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Abstract—This work considers a stationary simulation of
pipeline fluid transport, in the presence of impurities and phase
transitions. This simulation finds applications in diverse areas
such as energy carrier transportation, including natural gas and
hydrogen, as well as the efficient transport of carbon dioxide from
emission sources to designated storage sites. Particularly for the
transport of carbon dioxide, which is preferably carried out in
a liquid or supercritical state, the accurate detection of phase
transitions is of utmost importance. Additionally, evaluating the
simulation precision based on the selected pipe subdivision is
crucial for transporting fluids of any kind. Our implementation
includes an algorithm that utilizes the Homogeneous Equilibrium
Model and the GERG-2008 thermodynamic equation of state for
phase transition detection. We have also developed an optimal
pipe subdivision algorithm using empirical formulas derived from
extensive numerical experiments. Rigorous testing of the algo-
rithms has been conducted on realistic fluid transport scenarios,
confirming their effectiveness in addressing the stated technical
challenges.

Index Terms—simulation and modeling; mathematical methods
and numerical algorithms; advanced applications; fluid transport;
carbon dioxide transport; pipe subdivision.

I. INTRODUCTION

This paper is an extension of our conference paper [1],
which focused on the stationary simulation of carbon dioxide
pipeline transport with impurities and phase transition detec-
tion. In this current study, we have expanded our simulations
to include other fluids such as natural gas and hydrogen. Fur-

thermore, we have developed an algorithm for pipe subdivision
to enhance the precision of the simulation as desired.

To reduce greenhouse gas emissions into the atmosphere,
Carbon dioxide Capture and Storage (CCS) systems are cur-
rently being developed. Typically, such systems consist of 3
parts: (1) capturing carbon dioxide (CO2) at its source; (2)
transporting CO2 through pipelines to special storage sites; (3)
and finally injecting it into wells, when underground storage
is used. In this paper, we focus on the second part of the
aforementioned process. It is generally required that CO2

be in the liquid or supercritical phase during transport in
order to increase the density and mass flows. It is essential
to avoid the transition of fluid phase to gas, which leads to
cavitation and destruction of the pipeline during transportation.
To ensure reliable operation of the CO2 pipeline, both an
extensive experimental base and stable numerical simulation
of the transportation process are required. At the same time,
for a long-term planning, it is sufficient to simulate a stationary
process of the transportation, with CO2 in a 1-phase state and
an indication of a possible phase transition, in order to prevent
it.

The pioneering work [2] has considered in detail the station-
ary process of transporting pure CO2 through a pipeline and
pumping it into an underground storage, taking into account
phase transitions. Subsequent papers, including [3]–[10], have
highlighted the significance of considering impurities that can
significantly impact transportation parameters even at low
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concentrations. These papers have investigated both stationary
and dynamic aspects of CO2 transport. Papers [2]–[9] consider
a Homogeneous Equilibrium Model (HEM), in which different
phases of a fluid are homogeneously mixed and have the same
speed, pressure, temperature and chemical potential. Papers
[5]–[7], [9], [10] have also explored the concept of phase
split, where the phases are geometrically separated, and phase
slip, where the phases have different velocities. Additionally,
works such as [5], [7], [9] have examined the formation
of a solid phase of CO2 (dry ice). Other studies [6], [7],
[9], [10] have focused on fast transient processes that occur
during pipe depressurization, including relevant experimental
investigations. Furthermore, the economic aspects of pipeline
CO2 transport have been addressed in papers [11]–[14].

In this paper, we describe a stationary simulation of the CO2

transport process with the possibility of considering impurities,
phase transitions, several sources with different composition,
and networks of complex topology. Simulations of this type
have extended the capabilities of our software MYNTS [15]–
[19]. The system provides an open, freely configurable and
user-friendly specification of modeling, defined as a list of
variables and equations. An open Python code for workflow
procedures is also provided. The main calculations are per-
formed in a fast C++ solver. The system also has a Graphical
User Interface (GUI) with the ability to edit networks and
scenarios. This architecture allows to formulate and quickly
solve very large network problems, as well as the ability to
model different energy carriers and couple different energy
sectors.

For problems of stationary transportation of fluids, we im-
plement standard pipe transport equations with friction terms
by Nikuradse [20], Hofer [21] and spatial discretization of
type [22]. The GERG equation of state [23], [24], which is
currently the ISO standard [25], is used to accurately model the
thermodynamics of fluids, in particular CO2 with impurities
and phase transitions. Additionally, we have developed an
algorithm for detecting the proximity to the region of phase
transitions. Numerical experiments were conducted to validate
the implemented algorithms. These experiments demonstrate
that the presence of phase transitions in the system can induce
fast and occasionally abrupt behavior, which in turn influences
the convergence properties of the numerical algorithms em-
ployed for the solution. In the scenarios we have considered,
the divergence, if it occurs, is entirely localized in the region
of phase transitions. On the other hand, scenarios without
phase transitions are converging, which makes it possible to
solve them with detection of proximity to the region of phase
transitions.

Our implementation is based on standard numerical methods
for solving systems of nonlinear equations, described in [26]–
[28], applied to piecewise linear resistive systems in [29]–
[31]. Questions of discretization of differential equations are
considered in detail in general form in [26] and in application
to gas networks in [32]–[34]. Our contribution to this area is
the formulation of global convergence conditions for solution
of nonlinear resistive systems [16] and their application to

Fig. 1. Phase transitions at fixed temperature: (a),(c) – for pure CO2; (b),(d)
– for CO2 with impurities. Image from [1].

