
Challenges in Mitigating Errors in 1oo2D Safety Architecture with COTS
Micro-controllers

Amer Kajmakovic∗, Konrad Diwold∗, Nermin Kajtazovic¶, Robert Zupanc¶

∗Pro2Future GmbH & Institute of Technical Informatics, TU-Graz, Graz, AT
E-mail: (amer.kajmakovic, konrad.diwold)@pro2future.com

¶ Siemens AG, Graz, AT, E-mail:(nermin.kajtazovic, robert.zupanc)@siemens.com

Abstract—The number of Commercial-Off-The-Shelf (COTS)
micro-controllers used in safety applications has increased signif-
icantly over the last decade. In contrast to safety-certified micro-
controllers, they are produced without integrated protection
against memory soft errors and limited in terms of available
memory and computation power. However, due to constant
optimizations of the memory’s physical size and the voltage
margins, the probability that external factors, such as magnetic
fields or cosmic rays, temporally alter a memory state (and
thus cause a soft error) rises. It is crucial to address such
errors within safety-critical systems, and consequently a wide
range of error mitigation strategies have been proposed. In the
context of established brownfield automation systems, redesign
and redeployment of new hardware is usually not feasible.
Therefore, other approaches can be applied to existing fail-
safe architectures to further improve their performance without
the need for a partial rework or conceptual changes. This
article identifies challenges associated with soft error detection
and correction strategies in 1-out-of-2 with diagnostic (1oo2D)
safety architecture. Moreover, it investigates mitigation strategies
and their deployment challenges through different production
phases of the systems (i.e., greenfield) as well as requirements
and limitations when working with already existing systems
(i.e., brownfield). Among other parameters, the memory usage
profile and its effect on the mitigation strategies is explained.
A brief overview and evaluation of already available hardware-
based strategies along with the evaluation of the most prominent
software-based strategies are presented. In addition, a discussion
about potential mitigation strategies that rely on the underlying
hardware features is outlined. The article demonstrates how to
identify and assess trade-offs associated with different strategies
to decide on suitable methods to enhance fault tolerance in
existing and future automation systems.

Keywords–soft errors; mixed-criticality; fail-safe; 1oo2D; COTS;

I. INTRODUCTION

This article extends the contribution “Challenges in Mit-
igating Soft Errors in Safety-critical Systems with COTS
Microprocessors” of PESARO 2020 [1]. The contribution
investigated challenges associated with software-based soft
error detection and correction strategies, along with a short
overview of currently applicable software-based mitigation
strategies. Here, the evaluation is extended to include available
hardware-based strategies and different phases in the develop-
ment process of 1oo2D safety architectures. Furthermore, new
ideas and approaches are presented utilizing existing features
within 1oo2D architectures to avoid physical intervention on
the system.

Given their ever-decreasing packaging size, semiconductors
are increasingly susceptible to external influences such as alpha
particles, cosmic rays, or magnetic fields [2]. Figure 1 shows

the correlation of semiconductor technology/fabrication node
size (nm) and their respective error rates (Soft Error Rate
(SER) and Hard Error Rate (HER)). It is evident that the SER
increases with decreasing node size, while the HER remains
constant [3]. To counter the increasing number of soft errors,
families of highly reliable safety-certified Micro-Controller
Units (MCUs), with special integrated measures against soft
errors, have been developed. The intended field of application
of such micro-controllers is safety-critical applications where
fault-tolerance is required.

Nevertheless, given their low cost and good performance,
Commercial-Off-The-Shelf (COTS) micro-controllers are in-
creasingly used in safety applications [4]. In contrast to
safety-certified micro-controllers, they are not produced with
integrated protection against soft errors. As a consequence,
recent research proactively deals with environmentally induced
soft errors by developing new methods for error detection,
mitigation, and data recovery [5].

Aggressive 

voltage scaling

(near-threshold 

computing)

Figure 1. Correlation of error rate and technology/fabrication nodes

The importance of detecting and resolving soft errors is
reflected by the numerous reports on soft error related prob-
lems within safety-critical applications. These reports originate
from a wide range of industries, such as the automotive
industry, space industry, and the medical industry. Duncan and
Roche’s analysis of semiconductor reliability in the context of
autonomous driving [6] is devastating. They conclude a (soft
error induced) failure rate of 1 part per million per year. Given
that a single-car implements approximately 8,000 semiconduc-
tors, the likelihood of a car exhibiting semiconductor-induced
errors within its lifespan (of 15 years) is around 12%. While
the results of such failures are unclear during the operation of
a car, semiconductor-based soft errors can be resolved (fairly
easily) by restarting the affected component. However, not all
safety-critical systems provide the luxury of resolving an error
by “turning it off and on again”. Consider, for example, safety-

250

International Journal on Advances in Systems and Measurements, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



critical nuclear power plant equipment: restarting a device in
the event of a soft error is not an option and could lead to
catastrophic fatalities.

When designing new safety-critical applications or enhanc-
ing existing systems with fixed underlying architectures and
hardware, a wide range of methods is available. These methods
target different stages within a system’s development and are
associated with trade-offs regarding required resources, costs,
and complexity. To choose an appropriate strategy therefore
requires a clear understanding of the available methods as
well as their prerequisites. This article aims to demonstrate
the variety of existing mechanisms for soft error detection and
correction, by reviewing and outlining available methods. In
addition, the article demonstrates how an appropriate method-
ology can be chosen, depending on the development stage of
the application along with challenges that come with selecting
the right strategy.

While architects are ‘relatively’ free when designing a
new system from scratch, their options narrow down when
they are enhancing an existing system, as the chosen methods
must complement the existing system. Given the longevity
of existing safety automation solutions, this article demon-
strates an approach to improve/enhance existing fail-safe so-
lutions. This is done utilizing an exemplary system with
a 1oo2D safety-architecture and allows to demonstrate the
impact and prerequisites of various safety strategies on the
system’s performance and design as well as their effects on
non-functional requirements, such as reliability, safety, and
availability. The discussed approaches range from enhancing
the existing hardware solutions with additional software-based
correction schemes to the utilization of additional hardware,
resulting in novel hybrid approaches. These innovative ap-
proaches allow enhancement of non-functional properties such
as availability, maintainability, and most importantly safety in
existing safety architectures.

The remainder of the paper is organized as follows: Section
II presents an overview of the mitigation strategies through
the production phases. In Section II-E a screening of the
market-available micro-controllers with mitigation strategies
is presented. Section III describes 1oo2D safety architecture
with a focus on its memory architecture. Section IV defines
the challenges and requirements for soft error software-based
mitigation strategies in safety-critical applications. Section V
shows an evaluation of the mitigation strategies along with new
mitigation ideas. In the last section, a summary and future work
are presented.

II. MITIGATING SOFT ERRORS

While soft errors constitute the majority of memory errors,
they can be prevented and/or corrected. To prevent soft er-
rors, memories require resilience and/or fault-tolerance. Fault-
tolerance denotes a system’s ability to handle faults in individ-
ual hardware or software components, power failures, or other
forms of unexpected problems, while still meeting the system
specification [7]. There are different approaches/strategies to
achieve fault tolerance. These approaches can be grouped into
different levels regarding the stage in the development process
they are utilized in as well as their underlying nature.

The most intuitive categorization can be made based on the
different stages of a system‘s development. Protection and mit-
igation strategies can be designed and applied within the design

and production processes of single components (i.e., memo-
ries) themselves. During system design, mitigation strategies
can be actively integrated into the system by, for example,
choosing appropriate components and system architectures
(such as redundant architectures). If a system’s architectural
level has already been fixed (during or before the deployment
stage), only software-based approaches can be used to enhance
fault-tolerance on a system level (e.g., via additional features
that will additionally secure a system). During system de-
sign, fault-tolerance mechanisms on a hardware-level (e.g., by
hardening components and architecture) can also be utilized.
Mitigation strategies thus either fall into the Hardware-based
(HW) or Software-based (SW) classes. They are not mutually
exclusive, meaning that a system might implement a set of dif-
ferent mitigation strategies to achieve required fault tolerance.
Another categorization concerns whether or not an approach
utilizes redundancy. Within a system, redundancy can occur on
different levels: Hardware, Software, Information, and Timing,
which are explained in more detail below. Figure 2 gives
examples for mitigation strategies and their categorization.

Figure 2. Categorization of the mitigation strategies

In the following subsections, state of the art mitigation
strategies are outlined according to the system development
levels they fall into, starting with the system level.

