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Abstract— This paper presents a 3D point cloud mapping and 
merging in Global Navigation Satellite Systems (GNSS)-denied 
and dynamic environments using only a scanning Light 
Detection And Ranging (LiDAR) mounted on a vehicle. 
Distortion in scan data from the LiDAR is corrected by 
estimating the vehicle’s pose (3D positions and attitude angles) 
in a period shorter than the LiDAR scan period using Normal 
Distributions Transform (NDT) scan matching and Extended 
Kalman Filter (EKF). The corrected scan data are mapped 
onto an elevation map. Static and moving scan data, which 
originate from static and moving objects, respectively, in the 
environments are classified using the occupancy grid method. 
Only the static scan data are utilized to generate several 
submaps in different small areas using NDT-based 
Simultaneous Localization And Mapping (NDT SLAM) and 
Graph SLAM. These submaps are merged using Graph SLAM. 
Experimental results obtained in outdoor residential and 
urban road environments show the LiDAR-based mapping and 
merging via EKF and NDT-Graph SLAM provide accurate 
maps in GNSS-denied and dynamic environments. 

Keywords-LiDAR; point cloud map; mapping and merging; 
NDT-Graph SLAM. 

I.  INTRODUCTION 
This paper is an extended and improved version of an 

earlier paper presented at the IARIA Conference on Systems 
(ICONS 2020) [1] in Lisbon. 

Recently, many studies have been conducted on the 
autonomous driving and active safety of vehicles, such as 
automobiles and personal mobility vehicles, and on 
autonomous robots for last-mile and first-mile automation. 
Important technologies from these studies include 
environmental map generation (mapping) [2] and map-
matching-based self-pose estimation by vehicles using 
generated maps [3]. Many related studies used cameras, 
radars, and Light Detection And Ranging (LiDAR) [4][5].   

In this paper, we focus on mapping with a scanning 
LiDAR mounted on a vehicle. Compared with camera-based 
mapping, LiDAR-based mapping is robust to lighting 
conditions and requires less computational time. Furthermore, 
the accuracy of LiDAR-based mapping is better than that of 
radar-based mapping due to the higher spatial resolution of 
LiDAR. For these reasons, we focus on LiDAR-based 
mapping. 

In Intelligent Transportation Systems (ITS) domains, 
mobile mapping systems are used for mapping in wide road 
environments, such as highways and motorways [6]. We 
studied a method for point cloud mapping in narrow road 
environments, such as residential roads in urban and 
mountainous environments, using only a vehicle-mounted 
LiDAR [7]. The generated map could be applied to the 
autonomous driving and navigation of various smart vehicles, 
such as intelligent wheelchairs, personal mobility devices, 
and delivery robots [8]. The generated maps may also be 
utilized in various social services, such as disaster prevention 
and mitigation.  

Although mapping systems often utilize position 
information from Global Navigation Satellite Systems 
(GNSS) [9], the accuracy of GNSS positioning is decreased 
in urban and mountainous areas due to the blockage, 
reflection, and diffraction caused by buildings and 
mountains. In addition, mapping systems designed for 
mapping in static environments generate inconsistent maps 
in practical dynamic environments that have moving objects, 
such as cars and pedestrians. 

To address these problems, many studies have been 
conducted on LiDAR-based Simultaneous Localization And 
Mapping (SLAM) [9]. However, LiDAR-based SLAM in 
GNSS-denied and dynamic environments, such as urban 
street canyons in which the GNSS accuracy deteriorates and 
vehicles and people move, remains a significant challenge. 
This paper presents a point cloud mapping that uses only an 
onboard scanning LiDAR in GNSS-denied and dynamic 
environments. To do so, this technique integrates three 
methods that we previously proposed: distortion correction 
of the LiDAR scan data [10], extraction of scan data related 
to static objects from the entire LiDAR scan data [11][12], 
and point cloud mapping based on Normal Distributions 
Transform (NDT) and Graph-based SLAM [7]. The 
mapping performance by the proposed method is shown 
through experimental results in outdoor road environments.  

The rest of this paper is organized as follows. Section II 
presents an overview of related work, and Section III 
describes the experimental system. Section IV explains the 
correction method of LiDAR scan data distortion, and 
Section V presents the extraction method of static scan data, 
which are related to static objects (removal of moving scan 
data, which are related to moving objects) from the entire 
LiDAR scan data. Section VI describes the mapping and 
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merging methods based on NDT and Graph SLAM (called 
NDT-Graph SLAM). Finally, Section VII explains the 
experiments conducted to show the performance of our 
method, followed by the conclusions in Section VIII. 

II. RELATED WORK 
The main contribution of this paper is the conduct of 

LiDAR-based SLAM in GNSS-denied and dynamic 
environments by integrating components that we previously 
proposed: distortion correction of the LiDAR scan data [10], 
extraction of the scan data related to static objects from the 
entire LiDAR scan data [11][12], and point cloud mapping 
and merging based on NDT-Graph SLAM [7]. 

LiDAR-based SLAM is performed by mapping LiDAR 
scan data captured in a sensor coordinate frame onto a world 
coordinate frame using the vehicle’s self-pose (position and 
attitude angle) information. The LiDAR obtains range 
measurements by scanning LiDAR beams. Thus, when the 
vehicle moves, the entire scan data within one scan (LiDAR 
beam rotation of 360° in a horizontal plane) cannot be 
obtained at the same pose of the vehicle. Therefore, if the 
entire scan data obtained within one scan are mapped onto 
the world coordinate frame using information about the 
vehicle’s pose at a single point in time, distortion will arise 
in mapping. This distortion can be corrected by determining 
the vehicle’s pose more frequently than the LiDAR scan 
period, i.e., for every LiDAR measurement in the scan.  

