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Abstract—When faced with upgrading or replacing High Per-
formance Computing or High Throughput Computing systems,
system administrators can be overwhelmed by hardware options.
Servers come with various configurations of memory, processors,
and hardware accelerators, like graphics cards. Differing server
capabilities greatly affect their performance and their resulting
cost. For a fixed budget, it is often difficult to determine
what server package composition will maximize the performance
of these systems once they are purchased and installed. This
research uses simulation to evaluate the performance of different
server packages on a set of jobs, and then trains a machine
learning model to predict the performance of un-simulated server
package compositions. In addition to being orders of magnitude
faster than conducting simulations, this model is used to power
a recommender system that provides a precision@50 of 92%.
This model is further evaluated using 24 days throughout the
calendar year, and it achieves a precision@50 of 88%.

Index Terms—HPC; Procurement Optimization; Recommender
system; XGBoost.

I. PREFACE

This research was originally presented at The Seventeenth
International Conference on Advanced Engineering Comput-
ing and Applications in Sciences [1]. The results presented
there have been expanded upon and further clarified for this
publication.

II. INTRODUCTION

When faced with upgrading or expanding a High Per-
formance Computing (HPC) or High Throughput Comput-
ing (HTC) system, administrators of these systems can be
overwhelmed by options. It is a challenging task to get the
best performance for a fixed budget. Server capabilities (i.e.,
number and types of processors, amount of memory, and
number and types of Graphics Processing Units (GPU) or
other hardware accelerators) greatly affect their costs, and for
a fixed spending ceiling, it is desirable to get the “best bang
for your buck.” For an HPC system, an optimal server pack-
age composition is dictated by its typical use. For instance,

if many users rely upon a GPU-accelerated application or
library, a higher GPU count may be desirable, even if this
means fewer servers can be purchased. With many factors to
consider, HPC administrators often rely upon their preferences,
intuition, and experience to inform procurement decisions.
This research uses historical job data from an HPC system,
a discrete event simulator (DES), and a machine learning
model to power a recommender system, which can help inform
a hardware procurement decision. These techniques provide
additional information to HPC system administrators about
which set of budget-constrained hardware minimizes wait
time for users’ jobs, and provides quantifiable support for
procurement decisions when upgrading or expanding existing
HPC infrastructure. The contributions of this work can be
summarized as follows:

1) A data set consisting of roughly 12,700 HPC scheduling
simulations, each with a different HPC server set

2) An optimized XGBoost regression model for predicting
average wait time when given a composition of servers

3) A recommender system with precision@50=92%, which
can inform hardware procurement decisions

This paper is laid out as follows: Section III provides
additional background on the problem and describes similar
work done by others, Section IV provides the methodology
and some implementation details, Section V provides details
of formulas for metric calculations, Section VI provides the
results of the experiments, and Section VII provides additional
details on how the recommendations of the system were
evaluated across a wider time frame. Section VIII evaluates
the performance of a model trained using all available data,
and Section IX provides our final conclusions.

III. BACKGROUND AND RELATED WORKS

The Open Science Grid (OSG) [2] [3] is a worldwide
collaboration that offers distributed computing for scientific
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research. In the central United States, one of the organiza-
tions contributing resources to the OSG is the Great Plains
Augmented Regional Gateway to the Open Science Grid (GP-
ARGO) [4]. In part, GP-ARGO receives funding through
governmental grants. These grants are often used to procure
new equipment to expand or improve the capabilities of GP-
ARGO’s participating organizations. Consequentially, there
is a fixed budget ceiling for HPC equipment procurement,
and the administrator’s goal is to purchase new equipment
that will maximize computational performance for our typical
applications while ensuring costs remain under the fixed grant
budget. The research question for this work is as follows: for a
planned HPC expansion, can experimental simulation provide
an optimal set of hardware under a given budget that will
minimize job wait time?

The challenge of optimal hardware procurement is not
exclusive to our organization. Similar work was done by Evans
et al. [5]. They collected benchmarks for various software
applications on different hardware to optimize the ratio of
Central Processing Unit (CPU) and GPU architectures for HPC
jobs. Their work is similar to ours, but we took a different
approach by using a scheduling simulator to evaluate the
performance of a set of jobs that were actually submitted to an
HPC system. We are solving a very similar problem as Evans
et al., but using a different approach to arrive at an optimal
hardware configuration.