A. System level
Protection on the system level is applied when the hardware

of a system is present, including internal design and system
architecture. At this level, additional fault-tolerance can only
be achieved via software-based approaches (as hardware and
system architecture are fixed). Methods applicable to this phase
can also be used to enhance existing (brownfield) automation
systems that are already deployed and do not allow for
hardware changes.

Software-driven fault-tolerant techniques are based on re-
dundancy, which is applied to procedures, processes, data, or
the whole execution code. The most common type of software
redundancy in embedded systems is the multiplication of data.
A simple way of achieving multiplication is to transform (e.g.,
with the Hamming distance of 4 or a simple inverse function)
and store a copy of a variable in a different memory area.
Comparison of the two versions of the variable enables the
system to detect, mitigate, or recover corrupted data.

251

International Journal on Advances in Systems and Measurements, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The main disadvantage of software redundancy is associ-
ated with memory consumption overhead, as the multiplication
of data, code, and/or processes requires additional memory,
which is usually very limited in embedded systems. Addition-
ally, it can lead to a significant increase in code execution
time [2], [5]. The other two types of redundancy which can
be realized in the software itself are Informational and Timing
redundancy.

Informational redundancy assumes the addition of sup-
plementary information to the data to verify the soundness
of the information. Usually, this additional information is in
the form of codes, which are computed based on the data
itself. Those codes (so-called Error Detection And Correction
codes (EDAC)) were initially introduced in the context of data
recovery in communication [7], but nowadays they are widely
used in memories [8]. The family of EDAC codes is growing
constantly. The most popular EDAC codes are: Parity Codes
(error detection without recovery) [9], Hamming Codes (2-bit
detection and 1-bit recovery) [9], Reed-Solomon and Bose-
Chaudhuri-Hocquengham Codes (for multiple bits error mask-
ing) [8]. Some research has considered the implementation
of other EDAC codes used in communication such as LDPC
codes [10], RS codes, Turbo codes [11]. EDAC codes can be
presented with the designation (n, k), denoting a block code
that takes a k-bit data word and maps it to an n-bit codeword
as shown in Figure 3.

Figure 3. Representation of EDAC codes

EDAC codes have two main properties that need to be
considered: speed and quality. Speed is defined as the time
required to encode/decode EDAC codes and this time extends
the overall memory access time. Quality denotes the number
of faulty bits a specific code can detect and correct. Naturally,
there is a trade-off between quality and speed. For higher
quality, more complex EDAC codes are required, which allow
for correction of multiple bit-flips. In this case, both code
magnitude as well as computing demand increase due to
these adaptations. Faster and less memory expensive correction
schemes on the other hand are limited in terms of the number
of bits they can correct.

Based on EDAC codes, a new method called scrubbing
was developed. The idea behind scrubbing is to periodically
re-write data in its original location to eliminate soft errors if
they are correctable through EDAC [12] or copying of original
data [13]. With this approach, an accumulation of soft errors
inside one region of memory can be avoided.

Timing redundancy has been recently investigated and
concerns a re-computation or retransmission of data at least
twice. The results are then compared with previously stored
copies [7]. This type of redundancy helps to distinguish
between transient and permanent errors. If the fault is still
present after repeating a test several times, then it is likely
that the error is permanent.

B. Architecture level
HW-based Information redundancy: Software-based in-

formation redundancy raises the question of usability, as high-
quality SW EDAC codes exhibit a trade-off and lead to a
decrease of available memory as well as to an increase of
required computation time, access time, and complexity of the
overall system. To overcome these drawbacks, EDAC-related
computations (encoding and decoding) can be outsourced
on a special-purpose chip, which can be installed between
memory and CPU in order to apply for on-the-fly informational
redundancy. Most modern EDAC codes for memories are
implemented via additional hardware [14]. EDAC addresses
the perspective of system availability for safety, since the
system will continue to run unabated in the presence of single-
bit errors. However, EDAC adds significant cost to the memory
portion of the device and slows down the CPU due to the added
SRAM access time, which is required to make corrections
on the fly. SRAM on a device constitutes about 1/3 of the
hardware costs, and with additional HW-based EDAC this
further increases by approximately 30%, resulting in a total
price increase of around 40% [15]. To avoid an increase in
chip size and hardware redesigns, software-based EDAC codes
(explained in the previous chapter) have been proposed [16],
[17]. In the past, HW EDAC codes were only available in
the expensive safety-certified MCUs, but today conventional
micro-controllers also possess HW-based EDAC protection.
The flash memory, where operating code is stored, is usually
protected with a Hamming code while parity bits protect
selected parts of the SRAM [18], [19]).

A parity circuitry sets the parity bits when an SRAM word
location is written and verifies that there are no single-bit errors
in the word when it is read back. This is done within the
read/write cycles, so no CPU overhead is involved. When the
parity circuitry identifies an error, a high priority CPU interrupt
is generated. In semiconductor devices, this detection mecha-
nism is simple and relatively inexpensive to implement. Parity
addresses the safe-state perspective for safety. As described
earlier in Section I, virtually all SRAM failures in-system are
likely to be single bit per word failures. This applies to both
physical defect mechanisms as well as soft errors. Additional
coverage can be provided by protecting the memory address
bits with parity.

Hardware Redundancy: On a system level, fault tolerance
can be achieved via hardware redundancy. Safety-critical sys-
tems often adopt an N-modular (where N > 2) architecture,
where the components exist in certain redundancy N and
perform the same computations in parallel. The correct result
is established based on majority voting. If one of the modules
fails, the majority voter masks the fault by identifying the
result of the remaining fault-free modules [7]. N-modular
systems can yield a higher Safety Integrity Level (SIL), as
they provide inherent fault tolerance and consequently, a
low failure rate. SIL is a quality indicator for systems that
fulfill safety requirements in accordance with the IEC61508
standard. Many safety systems use simple architectures such
as 1oo1D (1-out-of-1 with diagnostics) and 1oo2D (1-out-of-2
with diagnostics) [20]. In some cases, a diagnostic system is
realized with an additional watchdog (i.e., challenge-response
architecture) [21] or with an additional CPU like the lockstep
architecture.

Lockstep systems are fault-tolerant computer systems that

252

International Journal on Advances in Systems and Measurements, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



run the same set of operations at the same time in parallel [22].
The redundancy (duplication) allows error detection in the
system as well as in the memories. The stored values in
memory are compared to determine if there has been a fault.
The term ”lockstep” originates from army terminology, where
it refers to synchronized walking, in which the marchers walk
as closely to each other as physically possible.

Figure 4. Dual Core and Lockstep architectures

These architectures are also known as a fail-safe, meaning
that given a failure, the system inherently responds in a way
that will cause no or only minimal harm to equipment, envi-
ronment, and people. The main advantage of such architectures
is the good balance between functional safety (i.e., achieving
high safety integrity) and development process costs.

A shortcoming of hardware redundancy is its requirement
for additional hardware. In the context of memory, it will
increase cost, weight, size, power consumption, and thus
impacts design and testing. Moreover, additional hardware
needs to be budgeted for from the first stage of the chip design.
It is therefore almost impossible to upgrade existing systems
with additional hardware without degrading their performance,
which limits the application of these methods in the context
of brownfield applications.

C. Component level
Environments with high ionizing radiation (e.g., outer

space, nuclear power plants, etc.) present special design chal-
lenges for integrated circuits, as the likelihood that particles
cause an upset in the electronics (i.e., memory) is very high.
Dealing with the consequences requires very reliable electronic
components with sophisticated measures that can detect and
correct errors. The first step in overcoming errors is to prevent
them from happening, i.e., to stop particles on their way to
the sensitive parts of the electronic circuits. This type of
protection is achieved during the early stage designs, where
different techniques and approaches are used to prevent errors.
If these techniques can successfully protect electronics, in later
phases they do not need additional detection and correction
algorithms.

Shielding constitutes one of the first approaches that in-
crease the resilience of components against radiation. Shielding
is applied during the production phase, where a specific
particle-resistant layer is deployed over the component’s pack-
age. The layer reduces exposure of the bare component/device
and prevents environmental particles from influencing under-
lying layers of the package. Figure 5 depicts the penetration

ability of various types of particles. As shown in the image,
neutrons are capable of travelling further through different
types of material than other particles, making it challenging
for designers to find adequate materials for shielding.