Many distortion correction methods have been proposed 
[13][14][15]. However, most methods used additional 
sensors, such as odometer, Inertial Measurement Unit 
(IMU), and GNSS. Simple interpolation algorithms were 
also applied to determine a vehicle’s pose more frequently 
than the LiDAR scan period. Unlike conventional methods, 
we corrected the distortion of LiDAR scan data using only 
the LiDAR information via Extended Kalman Filter (EKF) 
[10]. Our distortion correction method performed well.  

When environmental features such as planes and pole-
like objects are available, scan matching (such as NDT [16] 
and Iterative Closest Points (ICP) [17] methods) is applied to 
LiDAR-based SLAM in GNSS-denied environments [18]. 
Scan matching is adopted to calculate the transformation 
between LiDAR scans. The LiDAR-based SLAM is then 
performed based on the calculated continuous transformation. 
One of cons in the LiDAR-based SLAM is the drift 
(degradation of the accuracy over time) due to the 
accumulation error. To reduce the drift, Graph SLAM [19] is 
employed in conjunction with LiDAR-based SLAM. 
Another effective approach toward reducing the drift by 
LiDAR-based SLAM is submap generation and merging; the 
drift can be avoided by allowing short trajectories per 
submap [20][21].  

We presented a mapping method in GNNS denied 
environments based on NDT-Graph SLAM [7]. A vehicle 
equipped with a LiDAR was moved such that loops could be 
made in road networks, and several submaps (maps of 
different small areas) were generated using NDT-Graph 
SLAM. Several submaps were also merged using Graph 
SLAM. Such approach to submap generation and merging 

makes it easy to update and maintain maps. However, further 
improvement is needed in the accuracy of submap merging. 
In addition, since a static world was assumed in our previous 
work, the presence of moving objects in practical dynamic 
environments deteriorates mapping performance. Then, 
improvements are required in the mapping method in 
dynamic environments.  

In dynamic environments, LiDAR scan data can be 
classified into two types, namely, scan data originating from 
moving objects (moving scan data), and those originating 
from static objects (static scan data), such as buildings, trees, 
and traffic poles. For accurate mapping, the moving scan 
data have to be removed; only the static scan data will be 
utilized. This problem is addressed by SLAM-Moving 
Object Tracking (MOT) or SLAM-Detection And Tracking 
of Moving Objects (DATMO) approaches [22][23].  

Apart from mapping, we have studied MOT and 
DATMO in crowded dynamic environments [11][12] for 
driving safety. Our moving-object detection method in MOT 
and DATMO was based on the occupancy grid method, 
which used the cell occupancy time and is simpler than usual 
probabilistic occupancy grid methods [24]. Our moving-
object detection method will accurately remove moving scan 
data from the entire LiDAR scan data captured in dynamic 
environments and generate static maps. 

III. EXPERIMENTAL SYSTEM  
As shown in Figure 1, our small experimental vehicle is 

equipped with a 32-layer scanning LiDAR (Velodyne HDL-
32E). The maximum range of the LiDAR is 70 m, the 
horizontal viewing angle is 360° with a resolution of 0.16°, 
and the vertical viewing angle is 41.34° with a resolution of 
1.33°. The LiDAR provides 384 measurements (the object’s 
3D position and reflection intensity) every 0.55 ms (at 2° 
horizontal angle increments). The period for the LiDAR 
beam to complete one rotation (360°) in the horizontal 
direction is 100 ms, and 70,000 measurements are obtained 
in one rotation. 

In this paper, one rotation of the LiDAR beam in the 
horizontal direction (360°) is considered one scan, and the 
data obtained from this scan are called scan data. Moreover, 
the LiDAR scan period (100 ms) is denoted as  and the 

 
 

 
 

Figure 1. Overview of experimental vehicle.  
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scan-data observation period (0.55 ms) as . 
To evaluate the SLAM performance, the vehicle is 

equipped with a GNSS/Inertial Navigation System (INS) 
unit (Novatel SPAN-CPT). The GNSS/INS unit outputs the 
vehicle’s 3D position and attitude angle (roll, pitch, and yaw 
angles) every 100 ms. The horizontal and vertical position 
errors (Root Mean Square, RMS) are 0.02 m and 0.03 m, 
respectively. The roll and pitch angle errors (RMS) are both 
0.02°, and the yaw angle error (RMS) is 0.06°. 

IV. DISTORTION CORRECTION OF LIDAR SCAN DATA 
This section describes the mapping method of scan data  

using NDT scan matching and distortion correction of 
LiDAR scan data using EKF. 

A. NDT Scan Matching 
The vehicle coordinate frame b  (Ob-xbybzb) is defined 

in Figure 2. The origin Ob is the center of the rear wheel 
axle of the vehicle; the xb, yb, and zb axes are the heading 
direction, the direction of the rear wheel axle, and the 
direction toward the sky, respectively. Although the LiDAR 
scan data are captured by the sensor coordinate frame fixed 
at the LiDAR, the objects’ 3D positions in the scan data are 
always transformed to those in b . For convenience, the 
scan data are hereafter assumed to be captured in b . 

When LiDAR scan data are captured in one scan, the 
scan data related to road surfaces are first removed using a 
method described in Section V, and the scan data related to 
objects are mapped onto a 3D grid map (voxel map) 
represented in b . A voxel grid filter [25] is applied to 
downsize the scan data. The block used for the voxel grid 
filter is a cube with a side length of 0.2 m. 