Other researchers have attempted to optimize for a partic-
ular application, such as the work Kutzner et al. [6] did to
improve the utilization of GPU nodes when using GROMACs.
Although these techniques are not without their merits for HPC
systems that run a large number of homogeneous applications,
users of the GP-ARGO HPC systems run a wide variety of jobs
and applications. A more broad scheduler-based optimization
was more appropriate for our application.

Various public HPC workloads exist [7], and have been used
by HPC researchers in the past. However, as we are attempting
to identify and evaluate new hardware for a specific HPC
system, log data from that HPC system was utilized as the
workload for this research.

Different scheduling applications like SLURM, HTCondor,
or PBS, operate on HPC systems and perform the function
of assigning HPC resources to jobs. This job-to-machine-
assignment task is as an extension of the online bin packing
problem [8]. For the bin packing problem, the goal is to pack a
sequence of items with sizes between 0 and 1 into as few bins
of size 1 as possible. Each job specifies the resources requested
(the object sizes), and each HPC machine has a certain amount
of available resources (the bins with their respective sizes). The
scheduler is given the task to meet job requirements by assign-
ing them to HPC nodes (pack the objects into the available
bins) as efficiently as possible. This is an online problem as
new jobs are submitted over time to the scheduler. The best
fit bin packing (BFBP) algorithm has been shown by Dosa
and Sgall [9] to use at most ⌊1.7OPT ⌋ bins, ensuring this
algorithm will provide a reasonably close to optimal average
wait time when it is used as an HPC job scheduling algorithm.

Algorithm 1 Best Fit Bin Packing Scheduling

1: while The simulation is incomplete do
2: if Some job in the queue can be executed on some

machine then
3: Find the (job, machine) pairing that results in

the fewest remaining resources for some machine. Begin
executing that job on that machine.

4: else
5: Advance simulation time until a new job is sub-

mitted or a running job ends, whichever is sooner.
6: Queue submitted jobs and stop ending jobs.
7: end if
8: end while

Fig. 1. Pseudocode for the best fit bin packing algorithm

Since scheduling algorithms vary between applications, most
being highly customizable, and others being proprietary, a
discrete event simulator utilizing the BFBP algorithm served
as a stand-in for our scheduling application in an attempt to
make it more universally applicable. The BFBP scheduling
algorithm is described in Figure 1.

Although various HPC simulators have been used for similar
research, such as SimGrid [10], GridSim [11], or Alea [12],
this experiment needed a simple discrete event simulator using
the BFBP scheduler. The simulators mentioned above were
either deemed overly complex for our purposes, or they failed
to allow for the three limiting resources (memory, CPUs, and
GPUs) we were interested in investigating. An HPC scheduler
simulator was also considered, such as the Slurm simulator
developed at SUNY University in Buffalo [13]. Although this
option was investigated further, scaling a job’s actual duration
from the log data to the new machine once it is assigned
to a machine was challenging. As such, a custom discrete
event simulator was developed and utilized for this research.
The simulator allows for three resource constraints in each
machine: memory, CPUs, and GPUs. It is fairly lightweight,
fast, and easy to understand.

A significant consideration when evaluating new server
hardware is the performance increase newer technology or
architectures can provide. Using log data, we know how long
a job took on a machine with known hardware. Since the
specifications for the new hardware under consideration are
also known, the actual duration of the jobs from the historic
log data was scaled using base performance of the processor
as reported by SPEC CPU2017 benchmark, second quarter,
2023 [14].

Knowing how a particular job performed on one set of
hardware and estimating how it will perform on some other
hypothetical set of hardware is challenging. Sharkawi et al.
[15] successfully used a similar SPEC benchmark to estimate
the performance projections of HPC applications. Other re-
searchers, like Wang et al. [16] have pointed out that these
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benchmarks fail to account for all the variables affecting job
resource utilization and should be avoided. Although CPU
performance is not the only factor by that we could have scaled
job duration, and perhaps it is not the best factor by which
to scale, it worked well for our purposes. The discrete event
simulator was implemented such that the scaling factor could
be easily changed if other researchers should find a different
factor more relevant to their situation.