Figure 5. Penetration ability of radiation particles [23]

Radiation hardening is an approach where designers of
electronic circuits use various physical means, such as insulat-
ing substrates, bipolar integrated circuits, or radiation-tolerant
SRAM to harden the electronic system against the effects of
radiation particles [24]. Hardened chips are often manufactured
on insulating substrates instead of the usual semiconductor
wafers (where energy from radiation can easily change the
state of the material). Silicon on insulator (SOI) [25] and
Silicon On Sapphire (SOS) [26] are commonly used. While
hardening guarantees fewer errors to be caused by radiation,
it requires special designs and techniques that increase the
overall costs of the design and production process. Resistance
to electrical charges can also be achieved by using specific
structures and materials for critical points in the component
(e.g., strengthening the gate of the transistors). One of these
structures is the Dual Interlocked Storage Cell (DICE). In this
technique, a transistor structure has redundant storage nodes
and restores the original cell state when an error is introduced
in a single node [27].

Other types of memories that are not based on standard
semiconductors but on different underlying concepts can be
found. The most promising concept is Phase-Change memory
(PCM), which constitutes a new type of memory that is
achieving good results against particle radiation. PCM utilizes
a Germanium Antimony Tellurium Ge2Sb2Te5 (GST) alloy
and takes advantage of rapid heat-controlled changes in the
material’s physical property of amorphous and crystalline
states [28]. These states, which correspond to logic 0 and
1, are electrically differentiated by high resistance in the
amorphous state (logic 0) and low resistance in the crystalline
state (logic 1). One cell of the PCM is shown in Figure 6.
PCM, which reads and writes at low voltage, offers several
substantial advantages over flash and other embedded memory
technologies: PCM is faster than standard flash memories, and
logical gates within PCM can be scaled down further than the
NOR and NAND gates used in flash memories. PCM also
showed good protection against bit-flips induced by highly
energized particles hitting the memory. Even though phase
change material is immune to high-energy particles, PCM
memory still suffers soft errors. For example, in PCM chips, up
to 40% of the entire area consists of CMOS circuits [29]. As

253

International Journal on Advances in Systems and Measurements, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



PCM is still in development, only a few types of this memory
are available on the market [30]. Similar to radiation hardening,
PCM memory is used in the early design stage of the MCU,
and thus, it does not have additional effects on the MCUs’
performances.

Figure 6. Phase changing memory - Reset and Set states [31].

Although techniques used on a component’s level have
shown very effective against soft errors, they always require
additional or special materials, which significantly increases
the cost of design and production.

D. Multi-phase
Some approaches to the production phase (i.e., component

level) can also be used in later stages. For example, shielding
can be applied after the entire system is developed, e.g., by
installing a radiation-resistance shield over the system itself.
Combining the best features of different protection schemes,
to cover their weakness, constitutes a good way to create
system tolerance for all kinds of failures. Mayuga et al. [12]
combined different kinds of techniques to overcome failures in
memory. Their approach uses EDAC codes to recover words
with a single faulty bit, memory relocation for a word with
more than one faulty bit, and a scrubbing method to avoid the
accumulation of faulty bits. A hybrid approach seems very
suitable in the context of mixed-criticality, as it allows to
further customize the overall protection scheme, leading to a
protection scheme with an even further reduced overhead in
comparison to a scheme that is based on single redundancies.

E. Available solutions for safety-critical systems
When designing a safety-critical system from scratch, it is

recommended to proactively consider soft errors through all
production phases, in order to satisfy the safety requirements
of the resulting system. As shown in the last section, designing
a system from scratch allows us to utilize hardware solutions to
mitigate or overcome errors, e.g., by choosing an appropriate
architecture or components that already have integrated safety
measures against soft errors in memories.

Manufacturers have developed special-purpose safety-
certified micro-controllers that are highly reliable and contain
additional features to overcome safety issues, including soft
errors in memories. The design of these micro-controllers de-
mands more time and effort, thus their development is far more
costly than regular COTS micro-controllers. The main catalyst
for these recent developments is the automotive industry. With
high demands for functional safety in Autonomous (AV) and
Semi-Autonomous Vehicles (SAV), the development of safety-
critical micro-controllers has rapidly increased. Functional

safety is required in almost every part of AV and SAVs,
including all sensors, processing, and control units. Some
MCU developers like STMicroelectronics are offering a wide
portfolio of MCUs specialized for automotive applications.
The latest achievement in safety from STM are the controllers
from the Stellar series, a high-performance 32-bit automotive
microcontroller family, which is based on the ARM R52
multi-core. It features an innovative embedded Phase Change
Memory (ePCM) and built-in 28nm Fully Depleted Silicon On
Insulator (FD-SOI) technology [32]. The combination of ECC
and this memory can provide sufficient protection from soft
errors in these processors.

In the context of automotive use-cases, the probability of
a particle hitting the memory and flipping a bit is low, but
the impact of a bit flip can be devastating. In space and the
nuclear industry, besides devastating impact, the probability
of a particle altering the memory is very high. Therefore, the
need for radiation-resistant electronics is higher than in any
other domain. This can be achieved e.g., via HARDSIL R©
a special technology that immunizes semiconductor devices
against high temperatures or radiation-induced stress without
the need for special design techniques (RHBD) or expensive
specialized semiconductor processes (RHBP). HARDSIL R©
can enhance a broad range of semiconductor devices. It is a
fully designed agnostic approach, where any standard manu-
facturing equipment and process geometry can be used with no
resulting negative impact on performance, power consumption,
or yield. Simulations have shown the ability to scale down
to the most sophisticated leading-edge technologies like Fin-
FET implementations [33]. One type of MCU that employs
HARDSIL technology is the VA108X0 [34] micro-controller
from Vorago technologies, based on the ARM R©Cortex R©-M0
processor with a radiation tolerant case.

Another example of highly reliable MCU is the TMS570
series from Texas Instruments’ line Hercules. This safety
micro-controller is targeted for safety applications, through
hardware-based fault correction/detection features in the form
of dual cores that can run in lockstep. Moreover, it has
automated self-testing of memory and logic, peripheral re-
dundancy, monitor/checker cores, and full path ECC. The
full path ECC means that all memories in the MCU are
protected with ECC (Flash, Data Flash for EEPROM, SRAM).
This type of hardware-based ECC is performed by the CPUs
and can correct single-bit errors and detect double-bit errors
(SECDED). The ECC is evaluated in parallel to application
processing, so there is no impact on latency or performance.
The same integrated safety protection can be found in NXP’s
Kinetis Kx line. Their Flash and RAM memories are also
protected with ECC codes (SECDEC).

The examples and Figure 7 outline a selection of MCUs
specialized for safety-critical applications. These MCUs are
certified according to automotive (ISO 26262[35]) and indus-
trial (EC 61508[36]) safety standards. As a result, they are
significantly more expensive than standard COTS MCUs. This
cost difference may lead engineers and designers of safety
systems to look at cheaper solutions based on COTS MCUs.
As outlined above, some COTS MCUs already integrate simple
hardware memory protection such as parity bits. The computa-
tion of these simple protection schemes requires less resources
than more complex EDAC (SECDED) codes. Adding them to a
controller does not significantly increase the overall costs. The

254

International Journal on Advances in Systems and Measurements, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 7. Safety-certified (IEC61508, ISO26262) micro-controllers

parity bit is a prime example of a simple protection scheme,
however, it comes with drawbacks as it can only detect odd-
numbered bit errors (single, triple, etc.) in the protected word.
In addition, using parity bits only allows the detection of the
error, and and without a proper safety architecture, memory
recovery is practically impossible.

For example, the STM32L4 series and some MCUs of
the STM32Fx series from ST Microelectronics have parity
protection for 25% of their memory in addition to EDAC
codes for flash memory. When an error occurs in protected
memory, an interrupt with high priority is activated on the CPU
side. In this way the error is detected, but there is no way to
recover it. Advanced MCUs have additional ECC protection
for SRAM memories. For example, in the case of Cortex R4
based CPUs, the EDAC encoding/decoding is done by the CPU
(in-built), whereas in the case of Cortex-M3 and ARM7TDMI-
based CPUs, the ECC encoding/decoding is done by the RAM
wrapper. The main advantage of having the encoding/decoding
within the CPU is to speed up memory access by removing
the time-consuming SECDED block. SECDED is based on the
Flash/RAM technology design of the controller and is adapted
accordingly. Some designs have two SECDED modules that
operate in parallel. The results are then compared and accepted
only if both are the same [37].

III. PREVAILING SAFETY ARCHITECTURES

Safety-critical systems often adopt an N-modular (where
N > 2) architecture. The components exist in certain redun-
dancy and perform the same computations in parallel. The
correct result is established based on majority voting. If one
of the modules fails, the majority voter masks the fault by
identifying the result of the remaining fault-free modules [7].
Although N-modular systems can achieve a higher SIL level,
as they provide inherent fault tolerance and consequently a low
failure rate, many safety systems use simple architectures such
as 1oo1D and 1oo2D [20]. The main advantage is that they
have a good balance between functional safety (i.e., achieving
a high safety level) and development process costs.