Fig. 2. Fraction of gaseous phase as a function of pressure and temperature.
Image from [1].

stationary simulation of gas transport networks. We also
constructed a pipe subdivision algorithm to achieve a given
precision of stationary simulation of fluid transport networks
and present it in this work.

Section II reviews the physics of phase transitions applied
to CO2 with impurities. Section III discusses the transport
equations used. Section IV presents the pipe subdivision
algorithm. In Section V, we describe numerical experiments,
with particular attention paid to the questions of convergence
of iterative processes and precision of simulation. Finally, in
Section VI, we summarize our results.

II. PHYSICS OF PHASE TRANSITIONS

Phase transitions exhibit slight variations in their occur-
rence between pure substances and their mixtures. Figure 1a
shows the phase transition for pure CO2. At a constant
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temperature, the pressure decreases starting in the region of
the liquid state. There is a line of phase transitions on the
diagram. When the pressure decreases, the process proceeds
until it intersects with this line, after that the pressure decrease
stops until all the fluid passes from the liquid state to the
gaseous state. At the same time, Figure 1c shows that during
this process, the average density changes from large values,
typical for the liquid phase, to small values, typical for a gas.
In Figure 1b, the behavior of a mixture, i.e., 95% CO2, 3%
N2, 2% O2, is depicted. In this case, the two-phase state is not
represented by a single line but rather a region on the (T, P )-
diagram. The boundary of this region is called the Vapour-
Liquid Equilibrium (VLE) diagram, or phase envelope. When
the pressure decreases, the point enters this region and the
fluid also passes from the liquid state to the gaseous state, but
here the pressure continues to decrease. Figure 1d shows that
in the 2-phase state, the density decreases in the same way as
for pure substance, but at a decreasing pressure.

The 3D diagram in Figure 2 shows the behavior of frac-
value, which varies in the interval [0, 1] and measures the
fraction of the gaseous phase in the fluid. In this figure,
one can observe the region where the phase transition takes
place, which occurs continuously for mixed compositions.
Additionally, the diagram exhibits a discontinuity along a line
originating from the critical point, although this transition
is considered spurious. Above the critical point, there is no
significant distinction between gas and liquid phases. However,
based on the descriptive framework, a transition from gas to
liquid is required at some point. While there is a formal jump
in the quantity frac, physically measurable quantities do not
exhibit such jumps along this line.

Interestingly, this surface resembles the surfaces considered
in the theory of functions of a complex variable. Namely, if we
take this surface, as well as the 1−frac surface and join them
together, we get an object that looks like a Riemann surface
for a complex square root. The similarity is not accidental, in
both cases there is a 2-sheeted surface without the possibility
of continuously separating the sheets from each other.

For the thermodynamic description of the fluid, the GERG
equation of state and its accompanying implementation [23]–
[25] are used. Technically, it is delivered as a software library
where one can access a variety of functions describing the fluid
state. In addition to the already mentioned phase envelope and
frac-value, we use the Equation Of State (EOS) and energy
functions

z = z(T, P, x), W = W (T, P, x), (1)

where T is absolute temperature, P is pressure, x is a
vector describing fluid composition, W = (H,U,G,A) is a
vector describing molar energies of different types: enthalpy,
internal energy, Gibbs energy, Helmholtz energy, respectively.
Compressibility factor z enters in the gas law P = ρRTz/µ,
where R is the universal gas constant, ρ is the mass density,
µ is the molar mass.

As an essential parameter for the user, the frac-value or
a conservative algorithm utilizing frac-values in the vicinity

of the solution can be employed to identify the proximity of
phase transitions:

Algorithm (proximity-alarm):

given (T0,P0,x,dT,dP,val)
for T in (T0-dT,T0,T0+dT)
for P in (P0-dP,P0,P0+dP)
if frac(T,P,x)!=val return true

return false.

The algorithm considers a 3x3 grid created by (±dP,±dT )-
variations, and if frac differs from the user-specified val at
least at one point, triggers a proximity alarm. This simple
algorithm is applied to every node in the network. It has the
advantage that it works even in the networks with many fluid
compositions, i.e., variable x-values. Alternative algorithms
based on the construction of the phase envelope produce many
diagrams for different compositions, which complicates the
analysis. At the same time, this algorithm has one drawback,
it can produce a false alarm when approaching a spurious
line. In this case, the user can visually control the solution
trajectory on the (T, P )-diagram by constructing a phase
envelope for the local network segment with constant x. Our
future plans include the development of additional algorithms
for automatic detection of phase transitions that can handle
variable composition of the fluid within the network.

III. PIPE TRANSPORT EQUATIONS

In the stationary case, a pressure drop in the pipe is
described by the equation:

dP/dL = −λρv|v|/(2D)− d(ρv2)/dL− ρg dh/dL, (2)

where L is the running length along the pipe, v is the speed
of the fluid, D is the internal diameter of the pipe, g is
the gravitational acceleration, and h is the height. The first
term on the right hand side is usually dominant, describing
the contribution of the friction force, defined in terms of the
dimensionless friction coefficient λ(k/D,Re) using the Niku-
radse [20] formula or the more accurate Hofer [21] formula.
Here, k is the pipe roughness, Re = 4|Qm|/(πµviscD) is the
Reynolds number, where µvisc is the dynamic viscosity and
Qm = ρvπD2/4 is the mass flow constant along the pipe.
In addition, the right-hand side includes the convective and
gravitational terms. The flow Qm = QNρN is often expressed
in terms of the normal volume flow QN and mass density ρN
at normal conditions PN = 1.01325 bar, TN = 273.15 K.