Various metrics are typically used when evaluating the
performance of HPC scheduling algorithms. Some of these are
average wait time, HPC utilization, average turnaround time,
makespan, throughput, etc. Which metric is used depends on
the application and function of the HPC system, and different
organizations may value one metric over another. The metric
used for this research was average wait time, or the average
number of seconds each job spent waiting in the job queue
for execution on HPC resources. We presume that the same
techniques could be applied by other researchers using a
different metric, should they prefer a different one.

This research relied upon a regression model where: given
the total CPUs, total memory, and the total GPUs for a
composition of servers, the regression model will predict the
average jobs wait time for the representative set of jobs. Var-
ious regression techniques were tried, but Extreme Gradient
Boosting (XGBoost) [17] was the most effective of those tried.
XGBoost is a scalable, distributed, gradient-boosted, decision
tree machine learning library. It relies upon supervised ma-
chine learning, decision trees, ensemble learning, and gradient
boosting. Similar to a random forest, multiple decision trees
are created for the regression task, and these trees each make
predictions of the average wait time given the three inputs
(total server package CPUs, memory, and GPUs). The results
from the multiple trees are combined via a weighted sum,
and they are “boosted” by generatively adding new decision
trees. The error of the objective function is minimized by
gradient descent during the training process, resulting in quick
convergence and accurate prediction results.

Recommender systems power a variety of applications like
search engines and music recommendation systems. First, the
“hits” for the system must be defined. Hits are the elements
from the data set that are relevant to the user’s search. Next,
the user specifies the number of recommendations, k, that they
would like to receive. If the recommender system is precise,
a large portion of the k items returned will be hits.

IV. METHODOLOGY

The general plan for optimizing a hardware package for our
fixed budget can be summarized as follows:

1) Receive vendor quotes with potential server options.
2) Generate potential server combinations to purchase un-

der the specified budget which meet our procurement
requirements.

3) Identify a typical set of jobs representing the workloads
typically submitted to our HPC system.

4) Conduct simulations using a subset of the server pack-
ages to schedule the representative job set and compute
metrics to determine their performances.

5) Use machine learning to train and refine a regression
model that can predict the performance of un-simulated
server combinations.

6) Develop a recommender system using the machine
learning model and quantitatively evaluate its perfor-
mance

7) Subjectively evaluate the recommended server packages
and make a more informed procurement decision.

This pipeline is illustrated by Figure 2. First, we generate all
possible combinations of servers we can purchase under our
budget. Next, we uniformly sample 10% of these by selecting
every tenth server combination and we use the DES to simulate
the execution of a chosen set of jobs. We then use XGBoost
to develop and train a regression model that will map a sever
package’s total CPUs, memory, and GPUs to the predicted
average wait time that these jobs will experience. We use
the regression model to predict the average wait time of the
sampled server combinations, sort them by the predicted wait
time, and return the top k recommended server sets to the
user. These recommendations can be quantitatively evaluated,
as the actual average wait time has been simulated. Next, we
can use the same regression model and recommender system
to make predictions on the entire set of servers, and we can
summarize them and subjectively evaluate them, as 90% of
the have not be simulated and their actual average job wait
time is unknown.

Finally, the recommendations of the system were simulated
using workloads from 24 days across a calendar year to
determine it the recommended server sets continued to be
effective when faced with the varied workloads the HPC
system experienced throughout the year.

Fig. 2. A pictorial representation of the methodology for this research.

A. Generate Server Options

To begin, we received several vendor quotes specifying the
costs and capabilities of 21 potential servers to purchase. When
considering upgrade options, we typically separate servers
into one of three categories: compute nodes, big memory
nodes, or GPU nodes. A compute node typically has a large
number of processor cores, a moderate amount of memory,
and no GPU. A big memory node will have a large amount of
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TABLE I. SERVER CAPABILITIES AND COSTS UNDER INVESTIGATION

Node type Distinct
nodes

consid-
ered

Memory
range
per

node

CPUs
range
per

node

GPUs
per

node

Cost
range
per

node
Compute 4 256-512

Gb
24-64
cores

0 GPUs $6k-
$10k

Big memory 2 1024
Gb

24-64
cores

0 GPUs $11k-
$13k

GPU 15 256-
1024
Gb

24-64
cores

1-8
GPUs

$14k-
$100k

memory with a moderate amount of CPU cores and no GPU.
A GPU node is any node that has a GPU. Table I lays out
the options we received from several different vendors. The
procurement budget was fixed at $1 million, and all possible
server combinations were generated in the following way:

• Separate servers into three categories: compute nodes, big
memory nodes, and GPU nodes.