A local coordinate frame W  (O W -x W yW zW) is defined 
in Figure 2. W  coincides with b  when the vehicle starts 
to generate the submap. In w , a voxel map with a voxel 
size of 1 m is used for NDT scan matching. For the i-th (i = 1, 
2, …n) measurement in the scan data, the position vector in 

b  is denoted as bip  and that in w as ip . The following 
relation is then given: 

( )
1 1

i bip p
Τ x                             (1) 

where ( , , , , , )Tx y zx  is the vehicle’s pose. Tzyx ),,(  
and T),,(  are the 3D position and attitude angle (roll, 
pitch, and yaw angles) of the vehicle, respectively, in W . 
T(x) is the following homogeneous transformation matrix: 

( )
cos cos sin sin cos cos sin cos sin cos sin sin
cos sin sin sin sin cos cos cos sin sin sin cos

sin sin cos cos cos
0 0 0 1

Τ
x
y
z

x

 

The scan data obtained at the current time t  (t = 0, 1, 2, 
…), ( ) ( ) ( )1 2, ,t t tb b bp p p , are called the new input scan, 
and the scan data obtained in the previous time, i.e., before  

 
 

Figure 2.  Notation related to vehicle motion. 
 

 
 

Figure 3.  Normal distributions transform of reference scan data. 
 
 

)1(t , )1()1()0( ,,, tPPPP , are called the reference scan 
(environmental map). 

NDT scan matching [16] conducts a normal distribution 
transformation for the reference scan data in each grid on a 
voxel map. It calculates the mean and covariance of the 
LiDAR measurement positions, as shown in Figure 3. The 
vehicle’s pose ( )tx  at t  is determined by matching the new 
input scan at t  with the reference scan data obtained prior 
to )1(t . The vehicle’s pose can be calculated by 
maximizing the following likelihood function: 

n

i
iii

T
ii tt

1

1 ))(())((
2
1exp qpΩqp      (2) 

where iq  and iΩ  are the mean and covariance, 
respectively, of the reference scan in the i-th voxel. ip  is the 
new input scan in the i-th voxel. 

The vehicle’s pose is used for conducting a coordinate 
transform with (1). The new input scan can then be mapped 
to W , and the reference scan is updated. The downsized 
scan data are only used to calculate the vehicle’s pose using 
NDT scan matching for a small computational cost. 

In this study, we use the Point Cloud Library (PCL) [26] 
for NDT scan matching.  

B. Distortion Correction of LiDAR Scan Data 
A motion model of the vehicle is first described for the 

EKF-based correction of LiDAR scan data distortion. 
As shown in Figure 2, the vehicle’s linear velocity in b  

is defined as Vb (the velocity in the xb-axis direction), and 
the angular velocities about the xb, yb, and zb axes are 
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defined as b , b , and b , respectively. If the vehicle is 
assumed to move at nearly constant linear and angular 
velocities, the following motion model can then be derived: 

( ) ( ) ( ) ( )1
( 1) ( ) ( ) ( ) ( )1
( 1) ( ) ( ) ( )1
( 1)

2 3 4
( 1)

( 1)

( 1)

( 1)

( 1)

( 1)

( 1)

cos cos
cos sin
sin

( ) ( ) ( )sin ( ) ( ) cos (

t t t t

t t t t t

t t t t

t

t

t

t

tb

tb

tb

tb

x a
x y a
y z a
z t a t a t t a t

V

　

3 4

3 4

( )

( )

( )

( )

) tan ( )
( ) ( )cos ( ) ( )sin ( )

1( ) ( )sin ( ) ( ) cos ( )
cos ( )

b

b

b

b

tb V

tb

tb

tb

t t
t a t t a t t

t a t t a t t
t

V w

w

w

w

 

     (3) 

where 2
1 / 2

bb Va V w , 2a  2 / 2
bb w , 3 ba  

2 / 2
b

w , and 4a   b  2 / 2
b

w . 
bVw , 

b
w , 

b
w , and 

b
w  are the acceleration disturbances.  

Equation (3) is expressed in vector form as follows: 

,,)()1( wξfξ tt                         (4) 

where T
bbbbVzyx ),,,,,,,,,(ξ  and w ( , ,

bbVw w  
, )

bb

Tw w . 
The vehicle’s pose obtained at t  using NDT scan 

matching is defined as ( ) ( )ˆ( )t tNDTz x . The measurement 
equation is then 

)()()( tNDTttNDT zHξz                          (5) 

where NDTz  is the measurement noise, and H is the 
following measurement matrix: 
 

0000100000
0000010000
0000001000
0000000100
0000000010
0000000001

H  

 
The correction flow of LiDAR scan data is shown in 

Figure 4. The LiDAR scan period  is 100 ms, and the 
scan-data observation period  is 0.55 ms. When the scan 
data are mapped onto W  using the vehicle’s pose, which is 
calculated every LiDAR scan period, distortion arises in the 
environmental map. This distortion of the LiDAR scan data 
is therefore corrected by estimating the vehicle’s pose using 
the EKF every scan-data observation period . 

The state estimate and its error covariance obtained at 
)1(t  using the EKF are denoted as ( 1)ˆ tξ  and ( 1)tΓ , 

respectively. From these quantities, the EKF gives the state 

 
 

Figure 4.  Flow of distortion correction.  
prediction ( 1,1)ˆ tξ  and its error covariance ( 1,1)tΓ  at 
( 1)t +  as follows: 

( 1, 1) ( 1)

( 1, 1) ( 1) ( 1) ( 1) ( 1) ( 1)

ˆ ˆ[ , 0, ]t t

T T
t t t t t t

ξ f ξ
Γ F Γ F G QG

     (6) 

where F = ξf ˆ/  and G = wf / . Q is the covariance 
matrix of the plant noise w. 

