPI-IO functions by using ROMIO [4], which is
an implementation of MPI-IO standard and it is used in MPI
distributions, such as MPICH, MVAPICH, IBM PE and Intel
MPI.

C. Parallel File Systems
A parallel file system is a distributed file system that stripes

the files data into multiple data servers, connected to storage
devices that provide concurrent access to the files through
multiple tasks of a parallel application run on a cluster. The
main advantages offered by a parallel file system include a
global name space, scalability, and the ability to distribute large
files through multiple storage nodes in a cluster environment,
which makes a file system like this very appropriate for I/O
subsystems in HPC. Typically, a parallel file system includes a
metadata server with information about the data found on the
data servers.

Some systems use a specific server for metadata, while
others distribute the functionality of a metadata server through
the data servers. Some examples of parallel file systems
for high performance computing clusters are IBM Spectrum
Scale, Lustre and PVFS2. PVFS offers three interfaces through
which PVFS files are accessed: PVFS’ native Application
Programming Interface (API), Linux kernel’s interface, and
ROMIO interface.

The underlying complexity of sending requests to all
storage nodes and sorting file contents, among other tasks,
is handled by PVFS. When a program attempts a reading
operation on a file, small sections of the file are read from
several storage devices in parallel. This reduces the load on
any given disk controller and allows handling a larger number
of requests.

D. Benchmarks
To evaluate the performance of parallel file system and

test different I/O libraries of the I/O software stack, there are
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different I/O benchmarks. Benchmarks are designed to mimic
a specific type of workload in a component or system. One the
most accepted I/O benchmark in HPC is IOR [5]. It supports
several application I/O patterns and allows configuring them,
and it offers access to shared files both independently and col-
lectively. Additionally, IOR offers different execution options
for the same algorithm using various parallel programming
interfaces, including POSIX, MPI-IO, HDF5 and PNetCDF.

III. STATE OF THE ART

There are several research efforts related to HPC I/O
system simulators that focus on storage architecture and some
layers of the I/O software stack.

The Simulator Framework for Computer Architectures and
Storage Networks (SIMCAN) [6] is aimed at optimizing com-
munications and I/O algorithms. The Parallel I/O Simulator
of Hierarchical Data (PIOSimHD) [7] was developed to ana-
lyze Message Passing Interface-Input/Output (MPI-I/O) perfor-
mance. The Co-design of Exascale Storage System (CODES)
[8] is a framework developed to evaluate the design of the
exascale storage systems. The High-Performance Simulator for
Hybrid Parallel I/O and Storage System (HPIS3) [9] models
application workload. Lustre Simulator [10] was designed to
study the scalability of the Lustre file system.

CODES and HPIS3 are based on Rensselaer’s Optimistic
Simulation System (ROSS) [11], which is a parallel simu-
lation platform. SIMCAN was developed using OMNET++;
PIOSimHD was programmed in Java; and Lustre Simulator, in
C++. All the tools mentioned use an event-based simulation
paradigm (Discrete Event Simulation, DES). We propose using
Agent-Based Modeling and Simulation (ABMS) to develop
a simulator that will allow evaluating I/O software stack
performance.

The agent paradigm is used in various scientific fields
and is of special interest in Artificial Intelligence (AI). It
allows successfully solving complex problems compared with
other classic techniques [12]. It is a simulation technique that
recreates the functionality of different components in a real
system by modeling entities known as agents. Basically, an
agent is an entity capable of perceiving and acting based on
changes in its environment. It can also interact with other
agents, executing and coordinating its actions, to achieve goals.

Generally, both paradigms operate in discrete time, but
DES is used for low to medium abstraction levels. In ABMS,
system behavior is defined at an individual level, and global
emergent behavior appears when the communication and in-
teraction activities among the agents in an environment start.
In fact, ABMS is easier to modify, since model debugging is
usually done locally rather than globally [13].

An advantage of ABMS is that different types of models
could be created for each part of the system [14][15]. This
is useful because the behaviors of the models differ from
each other as they are related to diverse actions like process-
ing, communications and storage. Furthermore, environments
could be both software- and hardware-based. ABMS allows
implementing different components in a modular and flexible
way, affording the possibility of connecting and disconnecting
different parts of a complex system for a layer-level analysis.