In 1oo2D architectures, all hardware including sensor in-

Figure 8. Memory model in 1oo2D architecture

puts is independently implemented twice. This leads to a multi-
core architecture similar to the one described in [38]. The
output of these parallel lines is checked and selected by a
voter [39]. For a safety system, it is quite often not important
if the final result (chosen by the voter) is correct, as long as
it is safe. In case the two outputs differ, the result leading to
a safe and non-critical state is preferred and opted for by the
voter.

For memory, a 1oo2D architecture provides independent
memories for each parallel line of the computing system.
Two independent parallel memories ensure system hardware
and software redundancy. This means that besides memory-
specific data which is required for synchronization, identical
data can be found on both memories (Figure 8 depicts the
memory model in a 1oo2D architecture). Data in mixed-
critical memories can be categorized into safety-relevant and
safety non-relevant data. The different criticality levels of
data in combination with duplicated memory in the 1oo2D
architecture are shown in Figure 9.

Figure 9. Example of the mixed critical memory in the 1oo2D safety
architecture

All regions are equally exposed to faults, however, different
forms of protection can be applied to different regions. Experts
advise that protection should be implemented in the form of
periodical test runs over data. As a guide, we refer the reader
to the Safety manual [40] provided by STMicroelectronics
for their micro-controllers. To enhance the coverage of hard
errors on SRAM, detection tests like Galloping [41] or March
classes [42] have been proposed.

For soft errors, STMicroelectronics advises redundancy
to be implemented for all safety-relevant variables. Typical
solutions provide a copy of original data on the same memory
chip or on an additional (redundant) chip. The copied data is
periodically compared to the original, in order to detect the
presence of errors [43]. If an error is detected, it is not clear
which memory (or part of the memory) is affected. Hence,

255

International Journal on Advances in Systems and Measurements, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



such a solution leads to detection but not a correction of the
soft error and will result in the system transitioning into a
safe-state.

As we have seen in Figure 1, the number of soft errors
shows a negative correlation with the size of the underlying
transistors, leading to a rapid increase of soft errors. In the
context of automation, this means that systems are more likely
to go into safe states that can disrupt or stop the automation
process. These unwanted halts affect the availability of the
system [44]. A solution for overcoming this problem is to add
mechanisms on top of the existing architecture, which allow
for the recovery of faulty data and to extend the on-line time of
the system. Recovery mechanisms in this context are usually
ECC based. As outlined before, ECC is mostly hardware-
based and requires additional time and additional hardware
for computing. It is not feasible to extend existing brownfield
automation systems with additional hardware, as this would
lead to the need for a complete redesign of the system. Another
option is to apply software-based ECC approaches, which are
complex and expensive in terms of computation.

Given that 1oo2D already provides the possibility to detect
memory errors, the question arises how existing architectures
(i.e., 1oo2D) can be combined with other approaches that
allow correction of detected soft errors and exhibit very little
overhead. In addition, these methods should be flexible in
terms of their configuration, to enable their application in the
aforementioned mixed-critical scenarios where safety-critical
data requires more detailed monitoring.

From previous discussions it seems obvious that a solution
enables better memory error detection and correction strategies
for existing automation products must take the best of two
worlds, i.e., utilizing the properties of the underlying archi-
tecture to the fullest extent and combining them with flexible
software-based soft error correction methods which show little
overhead and can be adjusted in terms of mixed-criticality of
the prevailing system.

IV. CHALLENGES IN MITIGATING SOFT ERRORS

To overcome soft errors and consequently lower their
impact on the non-functional properties of a system, various
methods for error detection, correction, and mitigation were
introduced. As already stated in the previous section, the
available methods can be divided into hardware- and software-
based correction mechanisms. Hardware-based mechanisms
provide error detection and correction on an architectural
level and use specific hardware. Hardware approaches are not
applicable in the brownfield, i.e., existing devices or systems,
and usually involve redesign and redeployment. For brownfield
systems or devices, software solutions fit better because they
can be implemented with a simple update or software patch
and consequently minimize costs. Software-based correction
mechanisms operate on the memory itself without altering
the underlying hardware or architecture. Depending on the
application, adequate correction quality is required. Quality
denotes the fault magnitude that the strategy is capable of
detecting, mitigating, and/or recovering. Given that there is
no such thing as a free lunch, soft error strategies require
additional execution time and/or memory space, and therefore
affect processor run-time and can cause increased memory
overhead. On the other hand, hardware-based strategies are

more reliable, more powerful, and faster when it comes to
computing EDAC codes.

These observations lead to a general trade-off problem
for the design and deployment of error detection and cor-
rection, as it is always required to balance the quality of
detection (required by the underlying application) and the
resources required to implement appropriate correction and
detection strategies. Higher quality error correction requires
more computation time, more memory capacity, and some-
times additional hardware. Depending on the target system,
this might lead to a violation of the system’s requirements
in terms of cost, available memory space, or computation
time of the system’s applications. In the following, the system
requirements are outlined in more detail.

1) Run-time performance: The development of methods,
which provide sufficient error coverage, while keeping the
impact on a system’s run-time or memory overhead minimal, is
particularly important in the context of safety-critical systems.
This is due to the fact that such systems have very strict
timing requirements (i.e., norms in the field define specific
timing limits, such as Fault Tolerant Time Interval (FTTI)
(see Figure 10) in ISO26262 or Process Safety Time (PST) in
the IEC61508 standard). The FTTI constitutes the time-span
between a fault and the hazard which results from it [36], [35].

Figure 10. Fault reaction time and Fault Tolerant Time Interval (FTTI) [35]

Faults must be detected and corrected within this interval.
If a correction is not possible, the system must be guaranteed
to reach a safe state within the FTTI. Therefore, the run-
time performance of correction strategies plays a crucial role
in the context of safety-critical systems, as its application
must not lead to a violation of these FTTI requirements. For
example, when using software calculated EDAC codes, the
computation time required to calculate redundant bits needs
to be evaluated and taken into consideration. If additional
hardware is calculating redundant bits, it will increase memory
access. This time will probably not significantly affect overall
run time, but engineers need to be aware of it [15].

2) Memory consumption: Many software-based strategies
require additional memory space for their implementation,
which is used to store copies of data or code, or additional
information required by the method, such as Parity bits or
EDAC. Compared to a similar software solution, EDAC codes
exhibit the smallest overhead. The ratio between additional
bits required for protection and protected bits is always less
than one in EDAC, whereas this is not the case for full
redundancy. While in most cases EDAC codes can have a large
memory footprint, parity bits constitute their most lightweight
form. They allow monitoring of the consistency of a memory
region with a defined length based on a single bit, which

256

International Journal on Advances in Systems and Measurements, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



denotes whether the number of one-bits in the region is odd
or even. Decreasing the size of the protected region can
lead to increased memory overhead. To give an example: the
protection of a 32-bit word via Hamming code will result in a
3.15% memory overhead. One-bit recovery of a 32-bit word,
using Hamming code, would require an additional 7 bits and
result in a memory overhead of 22%. The EDAC calculation
always requires additional hardware components that will
do the calculations and store the calculated bits. Different
redundant architectures also require additional components, or
entire multiplied systems as is the case with 1oo2 or 2oo3
safety architectures.

3) Mitigation quality: The quality of a strategy is defined
by its capability to detect and correct (i.e., recover from)
faulty bits. A system’s detection and correction capabilities
are reflected in the number of faulty bits that can be detected
and corrected. The simplest EDAC code (Parity) can detect
all odd-numbered bit flips but does not provide recovering
capabilities. A 2oo3 system can detect and correct all bit flips,
but its complexity and consequently costs are much higher. A
short overview of the quality for some mitigation strategies is
given in Figure 11

Figure 11. Mitigation strategies and quality parameters

In fail-safe systems, detection of an error is usually re-
flected with the safety feature because detection is enough to
trigger activation of the safe state, which prevents further safety
issues. Between error detection and safe-state activation, the
system has a defined allowed time for recovery. If recovery is
not possible for any reason, the system will transition into the
safe state and its availability will be affected.

4) Mixed criticality: Safety-critical applications usually
exhibit different levels of criticality in terms of their underlying
data. While a fraction of data is system critical (i.e., if affected
by an error the consequences can be catastrophic), errors
affecting non-critical data will not impact the safety of op-
eration. This phenomenon is known as mixed-criticality [45].
Incorporating mixed-criticality into the design of mitigation
strategies, by devising and applying different detection and
correction strategies on memory areas holding data of different
levels of criticality, allows further improvement of a system’s
availability while guaranteeing a correct treatment of system-
critical events [45]. While adequate protection needs to be
provided for the whole system, safety-critical data requires
stronger protection. Several recent studies have investigated
mixed-critically in memories, with a focus on data delivery
and prioritization according to data criticality [46].