By a similar calculation, the state prediction ( 1, )ˆ t jξ  and 
its error covariance ( 1, )t jΓ  at )1(t + j  (where j = 1, 2, 
…,180) can be obtained by 

( 1, ) ( 1, 1

( 1, ) ( 1, 1) ( 1, 1) ( 1, 1)

( 1, 1) ( 1, 1)

ˆ ˆ[ ,0, ]t j t j

T
t j t j t j t j

T
t j t j

ξ f ξ
Γ F Γ F

G QG

        (7) 

In the state prediction ( 1, )ˆ t jξ , the elements related to 
the vehicle’s pose ),,,,,( zyx  are denoted as ( 1, )ˆ t jX . 
Using (1) and the pose prediction, the scan data ),1( jtbip  
in b  obtained at jt )1(  can be transformed to 

( 1, )t jip  in W  as follows: 

( 1, ) ( 1, )
( 1, )ˆ( )

1 1
t j t ji bi

t j
p p

Τ X                    (8) 

Since the LiDAR scan period  is 100 ms, and the scan-
data observation period  is 0.55 ms, the time t is equal 
to ( 1) 180t . Using the pose prediction ( 1, 180)ˆ tX  at 
t , the scan data ( 1, )t jip  at jt )1(  in W  are 
transformed into the scan data *

( )tbip  at t  in b  as 
follows: 

* ( 1, )( ) 1
( 1, 180)ˆ( )

11
t jt ibi

t
pp X                   (9) 

Using the corrected scan data *
( )tbp  * *

( ) ( )1 2, ,t tb bp p  
within one scan (LiDAR beam rotation of 360° in a 
horizontal plane) as the new input scan, NDT scan matching 
can accurately calculate the vehicle’s pose )( tNDTz  at t . 
Based on (4) and (5), the EKF then gives the state estimate 

( )ˆ tξ  and its error covariance ( )tΓ  at t  by 
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( ) ( 1, 180) ( ) ( ) 1, 180)

( ) ( 1, 180) ( ) ( 1, 180)

ˆ ˆ ˆ{ ( }t t t t tNDT

t t t t

ξ ξ K z Hξ
Γ Γ K HΓ

         (10) 

where ( 1, 180)ˆ tξ  and ( 1, 180)tΓ  are the state prediction and its 
error covariance at t ( ( 1) 180 )t respectively. ( )tK  

( 1, 180)
T

tΓ H  1
( )tS  and )( tS ( 1, 180)

T
tHΓ H R . R is the 

covariance matrix of the measurement noise NDTz . 
The corrected scan data *

( )tbP  are mapped onto W  
using the pose estimate calculated by (10), and the distortion 
in the environmental map can then be removed. 

V. EXTRACTION OF STATIC SCAN DATA 
In dynamic environments, which have moving objects, 

such as cars, two-wheelers, and pedestrians, LiDAR scan 
data related to moving objects (moving scan data) have to 
be removed from the entire scan data, and only scan data 
related to static objects (static scan data), such as buildings 
and trees, have to be utilized in mapping. 

In the extraction of static scan data, the LiDAR scan data 
are classified into two types, namely, scan data originating 
from road surfaces (road-surface scan data) and those 
originating from objects (object scan data), based on the 
following rule-based method.  

As shown in Figure 5, 32 measurements captured every 
horizontal resolution (0.16°) of the LiDAR are considered. 
The measurement r1, which is the closest measurement to 
the LiDAR, is assumed to be the measurement belonging to 
road surfaces. We obtain the angle of a line connecting the 
adjacent measurements r1 and r2 relative to the xy-plane in 

W . If the angle is less than 15°, the measurement r2 is 
determined to belong to road surfaces. If it is larger than 15°, 
the measurement r2 is determined to belong to objects. By 
repeating this process for all LiDAR scan data, we can 
distinguish the scan data related to objects (blue points in 
Figure 5) and those related to road surfaces (red points). If 
the threshold for discriminating the scan data related to road 
surfaces and objects is small, slopes is mis-detected as 
objects. In general, the steep slope of vehicles is less than 
about 6°. The threshold is therefore set to 15°. 

The object scan data are mapped onto an elevation map 
represented in W . In this paper, the cell of the elevation 

 
 

 
 

Figure 5. Extraction of LiDAR scan data related to objects. 

map is a square with a side length of 0.3 m. The height of 
each cell is the maximum height of multiple scan data 
mapped onto the cell. 

A cell containing scan data is called an occupied cell. 
For the moving scan data, the time to occupy the same cell 
is short (less than 0.8 s in this paper), whereas for the static 
scan data, the time is long (not less than 0.8 s). Therefore, 
using the occupancy grid method, which is based on the cell 
occupancy time [11][12], the occupied cells are classified 
into two types of cells, namely, moving and static cells, 
which are occupied by the moving and static scan data, 
respectively. Cells that the LiDAR cannot identify because 
of obstructions are defined as unknown cells, and their cell 
occupancy time is not counted.  

Since the scan data related to an object usually occupy 
multiple cells, adjacent occupied cells with almost the same 
height are clustered. In general, moving and static cells 
coexist in the same clustered cells. If the number of moving 
cells in clustered cells is not less than a threshold TH, these 
clustered cells are then decided as the moving-cell group; 
otherwise as the static-cell group. TH is given by the 
following sigmoid function:  

0.20.5
1 exp(5 0.3 )

TH
s

                     (11) 

where s is the number of cells that constitute the cell group. 
The above equation means that the threshold is 

dynamically determined to be 50 %–70 % according to the 
number of cells s. In our experience, since the speed of 
small (large) moving objects, such as pedestrians (cars), is 
low (high), the number of moving cells belonging to a cell 
group is small (large). To improve the performance of the 
moving-object detection, the threshold is set to 50 % (70 %) 
for small (large) objects with a small (large) number of 
occupied cells. The scan data in clustered static cells are 
applied to mapping. 