For discretization purposes, we consider a short pipe seg-
ment of length L and integrate the equation over it. Expressing
the velocity in terms of the mass flow, and keeping only the
leading first term for illustration, we get dP/dL = c1/ρ, where
c1 is constant. When performing integration, we substitute
the variable density ρ with the average ρ̄ = (ρ1 + ρ2)/2
between the endpoints of the segment. In other words, P2 −
P1 = c1L/ρ̄. As an alternative, we multiply the original
equation by P , use the gas law P/ρ = RTz/µ, replace the
variables T and z with the end averages and, thereby, we get
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(P 2
2 −P 2

1 )/2 = c1LRT̄ z̄/µ, in a more familiar quadratic form
for gas dynamics [22].

Temperature profiles are described by the equation

dH/dL = −πDch(T − Ts)µ/Qm, (3)

according to which the enthalpy change in a segment of the
pipe is equal to the heat exchange with the soil or other
environment. Here, ch is the heat transfer coefficient, Ts

is the soil temperature. Note that when the heat exchange
is switched off (ch = 0), the process described by this
formula is isenthalpic dH = 0, and the temperature change
is related to the pressure change by the well-known formula
dT = µJT dP , where µJT = −(∂H/∂P )T /(∂H/∂T )P is the
Joule-Thomson coefficient. The equation can also be modified
by introducing kinetic and gravitational terms.

For discretization purposes, the equation in the form
dH/dL = c2(T − Ts) with a constant c2, the variable
temperature T is substituted with a constant Tx. The value of
Tx can be chosen as the average temperature T̄ at the endpoint
or the outflow temperature Tout, depending on the scenario
that better represents longer segments. After integration, we
get H2−H1 = c2L(Tx−Ts). Further, in an iterative solution
process in which the pressure profile and fluid composition
are kept constant, the enthalpy values can be linearized us-
ing the formula H(T i+1) = H(T i) + cp(T

i)(T i+1 − T i),
where the superscripts indicate the number of iterations and
cp = (∂H/∂T )P is the isobaric molar heat capacity, also
calculated by the GERG software library.

Next, we will consider in more detail the process of conver-
gence of the iterations used for the solution. In our previous
work [19], the architecture of MYNTS system has been
described. Due to software-technical reasons, the solution was
divided into 2 parts: (1) Pressure-Massflow (PM)-iterations,
solved by a sparse non-linear Newtonian solver; and (2) mix-
iterations, solved by a sparse linear solver. PM iterations
determine the pressure, density and mass flow, by solving a
relatively small nonlinear system. This system, however, has
strong numerical instabilities associated with nearly zero Ja-
cobi matrix eigenvalues and requires special stabilization mea-
sures [18]. Mix iterations solve a large linear system defining a
multicomponent fluid composition, determine temperature and
call external modules, such as GERG that would otherwise
be called too often in a fully coupled system. After the
temperature linearization described above, all mix equations
of the system at each iteration become linear, their solution
can be produced by a sparse linear solver such as Pardiso
[35]. Further, these two processes are iterated, while using an
additional stabilization algorithm called weighted relaxation
[19], the result of the combined PM-mix-iteration h(x) is
replaced by a weighted average xi+1 = wh(xi) + (1− w)xi.

Among the modeling limitations, it should be mentioned
that the GERG module does not consider the solid phase
and derives equilibrium conditions for the liquid and gaseous
phases under the HEM assumptions. The transport equations
considered here treat 2-phase solutions as 1-phase, with the
values of thermodynamic parameters calculated by the GERG

TABLE I
PARAMETERS OF TEST SCENARIOS

parameter symbol [units] value
total pipe length Ltot[km] 150

pipe internal diameter D[m] 0.5
pipe roughness k[mm] 0.5

heat transfer coefficient ch[W/(m2K)] 4
inlet temperature T1[K] 313.15
soil temperature Ts[K] 283.15

fluid composition x(CO2, N2, O2) (0.95,0.03,0.02)
inlet pressure pset [bar] 100

outlet norm.vol.flow, scen1 qset1 [103m3/h] 200
outlet norm.vol.flow, scen2 qset2 [103m3/h] 310

fluid composition x(CO2) 1
inlet pressure pset [bar] 96.01325

outlet norm.vol.flow, scen3a qset [103m3/h] 200
fluid composition x(CH4) 1

inlet pressure pset [bar] 50.01325
outlet norm.vol.flow, scen3b qset [103m3/h] 50

fluid composition x(H2) 1
inlet pressure pset [bar] 50.01325

outlet norm.vol.flow, scen3c qset [103m3/h] 50

module in the total system, which also means calculations
within the HEM framework.

At the conclusion of this section, it is important to address
a general aspect concerning the simulation. It is common
for users to assume the uniqueness of solutions obtained in
simulations. However, it should be noted that in general,
this assumption may not hold true. Existence and uniqueness
theorems for solutions are only formulated in rare cases. So,
for example, they are guaranteed for the PM subsystem under
the conditions of generalized resistivity [15]. Being combined
with the mix system, the uniqueness of the solution is not guar-
anteed. Theoretically imaginable is the situation when there
are two stationary solutions, one 1-phase, the other 2-phase,
and it may happen that the stationary solver finds the first one,
but in reality the second one will be realized. Consideration of
dynamic simulation can decide which solution the trajectory
will go to when integrating from a given initial state. But
even for a dynamic solver, saddle points, i.e., bifurcations
of the solution are possible, where, with a small variation,
the solution can go in one direction or the other. Questions
about the uniqueness of stationary solutions and the stability
of dynamic solutions must be investigated in the practical
analysis of simulation results.