IV. FUNCTIONALITY ANALYSIS
To define an initial model of the I/O system, system

functionality should be fully understood. First, the I/O pattern
type to be analyzed was selected, and then the corresponding
software stack layers for this model were applied. We have
selected the IOR benchmark to evaluate I/O performance in
HPC clusters. The analysis was focused on the functionality
that was observed for IOR in the data path.

Due to the heterogeneity of the I/O systems and the
complexity of the software stack, the analysis was started for
MPI-IO layers and the parallel file system. PVFS2 was the
file system selected for our tests. At this time, we separated
the different components considering the concepts of a parallel
file system to allow us using the model with other parallel file
systems, such as Lustre in the future.

The IOR benchmark offers the total runtime measurements
for their programs, but they do not go into further detail in
relation to the different abstraction layers of the parallel I/O
system. These layers have to be crossed from the moment
the user application sends an I/O request up until the CPU,
through its operating system, effectively accesses the file on
disk to read or write the data. Therefore, it is important to
identify the layer in the software stack that requires more time
during an I/O operation.

To follow the data path in the software stack, tracers or
monitors can be used, but these operate on different levels of
the I/O system. There is no single tool that allows recording
the I/O behavior in all levels. However, the parallel file sys-
tems typically include logging/debugging methods that allows
measuring different parameters on the client and server side.

A. Monitoring the internal functions of a parallel file system
The internal functionality of the different components in

a HPC I/O system can be identified by: 1) instrumenting the
code of the components that are in the data path to perform
an I/O operation or 2) using monitoring tools in each level
of the software stack. In [1], the code instrumentation in the
I/O path was applied to establish what percentage of the total
runtime of an I/O operation corresponds to each software stack
component. This allows identifying which of them is the most
critical one and should be enhanced to improve parallel I/O
performance.

The second method requires to monitor the internal be-
havior of each component of the I/O software stack. As the
parallel file system is the I/O software component that is
running at client- and server-side, by using its internal logging
interfaces, it is possible to identify the internal functionality
and its timing for the different component in data path. Some
of these tool are Lustre Monitoring Tools (LMT) [16] or Low
level Lustre file system configuration utility (lctl) in Lustre
[17], or Administration and Monitoring System (AdMon) in
BeeGFS [18]. In the case of PVFS2, the options are gossip
interface and performance counters [19]. In most parallel file
systems, these need only to be enabled; they do not require
source code re-compilation.

In this paper, we use the PVFS2’s gossip interface that
allows users to specify different levels of logging for the
PVFS2 servers. Within the operation principle, gossip uses
a debugging mask that allows defining which output records
are required to print to the log file. Using a global mask, the
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Figure 2. Monitoring in the I/O Software Stack. Left boxes in blue, green and orange represent the layers on compute nodes. The bigger orange box depicts
the layers on the I/O Server. Small orange boxes represent the I/O clients, which interact with the metadata and data servers (I/O Servers).

user can specify whether to enable or disable output record
sets.

In Figure 2, the different layers of the I/O system can be
observed, where the different functions can be measured, both
using code instrumentation or the PVFS2’s gossip interface.

B. Execution Environment
One of the problems found in HPC production systems

is that the file system cannot be modified/instrumented, and
in most cases, the control of the monitoring level of the
internal functionality requires root privileges. Therefore, to
deploy scenarios to identify the components functionality, we
need to have the total control of the HPC cluster and its
I/O subsystem. To create the entire I/O software stack with
the appropriate monitoring level, we have deployed a small
physical HPC cluster with root privileges and a virtual HPC
cluster in the Amazon’s EC2 platform.

Platforms like Amazon’s EC2 offer various types of in-
stances based on the type of service purchased. In [1], a
virtual HPC cluster was deployed using the free service and,
even though these nodes offer very limited functionality as
regards number of CPUs, memory, storage and network; they
proved to be adequate to create the necessary environment for
the tests executed. Even though this experiment environment
allowed obtaining different measurements to be used in the
modeling stage, it has already been mentioned that Amazon’s
EC2 platform service has restrictions.

Unlike execution environment presented in [1], in this work
we present the results obtained in a small physical HPC cluster.
However, in both scenarios, it was validated that the observed
behaviors follow the same trend even though they do not have
the same numerical values.