When moving objects pause, such as vehicles pausing at 
red lights, the occupancy grid-based method often 
misidentifies their scan data as static scan data. To address 
this problem, road-surface scan data are mapped onto the 
elevation map, and the cells where the road-surface scan 
data have been occupied for several scans are determined as 
road-surface cells. If the road-surface cells contain object 
scan data, these data are always determined as moving scan 
data and removed from the entire scan data. 

VI. SUBMAP GENERATION AND MERGING 
This section describes the methods of submap generation 

and merging based on NDT-Graph SLAM. For a clear 
explanation, we consider the generation and merging 
submaps 1 and 2, which are shown in Figure 6. 

A. Submap Generation 
In each submap, a local coordinate frame Wi  (O Wi -xWi 

yWi zWi) is defined, where i = 1, 2; Wi  coincides with b  
when the vehicle starts to generate the submap i. 
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The vehicle’s poses are mapped onto a factor graph (pose 
graph), as shown in Figure 7. In this figure, the vehicle’s 
poses are represented as the graph nodes (black triangles), 
and the relative poses between two neighboring nodes are 
represented as the graph edges (black arrows). The vehicle’s 
poses are calculated by NDT SLAM every 100 ms (LiDAR 
scan period). 

To recognize whether or not the vehicle has already 
visited a place (called revisit node or loop), the candidate of 
the revisit nodes is first obtained using the self-location 
information of the vehicle, which is estimated by NDT 
SLAM. If the distance of an old node from the current node 
is smaller than 10 m, as shown in Figure 8, the old node is 
recognized as a candidate of the revisit nodes.  

Thereafter, the Loop Probability Indicator (LPI) [27] is 
calculated using LiDAR scan data captured at the candidate 
of the revisit and current nodes. Each grid of the voxel map 
is first classified into three types of voxels: line, plane, and 
the other voxels in Figure 9. Three eigenvalues 
( 1 2 3 0 ) are calculated from LiDAR scan data in 
voxels based on the principal component analysis. When 

2 1/  is no more than 0.1, the voxel is decided as being of 
line type (Figure 9 (a)); when 3 2/   is no more than 0.1, 
the voxel is decided as being of plane type (Figure 9 (b)); 
when 2 1/  and 3 2/   are more than 0.1, the voxel is 
decided as being of another type (Figure 9 (c)). 

Based on the surface normal vector of the plane voxels in 
Σb, these plane voxels are further divided into nine classes: (1, 
0, 0), (0, 1, 0), (0, 0, 1), (1/ 2,1/ 2,0) , (1/ 2, 1/ 2,0) , 
(1/ 2,0, 1 / 2) , ( 1/ 2,0,1/ 2) , (0,1/ 2,1/ 2) , and 
(0, 1/ 2,1/ 2) . 

Two feature descriptors U = 1 2 11( , , , )Tu u u  and V = 
 
 

  
(a) Submap 1                                                  (b) Submap 2 

 

 
(c) Merged map 

 
Figure 6.  Submap generation and merging (top view). 

1 2 11( , , , )Tv v v are defined. U is calculated from LiDAR 
scan data captured at the candidate of the revisit nodes, and 
V is calculated from the LiDAR scan data at the current 
node. 1u  and 1v  are the numbers of line voxels in the voxel 
map. 2u – 10u  and 2v – 10v  are the numbers of plane voxels 
that are divided into nine classes. 11u  and 11v  are the 
numbers of the other voxels. 

From the feature descriptors U and V, LPI is given by  

11

1
11

1

{max( , ) }
LPI

max( , )

i i i i
i

i i
i

u v u v

u v
                      (12) 

A higher degree of similarity between the LiDAR scan 
data at both visit nodes leads to a larger LPI. Thus, the loop 
closure can be detected from the candidate of the revisit 
nodes using a large LPI value (a threshold of 80% in this 
paper). However, the LPI often fails in loop closure 
detection. 

 
 

  
Figure 7. Pose graph in submap generation. 

 

 
 

Figure 8.  Loop closure detection in submap generation.   

         
(a) Line voxel                 (b) Plane voxel                  (c) Other voxel 

 
Figure 9.  Classification of voxel. 
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The detection performance is then improved using a 
Matching Distance Indicator (MDI). From two LiDAR scan 
data captured at the current node and each candidate of the 
revisit nodes, the relative vehicle’s pose is calculated based 
on NDT scan matching; the displacement of the self-
locations at two nodes obtained by NDT SLAM is used as 
the initial relative pose for NDT scan matching.  

In our experience, even if the relative pose of the vehicles 
at two nodes is large, a larger voxel size leads to a more 
robust matching in NDT scan matching. Therefore, the 
relative pose is calculated using two different voxel sizes. 
The relative pose is first calculated using a voxel size of 3 m. 
The obtained relative pose is used as the initial pose to 
calculate the relative pose by NDT scan matching with a 
voxel size of 1 m. The final estimate of the relative pose is 
applied to calculate the nearest neighbor distance between 
the two LiDAR scan data via NDT scan matching. The MDI 
is then calculated as  

1

1MDI
N

i
i

d
N

                                 (13) 

where N is the number of measurements in the LiDAR scan 
data captured at the candidate of the revisit nodes. di is the 
nearest neighbor distance. 

A higher degree of similarity between the LiDAR scan 
data captured at two nodes leads to a smaller MDI. The loop 
closure can then be detected by a smaller MDI value (a 
threshold of 1.5 m in this paper).  