IV. PIPE SUBDIVISION ALGORITHM

First, we conduct a series of numerical experiments to
analyze the relationship between precision and pipe subdivi-
sion. Next, we explore various discretization techniques and
evaluate their precision and stability criteria. By carefully
analyzing these criteria, we can determine which discretization
methods are best suited for our needs. Finally, we implement
these derived formulas into our subdivision algorithm. Based
on the data gathered from our experiments and evaluations,
we derive empirical formulas for pipe subdivision.
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TABLE II
DERIVED PARAMETERS OF TEST SCENARIO 3

parameter symbol [units] value scen3a value scen3b value scen3c
fluid composition pure CO2 pure CH4 pure H2

inv. molar mass µ−1[mol/kg] 22.722 62.332 496.06
mass flow m[kg/s] 109.83 17.937 2.2471

heat capacity, cp[J/(molK)]
molar isobaric, inlet-outlet 317.31-109.50 41.675-40.720 29.167-29.008

characteristic length, x1[km]
inlet-outlet 126.03-43.491 7.4158-7.2457 5.1744-5.1462

Fig. 3. (a),(c) – convergent iterations for scenario without phase transitions;
(b),(d) – cycling iterations for scenario with phase transitions, red color -
iteration 100, blue color – iteration 99. Image from [1].

Testing pipe subdivision: a set of simulations with vari-
able pipe subdivision is considered,

L = Ltot/Ndiv, Ndiv = 2n, n = 1...nmax. (4)

In our test case, Ltot = 150km, nmax = 10 are selected.
In this section, we designate the symbol L to represent the
length of a pipe segment. The coordinate along the pipe will
be denoted as x, where x ranges from 0 to Ltot. Additionally,
the symbol m will be used to represent the mass flow.

Precision is defined as maximal deviation of n-th solution
from the most precise nmax-th solution:

δPn = maxx |Pn(x)− Pn_max(x)|, (5)

here for P , and similarly for other variables. The resulting
dependencies of the precision on n are shown on Figure 5.
The dependencies are mostly following ∼ L profile. Three
scenarios are considered, with settings described in Table I.
For scen3a/CO2, subdivision Ndiv ∼ 16, n = 4, corresponds
to δP ∼ 0.1bar. For scen3b/CH4, similar δP is achieved at
Ndiv ∼ 6. For scen3c/H2, such δP is achieved already at
original pipe, Ndiv ∼ 1, no subdivision needed.

Further details: the number of mix iterations is set
to nmixit = 30, their convergence is controlled. Phase
transitions do not happen for all scenarios. A slight bent at
n = 9 is a methodical issue: since nmax subdivision is not

exact answer, nmax − 1 level feels the error of nmax level,
while the other n-levels are less sensitive to this error.

Various discretizations: the schemes, briefly described
in the previous section, will be considered in more details
now. In Hofer friction law (2), we track the leading ∼ L/D
term dP = −fRdx, where fR(x) ∼ 1/ρ(x) with coefficient
constant along the pipe segment.

Hofer-quad: multiply both sides by ρ, using that ρ ∼ P
approximately for gases (gas law P = ρRTz/µ, where the
coefficient RTz/µ is assumed to change slowly along the pipe
segment and is represented by its nodal average), integration
gives: lhs =

∫
PdP = (P 2

2 − P 2
1 )/2 and rhs ∼

∫
dx = L,

a known formula for quadratic hydraulic resistance applicable
for gases.

Hofer-lin: in fR take the nodal average ρ → (ρ1+ ρ2)/2 =
const, then integrate straightforwardly: lhs = P2 − P1,
rhs ∼

∫
dx/ρ = L/((ρ1 + ρ2)/2). A surprising equivalence:

the leading terms for Hofer-quad and Hofer-lin coincide.
Proof: in Hofer-quad integrated formula, divide lhs =

(P 2
2 −P 2

1 )/2 to (P1+P2)/2, use approximate linearity ρ ∼ P
above, obtain rhs ∼ L/((ρ1 + ρ2)/2) coincident with Hofer-
lin integrated formula. □

This is what we see on Figure 5, the coincidence of
precision for both schemes, perfect for gases (methane at
50bar), slightly deviating for liquids (supercritical CO2). The
deviation is due to the omitted terms in the friction law, which
are indeed different for two integration schemes, and due to
details of taking nodal average: Tz → (T1z1 + T2z2)/2 vs
(T1+T2)/2 · (z1+z2)/2, etc. At n = nmax level, Hofer-quad
and Hofer-lin results coincide at high precision (∼ 10−6bar),
so that both schemes provide a consistent discretization for
the same continuous equation.

Stability considerations: according to [16], for conver-
gence of the simulation, the signature of the whole equation
must be ∂eq/∂(P1, P2,m) ∼ (+−−), while ∂ρ/∂P > 0. In
Hofer-quad, this criterion requires to replace lhs = (P2|P2|−
P1|P1|)/2, unfolding the expression to P < 0 unphysical
domain with correct P -signature.

In Hofer-lin, other discretization schemes can be consid-
ered, that theoretically can be more stable. Recovering m-
dependence: rhs ∼ Lm|m|/ρ, if ρ is replaced to the nodal
average (ρ1 + ρ2)/2, it will have a wrong signature w.r.t. P1

or P2, dependently on the sign of m. A possible alternative
is rhs ∼ Lm|m|/(m > 0?ρ1 : ρ2), C1-continuous in m = 0.
Although less precise than the nodal average, it possesses
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correct P -signatures and should lead to a more stable solution
process. This approach can be extended to other terms in the
friction law in its different formulations.