The deployed I/O configuration has five computing and
I/O nodes. In this case, an I/O node fulfills the roles of Client,
Data Server and MetaData Server for PVFS2. Through the
configuration used, the critical functions involved in each layer
of the I/O software stack were selected based on their role
and execution time. As way of example, Figure 3 shows the
functions selected in the System Interface layer on the client-
side and Main Loop layer on the server-side.

V. MODELLING THE I/O SYSTEM

To design a model, the basic characteristics of real system
behavior must be obtained first [20]. In this case, the inter-
actions between control, data and communications for basic
I/O operations were analyzed: open, read and write. Each
operation triggers a succession of interactions that, in turn,
initiate different functions such as those shown in Figure 3 in
each of the layers of the I/O software stack.

A. System Interactions

The different interactions between client and server to
perform read (r) and write (w) operations are shown in
Figure 4. Once both client and server have been initialized,
the System Interface layer starts the r/w operation. Since
every operation that involves communication with Buffered
Messaging Interface (BMI), Flow or Trove is considered a Job,
a new operation is indicated to the client’s Job layer. The Job
layer then sends a message to the Flow layer to start a new
transmission flow and send a message to BMI, which imme-
diately establishes communication with the server’s BMI. In
the server’s BMI buffer, the message containing the operation
to be performed, the job identifier, the associated flow and a
BMI client identifier are added.
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Figure 3. Selected functions of System Interface and Main Loop layers.

Figure 4. View of the Server-Client Interaction for read (r) and write(w) operations.

On the server-side, once the new operation is detected, the
I/O operation is identified and communicated to the Main Loop
layer. This layer sends a request to the Job layer to start the
new job related to a new flow. Then, a transfer from the Flow
layer to disk is carried out. Figure 5 shows how the Flow
layer finishes the operation, a response is formally sent to all
server layers, and then the server’s BMI layer communicates
the client’s BMI layer that the operation ended.

Figure 4 represents the basic interactions between client
and server at the sequential level, but there are other in-
teractions that run in parallel. To carry out an analysis of
parallel functionality, the sequence diagram shown in Figure
5 was used. The diagram distinguishes 3 operations: client
initializations, server initializations, and the I/O operation
itself. As it can be seen, the initializations are run in parallel
(highlighted in a blue box for the client and in a green box
for the server). Initializations have two purposes: on the one
hand, initializing the communications layer on both the client
and the server. On the other hand, informing the server that
the client is available to establish a communication.

In all interactions, different parameters are sent to each
layer in the PVFS2 software stack to identify and carry out
the required operation. After the initializations have been per-
formed, the requested I/O operation is executed. The following
interactions are sequential and correspond to those mentioned
in the description of Figure 4.

B. States Machines
After analyzing each of the layers, a model of the I/O

system was developed by implementing state machines and
variables that describe each of those states. To that end,
state machines were implemented for each of the layers in

the system, differentiating their operation both on client- and
server-side. The ultimate goal is using these state machines to
design the behavior of each of the agents and its interactions
with other agents and/or its environment.

The model developed is aimed to reproduce the interaction
among the different components and analyzing how the infor-
mation goes through the different modules or layers, with the
possibility of measuring time to approach the real model of
the I/O system. Therefore, each layer is modeled based on the
execution flow of the functions that are called while processing
certain requests, such as opening, closing, reading and writing
operations. With the description of each function, the different
states of the layers while carrying out those requests were
implemented.

Due to the complexity to describe fully the modeling of
the I/O software stack, we have selected the System Interface
and Main Loop layers to explain in detail the calibration,
verification and validation phases. Similar steps were done for
the other layers.

The System Interface layer is a client-side interface that
allows manipulating the objects in the file system. It launches
a number of functions and state machines that process the
operation in small steps. In turn, the Main Loop layer is a
server layer in charge of controlling whether the operations
on lower layers executed by different threads have been
completed.

In the context of PVFS, state machines execute a specific
function in each of their states. The value returned by this
function determines the state that should be adopted. Complex
requests can be modeled; they are represented as a sequence
of several states. Also, state machines can be nested to model
and simplify common subprocess handling. These machines
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Figure 5. Interaction diagram of System Interface and Main Loop layers for read (r) and write(w) operations.

are used both in clients and servers.
There are several caches on the client side that are part of

the System Interface layer and try to minimize the number of
requests that the server has to process. The attributes cache
(acache) manages metadata, while the name cache (ncache)
stores the filename of file system objects and their respective
handling number. To prevent caches from storing invalid
information, data are set as invalid after a certain time has
passed or when the server notifies the client that the object
does not exist.