When the loop closures are detected by both LPI and 
MDI, the current vehicle’s pose relative to its pose at the 
revisit node is inputted to the pose graph as a loop closure 
constraint (blue arrow in Figure 7). The objective function 
of (14) is then minimized to improve the accuracy of 
submap generated by NDT SLAM: 

1 1, 1 1,( ) {( ) } {( ) }T pose
i i i i i i i i

i
J χ x x δ Ω x x δ  

, ,
, loop

{( ) } {( ) }
A B

T loop
B A A B B A A B

x x
x x δ Ω x x δ   

(14) 

where the first and second terms on the right side indicate the 
constraints on NDT SLAM and loop closure, respectively. 

1 2( , , , , )T T T T
iχ x x x . ix is the vehicle’s pose at time i . 

1,i iδ  is the relative pose of the vehicle between i  and 
(i+1) , which is calculated from NDT SLAM. Ax  and Bx  
are the vehicle’s poses at the revisit and current nodes, 
respectively. ,A Bδ  indicates the relative pose of the vehicle at 
the two nodes, which is calculated from the LiDAR scan data 
using NDT scan matching. poseΩ  and loopΩ are the 
information matrices; they are inverse covariance matrices of 
NDT SLAM and given based on [28]. 

In this paper, we apply the open-source software g2o [29] 
to generate pose graphs and optimize (14).  

B. Submap Merging 
We consider the merging of submaps 1 and 2 in Figure 6. 

Submap merging is performed by the following steps:  
 Loop closure detection: detection of encounter nodes in 

pose graphs corresponding to the two submaps;  
 Relative pose estimation: estimation of the relative pose 

of the two submaps using the LiDAR scan data at nodes 
encountered in the two pose graphs;  

 Alignment: coordinate transform of submap 2 using the 
relative pose estimate to represent the submap in 1W ; 
and  

 Merging: merging of the two submaps using pose graph 
optimization. 
If there are three or more submaps, an enlarged submap 

is first made by merging the two submaps, and another 
submap is then merged with the enlarged submap. By 
repeating such process, three or more submaps can be 
merged. 

The loop closures between submaps (intersession loop 
closures) are detected based on LPI and MDI. However, 
unlike the loop closure detection in each submap 
(intrasession loop closure), the self-location information of 
the vehicle estimated by NDT SLAM is not useless in 
narrowing down the candidate of the encounter nodes in the 
two pose graphs because two submaps are generated in 
different coordinate frames. It is thus assumed that all nodes 
in the two pose graphs are the candidate of the encounter 
nodes, and the LPI is calculated by the brute force method to 
narrow down the candidate of the encounter nodes. 
Therefore, if the numbers of nodes are N1 and N2 in the pose 
graphs corresponding to submaps 1 and 2, respectively, the 
LPI is calculated N1×N2 times.  

As shown in Figure 10, we consider that two nodes (the 
i-th node in pose graph 1, which corresponds to submap 1, 
and the j-th node in pose graph 2, which corresponds to 
submap 2) are detected as the candidate of the encounter 
nodes by the LPI (a threshold of 80%). To determine using 
the MDI whether or not the candidate is that of the encounter 
nodes, the relative pose of the vehicle is calculated from two 
scan data in both nodes via NDT scan matching. However, 
since two submaps are generated in different local coordinate 
frames, the initial pose, which is used to accurately calculate 
the relative pose by NDT scan matching, is unknown. 

At the j-th node in pose graph 2, the vehicle coordinate 
frame b , in which the LiDAR scan data are captured, is 

 
 

  
Figure 10.  Pose graph in submap merging. 
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rotated about the zb axis (yaw angle direction) in steps of 10° 
from 0° to 360° to address the above-mentioned problem. 
From the scan data at the i-th node in pose graph 1 and each 
of the 35 scan data at the j-th node in pose graph 2, NDT 
scan matching with an initial pose of zero value is applied to 
calculate the relative pose. If the relative pose estimate is 
correct, the MDI value will be small. The MDI for each of 
the 35 relative poses is then calculated, and the minimum 
MDI is selected. If the minimum MDI is 1.5 m or less, the 
candidate of the encounter nodes, the i-th and j-th nodes, is 
recognized as encounter nodes, and the relative pose is 
determined.  

Such detection of intersession loop closure and related 
relative-pose calculation are repeated for all nodes in pose 
graphs 1 and 2. When many encounter nodes are detected in 
their pose graphs, the relative pose of the two pose graphs is 
determined by the weighted average of many relative poses. 
Using the relative pose, the coordinate transform of submap 
2 is performed; consequently submaps 1 and 2 could be 
represented in the coordinate frame 1W . 

Finally, the relative pose of the vehicle at the encounter 
nodes is inputted to the pose graphs as the loop closure 
constraint (red arrow in Figure 10). The following objective 
function is then minimized to merge the two submaps: 

1 2( ) ( ) ( )totalJ J Jχ χ χ  

1 2

2 1 1,2 1,2 2 1 1,2
, loop

{( ) } {( ) }T loop

x x
x x δ Ω x x δ      (15) 

where 1 2( , )total T T Tχ χ χ . 1 1 1 1
1 2( , , , , )T T T T

iχ x x x and 2χ  
2 2 2
1 2( , , , , )T T T T

ix x x are sets of the vehicle’s poses in 
pose graphs 1 and 2, respectively. 1

ix  and 2
jx  are the vehicle’s 

poses at times i  and j , respectively. 1( )J χ  and 2( )J χ  
are the objective functions of the pose graphs corresponding 
to submaps 1 and 2, respectively. The third term on the right 
side is the constraint on the vehicle’s relative pose in the 
merging of the two pose graphs. 1x  and 2x  are encounter 
nodes in pose graphs 1 and 2, respectively. 1,2δ  indicates the 
relative pose of the vehicle at the encounter nodes, which is 
calculated from the LiDAR scan data captured at the nodes 
using NDT scan matching. 1,2

loopΩ is the information matrix; it 
is inverse covariance matrix of NDT scan matching and 
given based on [28]. 