Practically, Hofer-lin scheme is not yet usable in complex
scenarios like N85 tests described below. In large natural
gas networks, it shows worse stability (div/tot = 7/85) in
comparison with Hofer-quad (div/tot = 1/85). Here div is
the number of divergent cases, while tot is the total number of
cases. The source of the instability can be in the violation of
signature rule, in the leading as well as in sub-leading terms.

Empirical formulas: since numerical experiments show
∼ L behavior of precision at large n (small L), here it’s only
needed to find empirically plausible factors. Employing that
the pressure drop is proportional to dP ∼ m2/ρ · L, omitting
constant factors, evaluating relative error of pressure drop due
to ρ-variation, we have δdP/dP = dρ/ρ, where δ denotes
error estimation, d is a change over the pipe. Absolute values
for all changes are taken. This formula assumes intermediate ρ
values in pipe changing arbitrarily between their nodal values.
An empirical factor 0.5 can be introduced, if the change is
taken between the nodal values and the nodal average. The
resulting empirical formula for relative error of pressure drop
is

errP = δdP/dP = 0.5dρ/ρ. (6)

For T -dependence, a simplified exponential model can be
used: T = Ts + (T1 − Ts) exp(−x/x1), with the charac-
teristic length x1 = cpm/(µDchπ). Here the main factor is
proportional to L/x1, since subdivisions with L ∼ x1 give
roughly acceptable quality, L ≪ x1 fine quality, L ≫ x1

inacceptable. What “roughly acceptable” means can be found
in comparison of discrete and continuous integration of the
simplified model: δT = |T1 − Ts||(1 + L/x1)

(−x1/L) − 1/e|,
we obtain errT = 0.132121 at L = x1, conservatively giving
a factor 0.2. Thus, the following expression can serve as an
estimator of relative T -precision:

errT = δdT/dT = 0.2L/x1. (7)

The values of the characteristic length for 150km pipe scenario
with different fluid composition are shown in Table II. Figure 5
confirms that the derived formulas provide tight conservative
estimators for the pipe subdivision error.

Implementation of pipe subdivision: taking the desired
level of relative error, we construct an estimator for subdivision
number, with maximum taken over P - and T -estimators.
This estimator should be evaluated for every pipe. If further
accepted by the user, it provides the following subdivision
algorithm with a minimal user assistance.

Algorithm (pipe-subdivision):

given (x1min,mmin,nmax,err_desired)
for every pipe

compute x1,errT,errP
if x1<x1min or |m|<mmin

errT=0
err=max(errT,errP)

Fig. 4. Screenshot of MYNTS GUI for scenario without phase transitions.
Image from [1].

n_suggested=[err/err_desired]+1
if n_suggested>nmax
n_suggested=nmax.

Details: for better efficiency, some cutoffs are necessary. At
small x1 values, in particular, at small m, the value T rapidly
jumps to Ts. Under these conditions, uniform subdivision algo-
rithm would provide too large n_suggested. To prevent this,
for x1 < x1,min or |m| < mmin, errT = 0 is set, subdivision
is defined by errP only. In addition, if n_suggested > nmax,
it is set to nmax.

The discretizations used here possess ∼ L precision de-
pendence. A study of the other schemes with a higher order
∼ Ln dependence is in our further plans. The tradeoff between
precision and stability should be also considered. For higher
order schemes, the empirical formulas should be upgraded,
while the subdivision algorithm remains the same.

The approach requires at least one preliminary simulation
to find all necessary parameters. The pipe subdivision is
sensitive to such details as mass flow, temperature, density,
gas composition, and is performed for a given scenario. If
scenario is changed, subdivision should be repeated starting
from the raw level.

The usage of the algorithm proceeds via specification of
input parameters, listed in Table III. The resulting output val-
ues are stored per pipe and can be visualized. The application
of the algorithm to realistic networks is presented in the next
section.

V. NUMERICAL EXPERIMENTS

To test the implemented algorithms, we apply them to a
number of realistic network problems. At first, we test phase
transition detection, then pipe subdivision algorithm.
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Fig. 5. Dependence of the simulation precision of pressure δP and absolute temperature δT on subdivision level n; dependence of relative temperature t on
coordinate along the pipe x.

Testing phase transition detection (scen1-2): here we
use a pipe segment with parameters taken from [2]. In our
experiments, two scenarios are considered, see Table I. In the
first scenario, a small flow is set, at which phase transitions do
not occur. The entire pipe is filled with liquid or supercritical
fluid. In the second scenario, a larger flow is set, the pressure
drops more strongly, and a phase transition occurs in the
system. Both scenarios use a mixture of 95% CO2, 3% N2,
2% O2, see Figure 9 in [2]. The pipe is laid horizontally with
h = 0.

Figure 3 shows the convergence characteristics for our test
scenarios, left column for scen1, right column for scen2. The
dimensionless precision parameter prec = max(resi/normi)
is defined as the maximum of the residuals of the equa-
tions divided by the normalizing value, for each equation its
own. For the Kirchhoff equation of conservation of flow, the
friction law in quadratic form, and the gas law expressed
with respect to density, the normalization factors norm =
(1kg/s, 100bar2, 1kg/m3) are chosen, respectively. In our
system, the equations and their normalizing factors can be
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Fig. 6. Top-left: distribution of pipe subdivision estimator n_suggested over the test network N1. Bottom-left: closeup to the pipe with the largest subdivision.
Right: parameters of the selected pipe.

Fig. 7. Distribution of pipe subdivision estimators for the test networks N85.