The Main Loop layer accepts four different types of return
values related to the invoked operation: completed, deferred,
terminated, or failed. It should be noted that the Main Loop
layer has one more operation in addition to open, write and
read. This is because initialization is an operation in itself,
either as a Dataserver or a Metadata server.

C. Functional Model
As shown in Figure 3, the functions in the system interface

layer are: PVFS_sys_create() to manage the creation of
new files in the system, PVFS_sys_write() to perform
writing operations, PVFS_sys_read() to perform reading
operations, and PVFS_sys_flush() to dump file to data
server. The most significant functions of the Main Loop layer
include io_send_ack(), which returns a negative or posi-
tive response to the client; io_send_completion_ack(),
which reports the completion of an operation that was in
progress; and io_start_flow(), which initiates a Job to
service a Flow depending on the requested operation. Each of
these functions has internal variables and state machines that
are run to carry out the relevant operations.

Each of these functions has internal variables and state
machines that are run to carry out the relevant operations.

To simplify the model, we considered the following in
relation to parallelism when handling several instances:

• I/O interfaces: layers MPI-IO, ADIO and AD_PVFS
work in a sequential and blocking manner, since they
run functions that require synchronization; this means
that no instruction is served until the instruction being
processed is completed. The calls run on their state
machines are blocking;

• PVFS2 parallel file system: the System Interface,
Job, Flow, BMI, Main Loop and Trove layers serve
other requests and store their instructions in a buffer.
Therefore, it allows handling different data flows.

The behavior of each of the agents is described by the
state machine, the state transition table and the corresponding
state variables. Figure 6 shows part of the state machines
developed to model the operation of the System Interface layer,
considering the functions and state machines corresponding to
each of the three initial operations. As it can be seen, it consists
of four agents called System Interface, which is responsible for
decoding the instructions that enter the layer; PVFS_OPEN,
which manages file opening operations; PVFS_GETATTR,
which carries out searches in the metadata; and PVFS_RW,
which manages file reading and writing operations.

As way of example, the states of an agent in the System
Interface layer in Figure 6 are explained. The agent that
manages file opening operations can only have one of five
different states (S8 to S12). It will remain in S8 and configure
agent PVFS_GETATTR if it requests metadata. If the attributes
are not found in cache, it will transition to state S9 to wait for
them; otherwise, it will transition to state S10. If in state S9,
it will wait for a response from agent PVFS_GETATTR or it
will complete the opening operation by communicating with
the server, transitioning to state S10. If the operation cannot
be completed, it will transition to state S12 to end.

While in state S10, it will start file creation through a
request sent to the JOB layer, transitioning to state S11.
Otherwise, it finishes the operation and transitions to state S12.
While in state S11, it waits for a response to its file opening
request and, if it receives one, it transitions to state S12. Once
in state S12, it finishes the operation and sends a response to
agent AD_PVFS.

Each state of the PVFS_GETATTR agent, the same as each
of the agents in each layer of the system, has different state
variables. These are five per state, and their values depend on
their role: ID to identify each process, DATA_SYSTEM to in-
dicate permanence in memory or not, OPERATION to specify
the type of operation, REQUEST_IN_PROCESS to indicate if
the process has finished or not, and COD_OPERATION to add
an identifier per traversed layer.

On the other hand, agent PVFS_RW manages the write or
read requests on client side. In Figure 6, there can be seen in
red the functions selected that were used as the basis for the
development of each state machine. For example, one of the
functions belonging to pvfs2_msgpairarray_sm()[21],
on which the PVFS_RW agent is based, is
io_datafile_post_msgpairs() that is responsible for
managing the data transmissions involved in the creation of
files in agent System Interface. These communications occur,
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Figure 6. State machines for agents in the system interface layer.

in the case of both a reading or writing, between client and
server through the Job and BMI layers.