VII.    EXPERIMENTAL RESULTS 
The performance of two methods is first examined, 

namely, distortion correction of LiDAR scan data and 
extraction of static scan data from the entire LiDAR scan 
data, which are presented in Sections IV and V, respectively. 
Thereafter, the mapping performance is shown through 
experimental results in residential and urban environments. 

A. Performance of Distortion Correction of LiDAR Scan 
Data and Extraction of Static Scan Data 
The experimental vehicle moves at a speed of about 40 

km/h in two areas, as shown in Figures 11 (a) and (b). For 

comparison, the LiDAR scan data are mapped using NDT 
SLAM in the following cases: 

Case 1: Mapping through the distortion correction of the 
LiDAR scan data and extraction of the static scan data from 
the entire scan data; 

Case 2: Mapping without using either method.  
Figures 12 and 13 show the mapping results on a straight 

road and an intersection area, respectively. The red line in 
(a) indicates the movement path of the experimental vehicle. 
The black and red dots in (b) and (c) indicate the static and 
moving scan data, respectively. These figures indicate that 
the extraction method of static scan data more significantly 
removes the tracks of cars. In the intersection, several cars 
slow down and stop at a red light or pause when turning left; 
they are determined as static objects. Consequently, in 
Figure 13 (b), LiDAR scan data related to cars partially 
remain.  

Figure 14 shows the mapping result of a traffic sign in 
the road environment shown in Figure 12 (a). Figures 12–14 
show that the mapping result obtained using the distortion 
correction of the LiDAR scan data is crisper than that 
obtained without using the distortion correction. 

B. Mapping Performance 
A mapping experiment is conducted in a residential 

environment near our university campus. The experimental 
vehicle moves at a speed of 10–20 km/h on a narrow road (6 
m width) in the residential environment shown in Figure 15, 
and sensor data are recorded. The traveled distance of the 
vehicle is 2000 m. In Figure 15, the red point indicates the  

 
 

 
(a) Straight road  

 

 
(b) Intersection  

 
Figure 11. Photo of experimental environment. 
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(a) Photo 

 

 
(b)  Case 1 

 

 
(c)  Case 2 

 
Figure 12.  Mapping result of straight road area (bird’s-eye view). 

 
 

start/goal position of the vehicle. The black, blue, and green 
lines indicate the movement paths of the vehicle in areas 1, 2, 
and 3, respectively. The broken-line circles indicate the 
locations, at which areas 1, 2, and 3 overlap. 

Figure 16 shows photos of the start/goal position and 
intersections 1 and 2, which are shown in Figure 15. In the 
residential environment, there are three cars and three 
pedestrians. One of the three cars always follows the 
experimental vehicle. 

For comparison, maps are generated in the following 
cases: 

Case 1: NDT-SLAM-based single-session mapping 
(single map generation) through the distortion correction of  

 
(a) Photo 

 

 
 (b)  Case 1 

 

 
(c)  Case 2 

 
Figure 13.  Mapping result of intersection area (bird’s-eye view). 

 

                       
      (a)  Photo                   (b)  Case 1                    (c)  Case 2   

 
Figure 14.  Mapping result of traffic sign.  
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Figure 15. Movement path of vehicle (top view). 
 

                              
(a) Start/goal position                                              (b) Intersection 1                                                            (c) Intersection 2 

 
Figure 16. Photo of residential environment. 

    
(a) Case 1                                                                                                            (b) Case 2 

   
(c) Case 3                                                                                                              (d) Case 4  

 
Figure 17. Mapping results (top view). 
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the LiDAR scan data and extraction of the static scan data 
from the LiDAR scan data; 

Case 2: NDT-SLAM-based single-session mapping 
without using either method;  

Case 3: NDT-Graph-SLAM-based single-session 
mapping using both methods;  

Case 4: NDT-Graph-SLAM-based multisession mapping 
(submap generation and mapping) using both methods 
(proposed method). 

For case 4, we split the recorded LiDAR scan data into 
three segments that are assumed to be created independently 
in the three areas (areas 1, 2, and 3) shown in Figure 15. We 
then generate and merge three submaps using the split 
LiDAR scan data. The experimental vehicle moves 
approximately 700 m, 600 m, and 700 m in areas 1, 2, and 3, 
respectively. These three areas overlap at the start/goal 
position and intersections 1 and 2 in Figure 15. Submaps 1 
and 2 are firstly merged, and their enlarged submaps are 
further merged with submap 3.  

Figure 17 shows the mapping results in cases 1–4, where 
the black and red dots indicate the static and moving scan 
data, respectively. In case 3, 2799 revisit nodes are detected, 
and the map generated by NDT SLAM is modified. In case 
4, the numbers of detected encounter nodes are 284, 543, 
and 1486 for submaps 1, 2, and 3, respectively. 24 
encounter nodes are detected when submap 1 is merged with 
submap 2. Then, 1287 encounter nodes are detected when 
the enlarged submaps are further merged with submap 3.  

As seen in Figure 17, although the mapping performance 
in case 2 is the worst, the difference in the mapping 
performance in cases 1, 3, and 4 is unclear due to the small 
scale of the map. In SLAM, the worse the performance of 
the self-location of the vehicle, the worse the mapping 
performance. Therefore, to quantitatively evaluate the 
mapping performance, we obtain the estimate error in the 
vehicle self-location estimated by SLAM, where position 
information from the onboard GNSS/INS unit is used as the 
ground truth of the vehicle.  