TABLE III
PARAMETERS OF PIPE SUBDIVISION ALGORITHM

parameter meaning
activation: pdiv 0/1 (default 0, inactive)

input parameters:
pdiv_x1min x1-cutoff (default 1 [m])
pdiv_mmin m-cutoff (default 1 [kg/s])
pdiv_nmax n-clamp (default 1000)

pdiv_err_desired relative error desired (default 0.01)
output values, per pipe:

pdiv_errP estimated relative error of pressure change
pdiv_errT estimated relative error of temperature change

pdiv_n_suggested number of subdivisions suggested

freely configured by the user. For a purely 1-phase solution
scen1 shown in Figure 3(a) and (c), the value of prec decreases
exponentially with the number of iterations and the solution

procedure converges. For scen2, as seen in Figure 3(b) and (d),
the procedure has cycling. In more detail, we see that there is
a converging region for the 1-phase and a part of the 2-phase
state, after which a temperature jump occurs, and oscillations
are observed in the remaining pipe segment.

Along with the two main scenarios, we ran a number of
additional simulations with small qset variations around the
specified values. Simulations show stability of the effects,
convergence in the 1-phase solution, and divergence in the
2-phase solution. The reason for this divergence is that EOS
and the enthalpy function receive large derivatives in the phase
transition region. These functions are actually jump-like for a
pure substance and formally continuous for a mixture, but at a
low concentration of impurities, the derivatives are still large.

A prototype example of such instability is the logistic map:
xi+1 = rxi(1−xi), which characterizes the behavior of simple
iterations near the root x = 1−1/r. When r rises from 1, and
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passes the value 3, the absolute value of the r.h.s. derivative of
the logistic map equation exceeds 1, which is a critical value
for the convergence of simple iterations. Below this value, the
iterations converge. Above it, limit cycles appear, first with a
multiplicity of 2, then they double, and finally the system goes
to chaos.

Qualitatively, the same effects happen in our case. In
principle, the stabilization algorithm helps to overcome such
divergences, but for an ever higher derivative it becomes less
and less effective. We are going to explore this problem in
more detail in our future work. In order to overcome the
divergence, we can try to adjust the weight parameter in the
stabilizing algorithm. The dynamic solver behaves in much the
same way as weighted relaxation with a low weight; with a
decrease in the integration step, the stability of the integration
also increases. As shown in Figure 1, high derivatives only
occur for EOS in the form ρ(T, P ), changing variables to
P (T, ρ) could also be a solution of the problem.

At the same time, only scenarios in which phase transitions
and associated divergences do not occur are to be considered
within the scope of the technical task set. For such solutions,
it is required to determine the proximity of the solution to
the region of phase transitions. That can be done using the
proximity-alarm algorithm described above.

Figure 4 shows the screenshots for scen1 solution in
MYNTS GUI. At the top, there is the pipe geometry with
the pressure profile shown in color. At the bottom, there is
the solution on the (T, P )-plane, where a part of the phase
envelope is also shown. The yellow disks show the proximity-
alarm triggered in the given node for the values dT = 1K,
dP = 1bar. The first 2 nodes near pset appear to be close to
the spurious line on the phase diagram. The alarm in them can
be canceled, because they are located top-right to the phase
envelope, in the supercritical region. In general, this visual
criterion is difficult to automate, since phase envelopes can
have a more complex appearance than in the figures of this
paper. Further, the figure shows how the solution trajectory
passes at a safe distance from the phase envelope, providing
the required CO2 transport without phase transitions.

Testing pipe subdivision algorithm (scen3): here we
consider the same pipe, filled with pure {CO2, CH4, H2}
fluids, in various subdivisions (4). Other settings are given
in Table I. The results are displayed in Figure 5.

The first row shows δP precision dependence on subdivision
number n. Numerical experiments are shown by blue line with
dots. This line closely follows ∼ L dependence on the length
of pipe segment, for all fluids. The values of Ndiv = 2n for
δP = 0.1bar are shown. Two discretizations, Hofer-quad and
Hofer-lin, shown by shades of blue, are almost coincident for
CO2 and coincident for other fluids.

The second and the third rows show the same numerical
experiments in comparison with δP and δT empirical esti-
mators. The estimators restrict the experiments from above
almost everywhere, they are almost coincident for δP (H2) and
δT (CO2), and closely approaching the experimental points at
large n for other cases.

The last row shows the temperature distribution in these nu-
merical experiments in comparison with the simplified model,
used in the derivation of δT -estimator. Red and blue lines show
the model results for maximal and minimal value of the heat
capacity cp, see Table II. For CO2, these lines are different,
they restrict the experimental subdivision, shown by gray lines
with dots, from above and from below. For CH4/H2, the
upper and lower cp-values are very close and produce visually
coincident model curves. Also typical for supercritical/liquid
CO2 are much larger values of cp, in comparison with gaseous
CH4/H2. This leads to a larger characteristic length x1 and
a slower temperature drop over the length.

Details: the simplified model should not coincide with
simulation exactly, it contains only the simplest cpdT term
in the temperature equation, while the simulation is more pre-
cise, contains additional terms, such as Joule-Thomson effect,
gravity term, etc. In the cases considered, the pressure drop
is small and the pipe is laid horizontally, so such effects are
negligible. However, they can be activated in other scenarios.
Also, the simplified model is valid only for constant cp and x1,
while their variation over the pipe makes the model solution
more approximate. In our simulation, the cp dependence on
pressure and temperature is computed by the GERG module.

Applying pipe subdivision algorithm (scen4-6): in the
next scenario scen4, we consider a natural gas network N1
of moderate size, shown in Figure 6 top left. It contains
100 nodes, connected by 111 edges, 34 of them are pipes.
The pipe subdivision algorithm with default settings produced
n_suggested value, visualized in the figure. The value is
peaked at n_suggested = 31 on a 47km long pipe, shown
on a closeup (Figure 6 bottom left), with parameters shown in
Figure 6 right. The pipe possesses a moderate flow and large
errT , that defines the subdivision.