• Choose all combinations of one node from each category.
• Determine all quantities of the three node types under a

given budget such that there is at least one GPU node
and there is not enough funding remaining to purchase
another node.

In our selected job set, many jobs requested GPUs as a
resource. These jobs would automatically fail if at least one
GPU node were not included in a potential server package.
Roughly 127,000 different server combinations met these
requirements. Table II provides an illustrative example of how
the server combinations were generated. Many server options
and packages were omitted from the table for the sake of
brevity.

B. Identify a Representative Set of Jobs

One typical days’ worth of submitted jobs (roughly 16,000
jobs) was subjectively pulled from the log data of the local
HPC system. As with most HPC systems, jobs were submitted
in a bursty manner, and variety of resources were requested.
Figure 3 and Table III display some descriptive statistics
and information about the jobs used for this portion of this
research.

C. Job Duration Scaling

The submitted jobs were scaled using the base performance
of the processor on the SPEC CPU2017 benchmark suite. The
requested duration was not modified, but the actual duration
of each job was calculated using the following formula:

New duration = logged duration∗logged processor performance
new processor performance

D. Discrete Event Simulator

Since there are many different applications for scheduling
jobs on HPC systems, the discrete event simulator using the
BFBP scheduling algorithm acted as a generic substitute for
the scheduling application for our HPC system. What was
needed was a method for determining the average job wait

Fig. 3. The number of jobs submitted over time for the selected day

time for selected jobs on specified hardware. Other simula-
tors could have been used, but for this research, a discrete
event simulator was implemented in Python that provides the
following functionality:

• A global clock to keep track of simulation time.
• Several queues, priority queues, or lists to track jobs

as they progress through the execution process: future
jobs, queued jobs, running jobs, completed jobs, and
unrunnable jobs.

• Jobs and machines are specified using comma separated
value (csv) files, which is loaded prior to the simulation.

• Machines have three limiting resources: available mem-
ory, CPUs, and GPUs.

• Jobs are specified with the following attributes: submit
time, actual duration, and requested duration, memory,
CPUs, and GPUs. Jobs track their start time and end
time as the simulation progresses to allow for metric
calculation.

• Job end time is set when the job starts running as the job
start time plus the job actual duration.

• When a job starts running on a machine, that machine’s
available resources are decremented by the resources re-
quested by the job. Conversely, when a job completes, the
machine executing it has its available resources increased
by the amount requested by the ending job.

• Jobs with a submit time greater than the current global
clock reside in the future jobs priority queue.

• Jobs with a submit time less than or equal to the current
global clock, but not yet assigned to a machine, reside in
the job queue.

• Jobs that have begun their execution and have an ending
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TABLE II. GENERATED SERVER COMBINATIONS

ComputeNode1, $6,960 ea. BigMemNode1, $11,112 ea. GPUNode1, $14,730 ea. . . . Package Cost Funds Remaining
141 0 1 . . . $996,090 $3,910
139 1 1 . . . $993,282 $6,718
138 2 1 . . . $997,434 $2,566

...
...

...
. . .

...
...

0 1 67 . . . $998,022 $1,978

TABLE III. DESCRIPTIVE STATISTICS FOR THE POOL OF SELECTED JOBS

Requested
Mem (in

Gb)

Requested
CPUs

Requested
GPUs

Requested
Duration

(in
hours)

Actual
Duration

(in
hours)

Mean 5.12 4.75 0.002 2.82 2.27
Std Dev. 16.73 3.33 0.055 1.02 13.67
Min 1 1 0 0 0
Max 800 64 4 11.20 11.20

time less than the current global clock, reside in the
running jobs priority queue.