As for the server’s Main Loop layer, Figure 7 shows
how it is modeled with 4 agents, namely: MainLoop, which
handles server initialization and decodes required operations;
MetaData Creation, which reads metadata from disk
immediately; File Creation, which writes new files or
directories metadata to disk immediately; and Read/Write,
which is responsible for configuring data transfers to disk and
sending acknowledgment signals to the client.

Figure 7 shows the state machines of each agent, with focus
on the states of the Read/Write based on the roles correspond-
ing to pvfs2_io_sm()), which have been marked in red.
As previously mentioned, this agent is in charge of managing
the data reading or writing operations requested by the client.

VI. COMPUTATIONAL MODEL OF THE I/O
SYSTEM

To develop the simulator, tasks were organized in three
groups: 1) obtaining data sets that represent the temporary
function of the system, 2) using an ABMS-oriented framework,
and 3) validating the tool developed.

A. Verification and Calibration
To obtain values for the functional model, we have mon-

itored the selected functions for the IOR benchmark in a
HPC physical cluster. The I/O system was configured over on
PVFS2 parallel file system and the MPICH distribution. The
cluster was composed by five nodes, where each one had three
roles: compute node (computing and PVFS2 clients), metadata
server and data server (datafiles).

We have selected the IOR [5] benchmark as application
and it was configured to run a simple pattern for different file
sizes and transfer sizes. IOR was configured as follows:

• 1 GiB === mpirun -np 5 ./ior -a MPIIO
-b 205m -t 205m -F

• 2 GiB === mpirun -np 5 ./ior -a MPIIO
-b 410m -t 410m -F

For this setting, each process writes/reads to/from its own
file in transfer sizes defined by the -t parameter. Due to
the block size (-b) is equal to the transfer size (-t), only
one operation is done by each process. The interface selected
was MPI-IO for the one file per process (-F) strategy and
independent I/O. The mapping corresponds to one MPI process
per compute node.
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Figure 7. State machines for agents in the main loop layer.

This measurement allows us to classify the monitored
metrics in three groups: 1) data access time related with the
data accesses operations such as write, read, and so on, 2)
control time that includes verification and configuration of
the data structures and 3) communication time related with
the interaction between the clients and the metadata and data
servers.

Activating the PVFS2’s gossip interface the metrics
were obtained to apply linear and exponential regressions for
the time monitored in different PVFS2’s functions. For this
analysis, we have selected as dependent variable the execution
time and as independent variable the file size, request size is
fixed for all the tests. In the case of the system interface layer,
we have selected the following equations to represent the time
of the functions:

• PVFS_sys_create() = 0.0217x

• PVFS_sys_write() = 15.183x+ 0.0408

• PVFS_sys_read() = 15.167x+ 0.0376

• io_datafile_post_msgpairs()= 0.002x3 −
0.0137x2 + 0.027x− 3 · 10−15

• io_datafile_complete_operations()=
−5.6305 · 10−7x4 + 5.3594 · 10−6x3 − 1.7401 ·
10−5x2 + 2.1925 · 10−5x+ 7.2760 · 10−20

The equations representing the time functions of the main
loop layer are defined as follows:

• io_start_flow()read = 11.3549x

• io_start_flow()write = 11.4889x

• io_send_ack() = 3.1987 · 10−6x3 − 2.4538 ·
10−5x2 + 5.6331 · 10−5x

• io_send_completion_ack()= 7.1776 ·
10−6x3 − 5.5622 · 10−5x2 + 0.00012x

Where the x variable represents the file size to write or
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Figure 8. Simulator’s user interface in NetLogo

read. The statistical dispersion also depends on the file size
and therefore it is calculated by using the same method.

B. Implementation

The simulation model was developed using an ABMS
framework called NetLogo. This framework includes a sim-
plified programming language and a graphical interface that
allows the user build, observe and use agent-based mod-
eling without understanding complex standard programming
language details. This tool is specifically indicated for the
simulation of complex systems; it allows giving instructions
to many independent agents that are concurrently executed,
which is useful to study the connection between individual
and collective behavior through agent actions and interactions.

An implementation detail in this simulator is the use of an
agent called ”data” that can be invoked by other agents. This
new agent has two main objectives – the first is to calculate
the execution time of a function in terms of file size, since
the “data” agent can invoke a set of models, algorithms and
functions of system components in NetLogo language. The
second objective is to generate the simulator output showing
the data associated with the invoking agent. Thus, the name of
the invoking agent, the associated function based on its state,
and the execution time of the function can be displayed.