In the following scenario scen5, we consider the same
150km pipe as in scen1-3 experiments, filled by pure CO2,
other parameters selected as in scen3a. The first iteration
of pipe subdivision algorithm produces: errP = 0.173,
errT = 2.04, n_suggested = 205. Again, T -estimator
defines the subdivision. Taking the suggested value, the pipe
is subdivided to 205 equal pieces, and the second iteration of
the algorithm is applied. It produces errP varied in the range
0.00389−7.39 ·10−5 from inlet to outlet, and errT inbetween
0.00973− 0.01005, the value n_suggested is now 1− 2. We
see that errT is very close to the desired value 0.01, while
n_suggested is balanced on the border of this value, so that
no further subdivision is necessary. The final result satisfies
all criteria and can be accepted.

Details: errP changes over segments, due to the coupling
to a non-linear density profile. As a result, a uniform sub-
division dx gives non-uniform subdivision dρ, initially large,
then smaller, while our estimation supposed uniform dρ. In
the given scenario, errP < err_desired, this effect is not
important. In other scenarios, if errP > err_desired, one
more iteration of the algorithm can be needed. The alternative
is to construct an adaptive subdivision, following dρ/ρ profile.

In the next scenario scen6, we consider a set of 85 natural
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gas networks of large size [19], provided for benchmarking by
our industrial partner. Each has 3000 to 4000 edges, mostly
pipes. One iteration of pipe subdivision algorithm has been
applied. The output is shown as a histogram in Figure 7, here
pi is probability of location in the i-th bin. The results for
err_desired = 0.01 show that 68% of the pipes do not require
subdivision (n_suggested ∼ 1 − 2), 27% require moderate
subdivision (n_suggested ∼ 3− 20), and only the remaining
5% require large subdivision (n_suggested > 20).

VI. CONCLUSION

In this paper, we have considered a numerical simulation
of the stationary process of CO2 transport with impurities
and phase transitions. We have developed the algorithms
that allow to solve scenarios of CO2 transport in the liquid
or supercritical phase and to detect proximity to the phase
transition region. We have analyzed a convergence of the
solution algorithms in connection with fast and abrupt changes
of the equation of state and the enthalpy function in the region
of phase transitions.

The performed numerical experiments show that the sce-
narios with a single CO2 phase converge. For the obtained
temperature and pressure profiles, a conservative algorithm
for detecting the proximity of phase transitions can be applied,
giving the solution to the technical problem posed. At the same
time, divergences can occur in scenarios with phase transitions
due to the abrupt change of thermodynamic parameters. Ques-
tions about the possible suppression of these divergences as
well as improved detection of phase transitions are the subject
of our further work.

Also, in this paper, an algorithm for subdivision of pipes
for achieving a required precision of simulation is constructed.
The algorithm uses empirical formulas for conservative error
estimation, derived on the basis of numerical experiments.
The application of the algorithm to realistic CO2/CH4/H2

transport scenarios shows a good correspondence of predicted
and measured precision. An additional study is planned on
implementation of higher order finite difference schemes and
an adaptive non-uniform subdivision for further improvement
of the efficiency of the algorithm.

ACKNOWLEDGMENTS

The work has been supported by Fraunhofer research
cluster CINES. We acknowledge support from Open Grid
Europe GmbH in the development and testing of the software.
We also thank the organizers and participants of the conference
INFOCOMP 2023 for fruitful discussions.

REFERENCES

[1] M. Anvari et al., “Simulation of pipeline transport of carbon dioxide
with impurities”, in Proc. of INFOCOMP 2023, the 13th International
Conference on Advanced Communications and Computation, pp. 1-6,
IARIA, 2023.

[2] M. Nimtz, M. Klatt, B. Wiese, M. Kühn, and H.-J. Kraautz, “Modelling
of the CO2 process- and transport chain in CCS systems – Examination
of transport and storage processes”, Chemie der Erde – Geochemistry,
vol. 70, suppl. 3, 2010, pp. 185-192.

[3] S. Liljemark, K. Arvidsson, M. T. P. Mc Cann, H. Tummescheit, and
S. Velut, “Dynamic simulation of a carbon dioxide transfer pipeline for
analysis of normal operation and failure modes”, Energy Procedia, vol.
4, 2011, pp. 3040-3047.

[4] M. Chaczykowski and A. J. Osiadacz, “Dynamic simulation of pipelines
containing dense phase/supercritical CO2-rich mixtures for carbon cap-
ture and storage”, International Journal of Greenhouse Gas Control, vol.
9, 2012, pp. 446-456.

[5] P. Aursand, M. Hammer, S. T. Munkejord, and Ø. Wilhelmsen, “Pipeline
transport of CO2 mixtures: Models for transient simulation”, Interna-
tional Journal of Greenhouse Gas Control, vol. 15, 2013, pp. 174-185.

[6] L. Raimondi, “CO2 Transportation with Pipelines - Model Analysis
for Steady, Dynamic and Relief Simulation”, Chemical Engineering
Transactions, vol. 36, 2014, pp. 619-624.

[7] M. Drescher et al., “Towards a Thorough Validation of Simulation Tools
for CO2 Pipeline Transport”, Energy Procedia, vol. 114, 2017, pp. 6730-
6740.

[8] B. Chen, H. Guo, S. Bai, and S. Cao, “Optimization of process
parameters for pipeline CO2 transportation with impurities”, IOP Conf.
Series: Earth and Environmental Science, vol. 300, 2019, 022002.