• Jobs with an ending time less than or equal to the current
global clock reside in the completed jobs list.

• If no node in the cluster has adequate resources to run a
particular job, that job is moved to the unrunnable jobs
list.

• In the event that no queued jobs can run on available
resources, the simulation time “fast forwards” to the next
event: either job submission or job ending.

• Jobs in the job queue are run as soon as there are available
resources and are chosen using the best fit bin packing
scheduling algorithm described in Algorithm 1.

• Actual job duration from logged job data can be scaled to
allow for hardware improvement with newer hardware.

E. Machine Learning

Although each simulation completed fairly quickly, requir-
ing no more than 30 minutes each, this particular combination
of server quotes yielded roughly 127,000 combinations that
need to be evaluated. To reduce the computational require-
ment, every tenth line from the file with the server com-
binations was sampled, and roughly 12,700 simulations for
these server packages were completed in parallel using HPC
resources. By sampling from the generated server packages
uniformly, various quantities of each server under considera-
tion were included in the simulated data. Each server package
was summarized into the package total memory, total CPUs,
and total GPUs, by summing the resources of every machine
comprising the package. The average wait time for the sim-
ulation served as the label for each package. Using five fold
cross validation, an XGBoost regression model was trained
using training data. The regression model was evaluated using
root mean squared error (RMSE) on the test data. An accurate
regression model enabled the prediction of the average wait
time for unsimulated server combinations and saved countless
hours of additional simulation.

F. Recommender System

In our case, a hit was defined as a server combination
with an average wait time in the lowest 5% of simulated
combinations (or 632 hits out of the ∼12,700 simulated server
combinations). The value of k was varied to evaluate the per-
formance of the recommender system. Then, once confidence
was gained that our recommender system was functioning
properly, it was used to recommend systems from the entire
server combination pool of 127,000 server combinations. The
recommendations were summarized and evaluated subjectively
before arriving at a final procurement decision.

G. Simplifying Assumptions

The current nodes comprising the HPC system were not
added to the set of nodes simulating the selected jobs. The
benefit current nodes would provide to the new servers under
investigation would be common to all.

Any additional equipment required to install and operate
the new servers (e.g., networking hardware, additional cooling
equipment, server racks, power infrastructure, etc.) were not
deducted from the total procurement budget. It was thought
that these costs would be a relatively fixed regardless of the
server package chosen. The same analysis described in this
research could be done by reducing the total budget by the
cost of additional hardware and then completing the analysis
with a reduced budget.

V. EVALUATION

Pearson’s Correlation Coefficient [18] determined the extent
of the correlation between the total memory, CPUs, and GPUs
of a package and the average wait time. This coefficient
provides a value between -1 and 1, where values closer to -1
or 1 indicate that the feature and the label are more strongly
correlated. A coefficient of 0 indicates no correlation.

Wait time was calculated by analyzing the completed jobs
output from each simulation. The wait time for each job was
the number of seconds from the time the job was submitted
until it began. For N jobs, the average wait time was calculated
as follows:

AvgWaitTime =
ΣN

i=0(Start Timei − Submit Timei)
N

Root Mean Squared Error was utilized for regression model
evaluation calculated according to the following formula:

RMSE =

√
ΣN

i=0(actual wait timei − predicted wait timei)2

N
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The performance of the final recommender system was
evaluated using precision@k, recall@k, and F1@k. In general,
precision@k is the proportion of recommended items in the
top-k set that are relevant, and recall@k is the proportion of
relevant items found in the top-k recommendations. F1@k
is the harmonic mean of precision@k and recall@k, which
simplifies them into a single metric. They were calculated
according to the following formulas:

Precision@k =
(# of recommended items @k that are relevant)

(# of recommended items @k)

Recall@k =
(# of recommended items @k that are relevant)

(total # of relevant items)

F1@k =
(2 ∗ precision@k ∗ recall@k)
(precision@k + recall@k)

VI. RESULTS

The correlation of features, the performance of the regres-
sion model and the recommender system, and some analysis
about the recommended server compositions are described
below.

A. Feature Correlation

The correlation between the features and the labels is shown
in Table IV. For this set of jobs, the total CPUs in a server
package were most strongly correlated to the average wait
time. For the chosen jobs, the more CPUs a package had, the
lower its average wait time.