Taking mixed-criticality into account when designing mem-
ory detection and correction strategies allows the reliability

and safety of the underlying system to be enhanced, as such
strategies aim to increase the protection of safety-critical
memory parts. By defining different parts of memory to have
different criticality, the overhead of correction strategies can
be reduced, in contrast to applying rigid correction/detection
strategies to the entire memory. In addition, incorporating
mixed-criticality can increase a system’s availability, as faults
in non-system critical memory areas will not necessarily lead
to a halt of the system. Figure 9 shows the example of mixed
critical memory in the 1oo2D safety architecture.

5) Frequency of access: One interesting phenomenon that
can be discussed in the context of protecting memories is
access frequency. Two classes of memory access can be
distinguished here: low-frequency and high-frequency memory
access [47]. Memories with high frequency are more general
purpose and can be updated several times per execution cycle.

Figure 12. Sketch of potential memory usage profile

The parts of the memories that have lower access frequency
usually include on-demand or periodically accessed data, with
large time intervals between consecutive accesses. Memories
used on-demand could, for instance, store the address of a
function that takes the system to the safe-state. As safe-state
activation does not happen often, the function will remain un-
used for long periods of time and thus will not be tested often.
Nevertheless, it must always be available. The accumulation
of soft errors on these resources can be of high relevance,
for example, when the system needs to comply with specific
normative requirements (e.g., SIL3 according to the IEC61508
standard [36]). Figure 12 depicts an exemplary memory usage
profile. To obtain a realistic memory usage profile, a safety-
critical device must be analyzed, as memory usage depends on
the applications.

To give an example let us imagine a system with hardware-
integrated parity bit protection. Parity bit protection can only
detect odd bit flips (single, triple, etc.) without correction, and
detection is only triggered when the protected part of memory
is accessed. In the context of rare access, the possibility exists
that this part of memory experiences more than two separate
bit flips between two accesses (protection activation). This can
lead to errors going undetected at the next access and can
lead to an unsafe-state of the system. The explained scenarios
and the effect of accumulation are shown in Figure 13. In
sequence (a), an error will be detected, because the parity bit
will not respond to the data, while in sequence (b), the test
will not detect an error in data because the calculated parity
bit responds to the data. This second phenomenon is called the
accumulation of error.

257

International Journal on Advances in Systems and Measurements, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 13. Sequence of the events: (a) when error will be detected , (b)
when error will go undetected

6) Memory organization: Due to environmental changes,
occurrences of soft memory errors are not continuous, and the
chance of a cell being hit by an error is randomly distributed.
Errors can appear at any time and in any type of memory or
memory part, which can aggravate protection and detection
mechanisms as they are type-dependent. One can distinguish
between two types of memory in embedded systems: non-
volatile and volatile memory. Non-volatile memory sustains
stored information during a loss of power (e.g., flash memory),
while volatile memory requires constant power to retain stored
information (e.g., SRAM) [48].

Embedded memories exhibit various regions: program
memory, data memory, registers, and I/O ports [49]. From a
software point of view, the memory layout of C/C++ programs
consists of the different sections that are saved in different
memory regions. Typical memory representations of C/C++
programs consist of a code segment, data segment, uninitial-
ized data segment (bss), stack, and heap. All of this can impact
the design of correction/mitigation mechanisms.

7) Availability vs Safety: Safe-state activation often leads
to a functional degradation of many system components, and
as it often results in a system halt it is associated with high
costs. It decreases the availability of the system to ensure the
safety of the system and its environment.

Especially in production lines, where every minute without
service is associated with high costs, a system’s availability is
of utmost importance. However, a highly available system is
costly, because it demands complex redundant architectures.
Therefore, a trade-off between safety and availability exists,
that needs to be optimized. One way to increase availability
while keeping functional safety on the demanded level is to
postpone or avoid the unnecessary activation of safe-states.
In [44] the concept of Predictive Fail-safe was proposed,
which aims to increase a system’s availability by applying data
analytics on safety-relevant data to predict and prevent future
failures.

8) Usability: Soft errors have been a focus of research
for the past 60 years. Although many approaches have been
introduced and tested with good results, only a few have
found their way into real-world applications. This is due to
the associated required resources (e.g., computation power and
time or memory consumption), which limits their applicability.
The strategies outlined in Section II-E are the only ones that
are currently applicable given the performance capabilities of
available micro-controllers and embedded memories. Usability
in this context is defined as a quality attribute that assesses

how easily a mitigation strategy can be implemented. Usability
addresses questions related to integration, including the follow-
ing: What do developers need to do to successfully configure
and deploy a chosen mechanism? What is the limitation of the
strategy, and is it possible to define the part(s) of the system
that needs to be protected? Hence, the usability parameter of
the strategy depends on three factors:

• The base system/device’s properties.
• The requirements/limitations of the strategy.
• The non-functional requirements of the user.

For example, DECTED (Double Error Correction, Triple
Error Detection) EDAC codes [7] show very good performance
against soft errors, but integrating such approaches (hardware
or software) into devices requires additional computational
power as well as additional computing time, which are usually
both limited in COTS devices.

V. EVALUATION OF STRATEGIES

As shown in Section IV, it is crucial to estimate the
performance and overheads of soft error mitigation strategies
in order to identify appropriate strategies for one’s problem
domain given the underlying system requirements. This sec-
tion demonstrates how to evaluate potential techniques in the
context of an existing 1oo2D safety architecture. The 1oo2D
safety architecture is considered fixed, and the goal of the
evaluation is to provide the means to enhance this existing
system regarding soft error mitigation.

The least complex solution (demanding only effort and time
and no additional hardware) is to apply a software-based mit-
igation technique. However, the problem with software-based
approaches is their memory consumption and computation
time requirements as well as complexity of implementation.

Given an existing architecture which already provides
certain features (e.g., 1oo2D safety architectures inherently
provides redundancy, that can detect but not correct errors), a
hybrid approach can be taken. In such an approach a system’s
existing features (e.g., error detection) are complemented with
additional software-based mitigation techniques to achieve in-
creased fault-tolerance (e.g., providing a correction mechanism
to complement 1oo2D detection mechanism).

In the following, an analysis of the mitigation strategies
explained in Section II will be presented, along with new
ideas that utilize existing peripherals of the micro-controller.
Techniques will be explained top-down to outline system
safety-enhancement prospects for designers involved in dif-
ferent development stages of the system. In addition, the top-
down order reflects the amount of effort required to implement
a strategy in the system, as alterations in earlier phases might
require a system redesign.

A. Software-based techniques
These techniques belong to the deployment phase accord-

ing to Section II. While they do not require additional hardware
per se, their overhead can affect the system’s performance.
To choose an appropriate strategy requires the comparative
assessment of potential strategies. This section demonstrates
how such an assessment could be performed via an exemplary
calculation and comparison of memory consumption and run-
time performances using the example of Parity Bit (PB)

258

International Journal on Advances in Systems and Measurements, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



and Extended Hamming Code (EHC). A similar approach
can be used when assessing other software-based mitigation
strategies.

The evaluation is performed for varying lengths of pro-
tected data, as strategies scale differently with different lengths.
For the representation of the codes, a common annotation
(n, k) is used, where n denotes the number of total bits and
k the number of protected data bits. The number of required
check bits can be easily calculated as n − k. Utilizing these
parameters, memory consumption (mc) is calculated in (1) and
exhibited in Figure 14.

mc[%] = (n− k)/k · 100% (1)

Figure 14. Memory overhead for different types of Parity Bit (PB) and
Extended Hamming Code (EHC), where the x-axis denotes the total length

of the word and y denotes the percentage of the memory overhead.

The run-time performance of a given strategy is closely
connected to the complexity of the underlying algorithm. A
good indicator of an algorithm’s complexity is the number of
logical XOR operators it requires for implementation.

In the context of PB, a calculation stemming from [50] was
used. The algorithm is based on the consecutive application of
shift and XOR operators. Alternatively, a lookup table could
be used to calculate the parity bits of 8-bit words. While using
a look-up table will slightly increase the memory consumption
of the algorithm, it will decrease its complexity by 3 XORs.

Figure 15. Number of XORs for encoding process for different types of
PB(n, k) and EHC(n, k), where y-axis denotes the number of total XORs

gates and the x-axis the number of the protected data bits.