Table I shows the deviation between the start and goal 
positions of the vehicle. Table II also shows the Root-Mean-
Square Error (RMSE) of the self-location in the entire 
movement path of the vehicle. It is concluded from these 
tables that case 3 (single-session NDT-Graph SLAM) and 
case 4 (multisession NDT-Graph SLAM) provide better 
results than cases 1 and 2 (single-session NDT SLAM) do. 

In the experiment in the residential environment, moving 
objects, such as cars and pedestrians, are very few. An 
experiment in an urban road environment is further 
conducted to show the mapping performance of the proposed 
method in dynamic environments.  

The movement path of the vehicle and photo of the 
environment are shown in Figures 18 and 19, respectively. 
The traveled distance of the experimental vehicle is about 
2900 m, and the maximum speed of the vehicle is 40 km/h. 
In the road environment, there are 114 cars, 26 two-wheelers, 
and 37 pedestrians.  

For comparison, maps are generated in the four above-
mentioned cases. For case 4, we split the recorded sensor 

TABLE I. DEVIATION BETWEEN START AND GOAL POSITIONS OF VEHICLE 
IN RESIDENTIAL ENVIRONMENT.  

TRUE CASE 1 CASE 2 CASE 3 CASE 4 
12.31 m 14.43 m 32.40 m 12.12 m 11.75 m 

 
TABLE II. RMSE OF SELF-LOCATION OF VEHICLE IN RESIDENTIAL 
ENVIRONMENT. 

CASE 1 CASE 2 CASE 3 CASE 4 
1.48 m 9.86 m 1.00 m 0.99 m 

 
 

data into three segments that are assumed to be created 
independently in the three areas (areas 1, 2, and 3) shown in 
Figure 18. We then generate and merge three submaps using 
the split sensor data. The vehicle moves approximately 900 
m, 1100 m, and 900 m in areas 1, 2, and 3, respectively. 
These three areas overlap at intersection 1 in Figure 18.  

Submaps 1 and 2 are firstly merged, and their enlarged 
submaps are further merged with submap 3. In case 3, 306 
revisit nodes are detected, and the map generated by NDT 
SLAM is modified. In case 4, the numbers of detected 
encounter nodes are zero, 39, and zero for submaps 1, 2, and 
3, respectively, because areas 1 and 3 are straight roads. 24 
encounter nodes are detected when submap 1 is merged with 
submap 2. Then, 977 encounter nodes are detected when the 
enlarged submaps are further merged with submap 3. 

Figure 20 shows the mapping result, where the black and 
green dots indicate the static scan data extracted in areas 1 
and 3, respectively. The red dot indicates the moving scan 
data. Tables III and IV show the self-location results of the 
vehicle, which are estimated by SLAM.  

As seen in Figure 20, the tracks of cars remain in case 2 
because we do not implement the algorithm that removes 
the moving scan data from the entire LiDAR scan data. 

 
 

 
 

Figure 18. Moved path of vehicle (top view). 
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(a) Straight road                                                               (b) Intersection 1                                                             (c) Intersection 2  

 
Figure 19. Photo of urban road environment. 

 

 
(a) Photo  

 

      
(b) Case 1                                                                                                                         (c) Case 2  

 

   
(d) Case 3                                                                                                                              (e) Case 4  

 
Figure 20. Mapping results (bird’s-eye view).  
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TABLE III. DEVIATION BETWEEN START AND GOAL POSITIONS OF 
VEHICLE IN URBAN ROAD ENVIRONMENT  

TRUE CASE 1 CASE 2 CASE 3 CASE 4 
3.50 m 17.34 m 126.19 m 6.10 m 3.38 m 

 
TABLE IV. RMSE OF SELF-LOCATION OF VEHICLE IN URBAN ROAD 
ENVIRONMENT 

CASE 1 CASE 2 CASE 3 CASE 4 
5.95 m 35.95 m 9.86 m 3.23 m 

 
 
Case 2 also causes a large drift in mapping due to the 

distortion of the LiDAR scan data and the accumulation 
error of NDT SLAM. The drift in case 1 is smaller than that 
in case 2 because the distortion of the LiDAR scan data is 
corrected in case 2. When the traveled distance of the 
vehicle is long, the accumulation error of NDT SLAM often 
deteriorates the performance of loop closure detection in 
Graph SLAM. For this reason, as seen in Table IV, the self-
location error in case 3 (single-session NDT-Graph SLAM) 
is worse than that in case 1 (single-session NDT SLAM). 
Case 4 (proposed method) provides the best performance 
because shortly traveled distances in submaps reduce the 
accumulation error of NDT SLAM. 

VIII.    CONCLUSION AND FUTURE WORK 
This paper presented a method of LiDAR-based mapping 

and merging in GNSS-denied and dynamic environments 
using only an onboard scanning LiDAR. 3D point cloud 
mapping and merging were performed by integrating three 
previously proposed algorithms: distortion correction of 
LiDAR scan data, extraction of static scan data (removal of 
moving scan data) from the entire LiDAR scan data, and 
single-session and multisession mapping using NDT-Graph 
SLAM. The mapping performance was shown through 
experiments conducted in outdoor residential and urban road 
environments.  

We are currently evaluating the proposed method by 
mapping various environments, including large-scale 
residential environments. Some improvements to the 
presented method are required. Since the distortion 
correction of the LiDAR scan data requires a great deal of 
computational time, Graphical Processing Unit (GPU) or 
Field-Programmable Gate Array (FPGA) must be utilized in 
real-time operations. In our method of moving-object 
detection, when, for example, cars slow down at an 
intersection, stop at a red light, or pause to turn left (or right), 
they are sometimes determined as static objects. Then, the 
LiDAR scan data that relate to cars partially remain on the 
environmental map. To address this problem, study on map 
update and maintenance is needed. 
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