[9] M. Vitali et al., “Risks and Safety of CO2 Transport via Pipeline:
A Review of Risk Analysis and Modeling Approaches for Accidental
Releases”, Energies, vol. 14, 2021, 4601.

[10] L. Raimondi, “CCS Technology - CO2 Transportation and Relief
Simulation in the Critical Region for HSE Assessment”, Chemical
Engineering Transactions, vol. 91, 2022, pp. 43-48.

[11] S. T. McCoy and E. S. Rubin, “An engineering-economic model of
pipeline transport of CO2 with application to carbon capture and
storage”, International Journal of Greenhouse Gas Control, vol. 2, 2008,
pp. 219-229.

[12] X. Luo, M. Wang, E. Oko, and C. Okezue, “Simulation-based Techno-
economic Evaluation for Optimal Design of CO2 Transport Pipeline
Network”, Applied Energy, vol. 132, 2014, pp. 610-620.

[13] V. E. Onyebuchi, A. Kolios, D. P. Hanak, C. Biliyok, and V. Manovic,
“A systematic review of key challenges of CO2 transport via pipelines”,
Renewable and Sustainable Energy Reviews, vol. 81, part 2, 2018, pp.
2563-2583.

[14] H. Lu, X. Ma, K. Huang, L. Fu, and M. Azimi, “Carbon dioxide transport
via pipelines: A systematic review”, Journal of Cleaner Production, vol.
266, 2020, 121994.

[15] T. Clees et al., “MYNTS: Multi-phYsics NeTwork Simulator”, in Proc.
of SIMULTECH 2016, International Conference on Simulation and
Modeling Methodologies, Technologies and Applications, pp. 179-186,
SciTePress, 2016.

[16] T. Clees, I. Nikitin, and L. Nikitina, “Making Network Solvers Globally
Convergent”, Advances in Intelligent Systems and Computing, vol. 676,
2018, pp. 140-153.

[17] A. Baldin, T. Clees, B. Klaassen, I. Nikitin, and L. Nikitina, “Topological
Reduction of Stationary Network Problems: Example of Gas Transport”,
International Journal On Advances in Systems and Measurements, vol.
13, 2020, pp. 83-93.

[18] A. Baldin et al., “Principal component analysis in gas transport simula-
tion”, in Proc. of SIMULTECH 2022, International Conference on Sim-
ulation and Modeling Methodologies, Technologies and Applications,
pp. 178-185, SciTePress, 2022.

[19] A. Baldin et al., “On Advanced Modeling of Compressors and Weighted
Mix Iteration for Simulation of Gas Transport Networks”, Lecture Notes
in Networks and Systems, vol. 601, pp. 138-152, 2023.

[20] J. Nikuradse, “Laws of flow in rough pipes”, NACA Technical Memo-
randum 1292, Washington, 1950.

[21] P. Hofer, “Error evaluation in calculation of pipelines”, GWF-
Gas/Erdgas, vol. 114, no. 3, 1973, pp. 113-119 (in German).

[22] J. Mischner, H. G. Fasold, and K. Kadner, System-planning basics of
gas supply, Oldenbourg Industrieverlag GmbH, 2011 (in German).

[23] O. Kunz and W. Wagner, “The GERG-2008 wide-range equation of state
for natural gases and other mixtures: An expansion of GERG-2004”, J.
Chem. Eng. Data, vol. 57, 2012, pp. 3032-3091.

[24] W. Wagner, Description of the Software Package for the Calculation of
Thermodynamic Properties from the GERG-2008 Wide-Range Equation
of State for Natural Gases and Similar Mixtures, Ruhr-Universität
Bochum, 2022.

[25] ISO 20765-2: Natural gas – Calculation of thermodynamic properties –
Part 2: Single-phase properties (gas, liquid, and dense fluid) for extended

10International Journal on Advances in Systems and Measurements, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/systems_and_measurements/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



ranges of application, International Organization for Standardization,
2015.

[26] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C, Cambridge University Press, 1992.

[27] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations,
SIAM, 1995.

[28] E. L. Allgower and K. Georg, Introduction to Numerical Continuation
Methods, SIAM, 2003.

[29] J. Katzenelson, “An algorithm for solving nonlinear resistor networks”,
Bell System Technical J., vol. 44, 1965, pp. 1605-1620.

[30] M. J. Chien and E. S. Kuh, “Solving piecewise-linear equations for
resistive networks”, Int. J. of Circuit Theory and Applications, vol. 4,
1976, pp. 1-24.

[31] A. Griewank, J.-U. Bernt, M. Radons, and T. Streubel, “Solving
piecewise linear systems in abs-normal form”, Linear Algebra and its
Applications, vol. 471, 2015, pp. 500-530.

[32] T.-P. Azevedo-Perdicoúlis, F. Perestrelo, and R. Almeida, “A note on
convergence of finite differences schemata for gas network simulation”,
in Proc. of the 22nd International Conference on Process Control, pp.
274-279, IEEE, 2019.

[33] C. Himpe, S. Grundel, and P. Benner, “Next-gen gas network simula-
tion”, in: Progress in Industrial Mathematics at ECMI 2021, pp. 107-113,
Springer, 2022.

[34] C. Himpe, S. Grundel, and P. Benner, “Model order reduction for gas
and energy networks”, J. Math. Industry, vol. 11:13, 2021, pp. 1-46.

[35] O. Schenk and K. Gärtner, “PARDISO”, in: D. Padua (eds) Encyclopedia
of Parallel Computing, Springer, 2011.

11International Journal on Advances in Systems and Measurements, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/systems_and_measurements/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