Equation (2) was used to calculate the number of the XORs
gates for EHC.

XORs(k) = 2k+1 − k − 3 (2)

where parameter k can be derived from the following form
of Hamming code annotation H(2k, 2k − k− 1). Equation (2)

stems from [50], where it was calculated for the EHC recursive
encoding computation. Figure 15 shows the number of XOR
operators for varying lengths of protected bits.

PB and EHC differ significantly in terms of mitigation
quality. While PB is only capable of detecting odd numbers
of bit-flips errors (including single-bit errors), EHC can detect
double-bit flips errors and correct only single-bit errors. In the
context of safety-critical systems, this low mitigation quality
will have a big impact on availability and safety.

In [51], a detailed report is presented on the number of soft
errors in SRAM memory (512K x 8-bit) that were observed
in space. Errors were recorded in a nanosatellite circulating
the Earth’s orbit. During the 2510 days of recording a total
of 247593 soft errors occurred, which could be categorized
into four types. The majority of the errors (i.e., a total of
244150 errors constituting 98.6% of the recorded errors) fell
in the single-bit error class. Only 2996 errors (i.e., 1.21% of
the recorded errors) constituted double-bit errors. Multiple bit
(> 2) errors occurred at an even lower rate (corresponding to
a total of 217 errors (0.08%)), while the remaining errors (230
(0.09%)) were classified as severe errors.

Let us consider the capability of the algorithms under test
(PB and EHC) for this recorded error distribution. PB would
detect all single-bit errors and some of the multiple bit errors,
leading to a detection rate of 98.75%. PB detection alone is not
enough and would not increase the availability of the system,
because without recovery the sole identification of an error
would lead to the system being put into a safe-state. Using
EHC, 99.8% of errors would be detected and 98.6% would be
corrected. This means that the system’s availability could be
increased significantly as it would only be stopped (put in a
safe-state) for 1.4% of the errors. This leads to the conclusion
that (on its own) EHC is significantly better when it comes to
safety and availability, however, this can be associated with the
higher memory overhead and complexity (as shown before).
Furthermore, one should keep in mind that the SRAM used
was relatively old (approximately 20 years), and thus, exhibits
a lower probability for multiple bit errors because of the higher
technology node in use. With newer memories utilizing smaller
technologies, the distribution of the error is very likely to be
different (i.e., more multiple-bit errors are to be expected).

In the context of safety-critical systems, the application
of specific fail-safe architectures with hardware redundancy is
very common. The next section will introduce a widely used
fail-safe architecture and show how the application of simple
EDAC codes can further improve a system’s availability.

B. Hybrid techniques
While the previous section investigated purely software-

based strategies, another option to increase a system’s fault
tolerance is to actively integrate the underlying architecture
and components together with a software strategy.

In 1oo2D architectures with redundant memories (Sec-
tion II-B), if an error appears it is not clear which memory was
affected. Therefore, an error can be detected but not corrected
and it will result in the system transitioning into a safe-state.
A solution for overcoming this problem is to add mechanisms
on top of the existing architecture that allow the recovery of
faulty data and to extend the up-time of the system. Recovery
mechanisms in this context are usually EDAC code based.

259

International Journal on Advances in Systems and Measurements, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Adding additional hardware to the system is not feasible, as
this would require redesigning the system, and an alternative
option is to apply software-based EDAC code approaches.

1) Software Redundant parity: Given that 1oo2D already
provides the possibility to detect memory errors, the question
arises how existing architectures (i.e., 1oo2D) can be combined
with software-based approaches.

A method for enhancing existing 1oo2D hardware architec-
tures was proposed in our work [52]. This method constitutes
an extension for mixed-critical real-time systems with an
underlying 1oo2D architecture. We refer to it as Redundant
Parity (RP). Figure 16 explains the basic concepts of the
RP method. The method relies on 1oo2D’s ability to detect
soft errors and uses parity bits to establish the location of
the error. Initially, the method generates parity bits for data
that need to be protected (i.e., data in redundant memories).
When bit flips occur and the 1oo2 comparator detects different
bits in redundant data, the usual consequence is to generate a
signal that will trigger the safe-state of the device. In contrast,
our proposed RP method calculates new parity bits for both
protected parts of the memories. In the next step, old parity bits
are compared to newly calculated parity bits to establish the
fault source. If the algorithm distinguishes between healthy
and faulty data, the recovery phase is activated. Recovery
is performed by simply overwriting the faulty data with the
healthy data. Summarizing, the method uses the inherent
capability of the 1oo2D architecture to detect bit flips. With
the additional parity bit, the faulty redundant words can be
determined and by means of redundancy, recovery is possible.

Figure 16. Redundant Parity method.

The method enables the correction of single-bit soft errors,
which constitute the majority of soft-errors that occur. Odd
multiple bit soft errors can also be corrected and even multiple
bits can be detected. In the context of the recorded error
data presented in Section V, this method would detect 100%
of the errors and correct 99.4% of them. Memory overhead
would be doubled and complexity would increase by twice
the complexity of the parity bit.

Furthermore, the RP method provides separate detection
and recovery phases, leading to less recovery time than in
other EDAC methods. In addition, the proposed method is
completely independent of the software architecture as it
focuses on the memory’s word level rather than on variables
or structures [44]. However, the results also show that the
application of the approach is limited to a 1oo2D architecture,
which already provides the required data redundancy as well
as self-tests to detect errors in the data.

2) Hardware redundant parity: As mentioned in section II,
several affordable MCUs already integrate parity checks for

SRAM memory. If HW-based parity checks are available, the
Redundant Parity (RP) method explained in Subsection V-B1
could be implemented even more easily. This would help to
overcome the main drawback of the RP method, i.e., an on-
demand software-based calculation of the parity bit whenever
a protected word is accessed in memory. Given the appropriate
hardware, the calculation could be done automatically, mini-
mizing the impact on the existing code. Using dedicated hard-
ware would also relieve the CPU of the calculations required
by PB. In case of discrepancy detection between redundant
memories, the parity bit can easily be accessed and compared
with the newly calculated parity bit, allowing a fast recovery
procedure (i.e., overwriting a healthy over the faulty word) to
be performed. While several MCUs (e.g., the STM32L4x MCU
family) already provide inherent parity calculations, they often
do not allow direct access to the calculated parity bits, which
are calculated and saved internally. The only information
provided by the system is a highly prioritized interrupt to the
CPU, without any information about which of the memory
addresses the error occurred in. A potential solution would
be to scan the entire memory, but this not acceptable due to
timing reasons and it would also defeat the purpose of using
hardware.

Figure 17. Flow chart diagram of Hardware Redundant Parity.

These limitations can be overcome with the following
approaches: consider that a Hardware Parity Bit Mechanism
(HPBM) detects an error in 1oo2 redundant memories. The
CPU with the memory error will receive an interrupt. The
information is saved, and CPUs continue with normal opera-
tions. Later, the 1oo2D comparison test detects a discrepancy
between the redundant memories and its exact location. With
the previously stored information about the location of the
faulty memory (i.e., the saved interrupt), the fault can be
pinpointed to one memory. If the interrupt is received on the
CPU1 side, then data from CPU2 can be copied over the data
of CPU1, otherwise, if CPU2 got an interrupt then data from
CPU1 will be transferred to CPU2. If one of the CPUs gets
more than 1 interrupt in the interval between two comparison
tests, the safe-state should be activated, because the latest
information about the faulty side will be wrong. Also, the
safe-state will be activated if both CPUs receive an interrupt.

260

International Journal on Advances in Systems and Measurements, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The flow chart diagnosis of this Hardware Redundant Parity
algorithm is shown in Figure 17.

In contrast to its software-based predecessor, the approach
does not require additional memory. Additionally, its com-
plexity decreases as the overall code does not need additional
changes, in contrast to the software RP algorithm, where the
code to calculate parity bit needed to be inserted at every
write request. The complexity of this approach is therefore
very simple since no costly computations and no additional
time is required, so overall system run-time is unaffected. In
the context of safety, the functional safety assessment of the
resulting system is easier. In other words, validation of the
concept and showing that it has no false positives or false
negatives is easier than in previous cases.

3) DMA based recovery: Direct memory access (DMA) is
a method that allows an input/output (I/O) device to send or
receive data directly to or from the main memory, bypassing
the CPU to speed up memory operations. The process is
managed by a chip known as a DMA controller (DMAC). The
following mitigation strategy utilizes DMA method capabilities
to protect memory with minimum changes to the operating
code of the system.