The scenario adopted for the experiments is similar to the
one used in [1], and it was designed to simulate the exchange
of information among computing nodes, I/O nodes and storage
nodes considering in each of them the layers discussed in
previous sections. The MPI operations that can be served
by the application layer are only I/O operations, and this
initial implementation only includes open, read, write and close
operations. One of the parameters allows toggling between
executing only one type of operation or all of them. There
is an option for selecting a maximum number of operations,
which are distributed among the computation nodes selected.

The number of computation nodes and storage nodes
can be configured. Node actions and interactions were fully
implemented for the operations mentioned above. There are
other parameters that allow selecting the existence of the data
in the system before running the simulation, configuring the
corresponding layers and preparing the I/O server for this
scenario.

Figure 8 shows the simulator’s user interface. The config-
uration bars that the user has available to set the variables
and parameters of the I/O software stack and the scenario to
simulate are on the left. Also, the I/O configuration can be
made through command line. The center shows the distribution
of the I/O system.

C. Validation
To validate the proposed model, we have configured a

physical cluster similar to deployed in the calibration phase
(see Section VI-A). The I/O system was deployed by using
the PVFS2 parallel file system in a HPC cluster composed
by five nodes, where each one was compute node (computing
and PVFS2 clients), metadata server and data server (datafiles).
PFVS2 filesystem was configured with a stripe size of 64 kiB
and a total capacity of 950 GiB. IOR was executed for the
following configurations:

• 1 GiB === mpirun -np 5 ./ior -a MPIIO
-b 205m -t 205m -F

• 2 GiB === mpirun -np 5 ./ior -a MPIIO
-b 410m -t 410m -F

• 3 GiB === mpirun -np 5 ./ior -a MPIIO
-b 615m -t 615m -F

• 4 GiB === mpirun -np 5 ./ior -a MPIIO
-b 820m -t 820m -F

Figure 9 presents the simulated and measured times for the
IOR benchmark in the System Interface layer of the PVFS2.
As can be seen, the I/O behavior in this layer is dominated
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(a) read operations (b) write operations

(c) control operations (d) communication operations

Figure 9. Simulated and Measured time for the system interface layer on the PVFS2’s client side

(a) read operations (b) write operations

(c) control operations (d) communication operations

Figure 10. Simulated and Measured time for the main layer on the PVFS2’s server side
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by the access data operations that corresponds to the read and
write operations. Timings of control and data access operations
are very close for 3 GiB and 4 GiB files, which were not
tested in the calibration stage. (Section VI-A). Only in the
communication operations can be observed a fixed small gap.

Figure 10 shows simulated and measured results at Main
Loop level (server-side). Data access operations present a very
similar behavior, but we can see different values for the control
and communication operations. This is mainly related with
functions and constants that are not adjusting perfectly with
the real measurements.

The main reason of the accuracy in the measured and sim-
ulation results is the simple I/O pattern and the configuration
selected. However, this simple HPC I/O system configuration
allows us to show that is it possible to model the I/O system
behavior properly by using ABMS. Furthermore, from this
model, we can deploy different scenarios for the HPC I/O
system, including both hardware and software components.

VII. CONCLUSION
This paper presented a model of HPC I/O system by using

ABMS, where agents interact and communicate within the I/O
software stack layers. To obtain a more representative time for
the calibration functions, the interaction between the software
stack layers corresponding to the file system were logging
with the gossip interface provided by PVFS2. A functional
model was defined for the different components of the HPC
I/O system by using state machines. The measurement allowed
to define equations that represent the temporal behavior for the
I/O software stack layers. Furthermore, this was useful for the
verification and calibration stages and also for the validation
of the simulator developed with the NetLogo modeling envi-
ronment.

As future work, we will deploy different scenarios for ana-
lyzing possible configurations both hardware and I/O software
stack. Furthermore, we will evaluate collective operations and
other I/O strategies. Additionally, we will extend the model
for other parallel file systems, such as Lustre or BeeGFS.

On the other hand, by using the tools for the measurement,
we have detected other parameters that can be included in the
model and implemented in the simulator, i.e., the data transfer
rate (bandwidth) and the input/output operations per second
(IOPs).
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