Assume that a comparison self-test is done in slices as
explained before. In the beginning, a copy of the safety-critical
data is stored in the spare memory via DMA. As a result, both
CPUs will have an original and a copy of the original safety-
critical data. When an error occurs, i.e., a bit flip on the CPU1’s
memory, a comparison test will detect a discrepancy between
the original data of two memories. Usually, this would lead to
a safe-state but in this approach, recovery is possible and the
safe-state can be avoided. After a discrepancy between mem-
ories is detected, each CPU starts a local self-test, comparing
the original with the copied data. If the locally compared data
is equal for CPU1 then data on CPU1 is intact and we can
assume that the faulty memory is on CPU2. The recovery can
be achieved by simply overwriting faulty data (CPU2) with
healthy data (CPU1). If the locally compared data is not equal,
then the assumption is that further corruptions occurred, and
therefore, a safe-state will be activated. In general, the DMA
method will theoretically cover all 1-bit errors. As shown in the
example memory usage profile (Figure 12), although it is not
possible to cover everything, a significant part of the memory
will be covered. The previously described method’s behavior
for recovery and safe state handling, is depicted in Figure 18.
The method can be applied in the same manner to CPU2.

The drawback of this approach is that additional memory
is needed to hold copies of the data. This approach has a minor
effect on the code because it only requires the configuration
of the DMA and implementation of the recovery routine. The
effect on the overall run-time is minimal because copying a
few slices of the data should not have a significant impact. This
method is not restricted to specific parts of the memories as in
the case of HW redundant parity. Additionally, DMA is now
a standard method that is included in most MCUs, therefore,
it is not dependent on the MCU type.

C. Built-in hardware techniques
If none of the previous two categories fulfill the require-

ments for memory protection, then a redesign of the system
should be considered. In this case, micro-controllers with
built-in protection techniques should be used from the early

Figure 18. States of “DMA based recovery” operation within a 1oo2
memory architecture, regarding different perceived errors in CPU1 and

CPU2’s original data and copy data segments

design stages. These techniques are explained in Sections II-C
and II-B. However, these techniques also have associated qual-
ity attributes, and thus, limitations have to be considered. For
example, parity bit protected memories have a low mitigation
quality (detection only), while ECC-Hamming code protected
memories are better in this respect. But in some cases, run-time
is affected or only some parts of the memory are protected.
In general, when using built-in hardware, techniques will
guarantee a better mitigation process but on the other hand,
we are getting away from COTS MCUs and heading to safety-
certified MCUs that are far more expensive. Nevertheless, as
we stated in Section II-E, there are already some COTS MCUs
availabe with built-in protection mechanisms. With advances
in production techniques, we expect that the number of COTS
MCUs with integrated measures will increase.

VI. CONCLUSION

With decreasing transistor sizes, soft errors induced by ex-
ternal environmental factors increasingly constitute a problem
for memory operation and provide challenges to ensuring a
system’s safety and availability.

261

International Journal on Advances in Systems and Measurements, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The main goal of this work was to review mitigation
strategies for 1oo2D safety architecture, which are applicable
in different development phases of a system, as well as to
identify the challenges which need to be considered during
the design of soft-error mitigation strategies.

Today, several safety certified MCUs with integrated mea-
sures against radiation can be found on the market. COTS
MCUs, on the contrary, are not always equipped with such
protection measures and often only utilize the most simple
protection techniques. As safety certified micro-controllers are
becoming more expensive, industry often utilizes COTS micro-
controllers in different safety architectures. These architectures
rely on redundancy, i.e., the multiplication of systems, which
can lead to even more expensive production costs and an
increase in the overall system’s complexity. Therefore, there
is a need for solutions that utilize simple safety architectures
together with additional techniques built on top of existing
available architectures. Such approaches intend to keep safety
at the demanded level but at the same time increase availability
and reliability with minimal additional costs.

To increase availability and reliability within COTS mem-
ories, a certain level of fault tolerance is required. Current
safety-critical applications rely on simple fail-safe architec-
tures such as 1oo2D. The reliability and availability of fault-
tolerant systems can be further improved, if such architectures
are extended with additional software-based recovery tech-
niques such as EDAC codes, which does not require additional
hardware or a redesign of the underlying architecture.

As demonstrated in Section V potential mitigation strate-
gies can be evaluated in terms of their overhead and com-
plexity, as well as the different system development phases
they apply to. Such a categorization of strategies highlights
their individual cost and requirement trade-offs, their limits,
and allows for the identification of suitable methods for
specific application scenarios (e.g., when retrofitting existing
brownfield automation devices).

When deciding on a method to be implemented on existing
hardware, one must be aware of the associated overhead costs,
as it will likely increase run-time and/or reduce available
memory space. This aspect can be incorporated in strategy
design by directly addressing mixed-criticality of data within
correction and detection strategies, and differentiating among
memory regions. This article demonstrated how such an as-
sessment could be performed, by calculating and comparing
memory consumption and run-time performances of different
strategies, which can then be linked to the existing require-
ments of existing safety architectures, such as 1oo2D.

Software-based measures are rather difficult to use as
they require implementation and integration into an existing
system. If there is no other option, however, software-based
measures must be implemented. In this case, two points
should be considered: i) The usage of redundancy or coding
theory (EDAC codes), where parameters such as quality and
overhead (see Section IV) need to be taken into account. ii)
The implementation has to be targeted at towards the usage
profiles of the memory. Taking these profiles into account helps
to reduce memory overhead and reduce implementation and
integration overhead.

A thorough analysis of chosen strategies that are to be
deployed in industrial controllers must be planned, in order

to i) identify their limitations in the context of the system
and ii) analyze the overall effect of the methods on the
system regarding the associated challenges (see Section IV).
Moreover, a detailed evaluation of a strategy’s impact on a
system’s availability and reliability must be investigated in
detail.

Figure 19. Deployment of mitigation strategies for greenfield and brownfield
devices

A summary of this study’s findings is presented in Fig-
ure 19. The green line presents different ways to mitigate
soft-error for the different stages of system development. This
option concerns greenfield systems (i.e., when designing a
system from scratch). The brown line, on the other hand,
represents options relevant to implementing additional soft-
error mitigation strategies for brownfield devices (i.e., exist-
ing systems). Three approaches are possible for retrofitting
brownfield automation. One is a complete redesign of the
system, including measures such as shielding, hardening, or
the selection and application of different, more resilient types
of memory. This option might require more time and costs
than expendable for an existing system. The second approach
concerns a partial redesign, by adding additional components
that increase the redundancy of the system. Although this
approach is less expensive than a complete redesign, it is still
associated with significant costs and effort. The last approach
is to deploy software-driven approaches. While this approach
is associated with the least costs, it requires extensive testing
of non-functional parameters in order to make sure that the
strategies are indeed applicable in the system context.

ACKNOWLEDGMENT
The authors gratefully acknowledge the support of the

Austrian Research Promotion Agency (FFG) (#6112792).

REFERENCES
[1] A. Kajmakovic, K. Diwold, N. Kajtazovic, and R. Zupanc, “Challenges

in mitigating soft errors in safety-critical systems with cots micro-
processors,” in PESARO 2020, The Tenth International Conference
on Performance, Safety and Robustness in Complex Systems and
Applications. IARIA, Feb. 2020, pp. 13–18.

[2] J. Vankeirsbilck, H. Hallez, and J. Boydens, “Soft error protection
in safety critical embedded applications: An overview,” in 2015 10th
International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC). IEEE, 2015, pp. 605–610.

[3] H. Iwashita, “International standards adopted by ITU-T to address soft
errors affecting telecommunication equipment,” ITU-T International
Telecommunication Union - Telecommunication Standardization Sector,
Geneva, CH, Standard, 2018.

262

International Journal on Advances in Systems and Measurements, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[4] H. Forsberg and K. Karlsson, “COTS CPU selection guidelines for
safety-critical applications,” in 2006 IEEE/AIAA 25TH Digital Avionics
Systems Conference, Oct. 2006.

[5] V. THATI, J. Vankeirsbilck, J. Boydens, and D. Pissoort, “Data error
detection and recovery in embedded systems: a literature review,”
Advances in Science, Technology and Engineering Systems Journal,
vol. 2, no. 3, 2017, pp. 623–633.

[6] M. Duncan and P. Roche, “Paving the way towards autonomous
driving—tackling soft errors to security challenges,” in 2017 IEEE
International Reliability Physics Symposium (IRPS), 2017, pp. 2E–1.

[7] D. Elena, Fault-Tolerant Design. KTH Royal Institute of Technology,
Krista, Sweden: Springer, 2013.

[8] A. Mukati, “A survey of memory error correcting techniques for
improved reliability,” Journal of network and computer applications,
vol. 34, no. 2, 2011, pp. 517–522.

[9] E. Fujiwara, Code Design for Dependable Systems: Theory and Prac-
tical Application. New York, NY, USA: Wiley-Interscience, 2006.

[10] S. Jeon, E. Hwang, B. V. Kumar, and M. K. Cheng, “LDPC codes for
memory systems with scrubbing,” in 2010 IEEE Global Telecommuni-
cations Conference GLOBECOM 2010. IEEE, 2010, pp. 1–6.

[11] B. Tahir, S. Schwarz, and M. Rupp, “BER comparison between con-
volutional, turbo, LDPC, and polar codes,” in 2017 24th International
Conference on Telecommunications (ICT). IEEE, 2017, pp. 1–7.

[12] G. Mayuga, Y. Yamato, T. Yoneda, M. Inoue, and Y. Sato, “An
ECC-based memory architecture with online self-repair capabilities for
reliability enhancement,” in 2015 20th IEEE European Test Symposium
(ETS). IEEE, 2015, pp. 1–6.

[13] R. Santos, S. Venkataraman, A. Das, and A. Kumar, “Criticality-aware
scrubbing mechanism for sram-based FPGAs,” in 2014 24th Inter-
national Conference on Field Programmable Logic and Applications
(FPL). IEEE, 2014, pp. 1–8.

[14] M. Restifo, P. Bernardi, S. De Luca, and A. Sansonetti, “On-line
software-based self-test for ECC of embedded RAM memories,” in 2017
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT). IEEE, 2017, pp. 1–6.

[15] E. Peter and P. Salvatore, “Error detection in sram,” Texas instruments,
Application Report, 2017.

[16] N. Maruyama, A. Nukada, S. Matsuoka et al., “Software-based ECC
for GPUs,” in 2009 Symposium on Application Accelerators in High
Performance Computing (SAAHPC’09), vol. 107, 2009.

[17] D. Dopson, “SoftECC: a system for software memory integrity check-
ing,” Ph.D. dissertation, Institute of Technology. Dept. of Electrical
Engineering and Computer Science, Massachusetts, 2007.

[18] Intel R© Embedded Memory User Guide, STMicroelectronics.
[19] MWCT101xS Safety Manual, NXP Semiconductors.
[20] F. Handermann, “Process safety architecture system neutral solution

comparison,” Chemical Engineering Transactions, vol. 48, 2016, pp.
499–504.

[21] R. Mariani and P. Fuhrmann, “Comparing fail-safe microcontroller
architectures in light of IEC 61508,” in 22nd IEEE International
Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT
2007). IEEE, 2007, pp. 123–131.

[22] S. Poledna, Fault-tolerant real-time systems: The problem of replica
determinism. Springer Science & Business Media, 2007, vol. 345.

[23] OpenStax, Chemistry. Rice University: OpenStax, OpenStax Chem-
istry, 2014.

[24] F.-X. Yu, J.-R. Liu, Z.-L. Huang, H. Luo, and Z.-M. Lu, “Overview of
radiation hardening techniques for ic design,” Information Technology
Journal, vol. 9, pp. 1068-1080, 2010.

[25] H.-K. Lim and J. G. Fossum, “Threshold voltage of thin-film silicon-
on-insulator (SOI) MOSFET’s,” IEEE Transactions on electron devices,
vol. 30, no. 10, 1983, pp. 1244–1251.

[26] T. Nakamura, H. Matsuhashi, and Y. Nagatomo, “Silicon on sapphire
(SOS) device technology,” Oki technical review, vol. 71, no. 4, 2004.

[27] M. Karagounis, D. Arutinov, M. Barbero, R. Beccherle, G. Darbo,
R. Ely, D. Fougeron, M. Garcia-Sciveres et al., “Development of
the ATLAS FE-I4 pixel readout IC for b-layer upgrade and super-
LHC,” Proceedings of the Topical Workshop on Electronics for Particle
Physics, TWEPP 2008, Jan. 2008.

[28] F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasiva-
mani, E. Buda, F. Pellizzer et al., “A multi-level-cell bipolar-selected
phase-change memory,” in 2008 IEEE International Solid-State Circuits
Conference-Digest of Technical Papers. IEEE, 2008, pp. 428–625.

[29] N. An, R. Wang, Y. Gao, H. Yang, and D. Qian, “Balancing the lifetime
and storage overhead on error correction for phase change memory,”
PloS one, vol. 10, no. 7, 2015, p. e0131964.

[30] R. Forchhammer, “Automotive MCUs in28nm FD-SOI with ePCM
NVM,” STMicroelectronics, 2018.

[31] A.V.Kolobov and J. Tominagaand P.Fons, “Phase-change memory ma-
terials,” in Springer Handbook of Electronic and Photonic Materials.
Springer, 2017.

[32] L. Forbes, “Fully depleted silicon-on-insulator cmos logic,” Dec. 14
2004, uS Patent 6,830,963.

[33] V. Technologies, “HARDSIL R© integration & component design for
foundries,” MoPac Expressway, Suite 350, Austin, Texas, 7874, 2019.

[34] Product manual VA108x0, Vorago Technologies.
[35] “Iso 26262 - road vehicles – functional safety, part 1–10. electrical

and electronic components and general system aspects,” International
Organization for Standardization, Geneva, CH, Standard, 2011.

[36] IEC, “International Standard 61508 Functional safety: Safety related
Systems,” International Electrotechnical Commission, Geneva, CH,
Standard, 2005.

[37] F. Nocha, “Ecc handling in tmsx70-based microcontrollers,” Texas
instruments, Application Report, 2011.

[38] F. Reichenbach and A. Wold, “Multi-core technology–next evolution
step in safety critical systems for industrial applications?” in 2010
13th Euromicro Conference on Digital System Design: Architectures,
Methods and Tools. IEEE, 2010, pp. 339–346.

[39] C. Preschern, N. Kajtazovic, and C. Kreiner, “Built-in security enhance-
ments for the 1oo2 safety architecture,” in 2012 IEEE International Con-
ference on Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER). IEEE, 2012, pp. 103–108.

[40] STM32F4 Series safety manual - user manual, STMicroelectronics.
[41] C.-W. Wu, “Chapter 8 - memory testing and built-in self-test,” in VLSI

Test Principles and Architectures, L.-T. Wang, C.-W. Wu, and X. Wen,
Eds. San Francisco: Morgan Kaufmann, 2006.

[42] A. J. Van De Goor, “Using march tests to test srams,” IEEE Design
Test of Computers, March 1993.

[43] Handling of soft errors in STM32 applications, Intel.
[44] A. Kajmakovic, R. Zupanc, S. Mayer, N. Kajtazovic, M. Hoeffernig,

and H. Vogl, “Predictive fail-safe improving the safety of industrial
environments through model-based analytics on hidden data sources,”
in 2018 IEEE 13th International Symposium on Industrial Embedded
Systems (SIES). IEEE, 2018, pp. 1–4.

[45] A. Burns and R. I. Davis, “Mixed criticality systems - a review,” in
Department of Computer Science, University of York, York, UK, 2015.

[46] J. S. Miguel and N. E. Jerger, “Data criticality in network-on-chip de-
sign,” in Proceedings of the 9th International Symposium on Networks-
on-Chip, 2015, pp. 1–8.

[47] L. Botler, N. Kajtazovic, K. Diwold, and K. Römer, “JiT fault detection:
Increasing availability in 1oo2 systems just-in-time,” in Proceedings
of the 15th International Conference on Availability, Reliability and
Security, ser. ARES ’20. New York, NY, USA: Association for
Computing Machinery, 2020.

[48] K. Itoh, “Embedded memories: Progress and a look into the future,”
IEEE Design & Test of Computers, vol. 28, no. 1, 2011, pp. 10–13.

[49] Reference manual for STM32 applications, Intel.
[50] L. Zhengrui, L. Sian-Jheng, and H. Honggang, “On the arithmetic

complexities of Hamming Codes and Hadamard Codes,” 2018.
[51] H. Caleb and B. Vipin, “Error detection and correction on-board

nanosatellites using Hamming codes,” Journal of Electrical and Com-
puter Engineering, 2019.

[52] A. Kajmakovic, K. Diwold, N. Kajtazovic, R. Zupanc, and G. Macher,
“Flexible soft error mitigation strategy for memories in mixed-critical
systems,” in 2019 IEEE International Symposium on Software Relia-
bility Engineering Workshops (ISSREW). IEEE, 2019, pp. 440–445.

263

International Journal on Advances in Systems and Measurements, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