Since we are constrained by our available budget of $1
million, choosing to buy one type of node over another is
a zero-sum game. The more GPU nodes we purchase, and the
more GPUs there are per node, the fewer compute nodes or
big memory nodes we are able to afford. This is indicated by
the positive correlation between GPUs and the average wait
time.

TABLE IV. PEARSON CORRELATION COEFFICIENTS

TotalMem TotalCPUs TotalGPUs AvgWaitTime
TotalMem 1.00 0.14 −0.54 −0.23
TotalCPUs 0.14 1.00 −0.42 −0.70
TotalGPUs −0.545 −0.42 1.00 0.44

AvgWaitTime −0.23 −0.70 0.44 1.00

B. Regression Model

The XGBoost regression model had a RMSE = 150.13
seconds, indicating that the total memory, CPUs, and GPU
features made excellent predictors for the average wait time for
these jobs when simulated with the discrete event simulator.
The predicted vs. simulated wait time is shown in Figure 4.
If the regression model were perfect, all these points would
lie upon the y = x line, and it is clear that this model does
a good job at predicting the average wait time for a given
composition of servers.

Fig. 4. The predicted vs. simulated wait times showing the accuracy of our
regression model.

C. Recommender System

The regression model was used to predict the 12,700 labeled
simulations, and their precision@k, recall@k, and F1@k for
various values of k are displayed in Table V. The goal was
to reduce the number of possibilities from roughly 127,000
different possible combinations of servers down to a rea-
sonable number that could be evaluated by an HPC system
administrator and have a large percentage of the recommended
server combinations be hits (among the best 5% of server
combinations with the lowest average wait times). Although
precision@10 was 100%, it is thought that seeing more server
package options would allow system administrators a wider
variety from which to choose. A system administrator could
easily and quickly review up to 50 recommendations (k = 50),
and more than 46 out of 50 of these recommendations returned
by this system (92%) would be top performing server combi-
nations, which is excellent. Recall@k when k is less than the
number of total hits (632 hits total) is unfairly penalized, but
the recall@k above 632 is also excellent. When k = 1, 000,
the recall@1000 = 91%, meaning the recommender system
successfully retrieved 91% of the top 5% performing server
packages when returning less than 1% of the 127,000 different
options.

TABLE V. PRECISION@K AND RECALL@K FOR TEST DATA

k value Precision@k Recall@k F1@k
10 1.00 0.02 0.03
50 0.92 0.07 0.13
100 0.81 0.13 0.22
500 0.74 0.59 0.66
632 0.72 0.72 0.72

1000 0.58 0.91 0.71
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D. Recommended Compositions

Beyond looking at the individual server compositions rec-
ommended, we wanted to draw some conclusion about the
types and quantity of nodes that the recommender system
returned. The sum of the server quantities for the top 50
recommendations can be found in Table VI. Compute nodes
with the larger number of cores were vastly preferred, and the
recommender system did not recommend spending additional
funds on more memory for the compute nodes. Additionally,
the recommender system preferred the cheaper big memory
node with fewer cores. Finally, for our typical workload,
the recommender system did not recommended purchasing a
large number of GPUs per GPU node, instead recommending
servers with 2 GPUs per server most often. As shown in Figure
5, the recommender system suggests spending on average 58%
of our total budget on compute nodes, 8% on big memory
nodes, and 34% on GPU nodes.

TABLE VI. RECOMMENDATIONS DRAWN FROM MODEL PREDICTED
RESULTS

Node Type Node Description Sum of Servers
Across Top 50

Compute Nodes

Low Cost CPU w/ 256Gb 232
Low Cost CPU w/ 512Gb 0
High Cost CPU w/ 256Gb 3,467
High Cost CPU w/ 512Gb 0

Big Memory Nodes Low Cost CPU w/ 1024Gb 232
High Cost CPU w/ 1024Gb 111

GPU Nodes
2 GPUs in one server 732
4 GPUs in one server 267
8 GPUs in one server 0

Fig. 5. The recommended budget breakdown by node type.

A boxplot showing the simulated average job wait time of
the top 5% of recommended server sets (or k=638) is shown
in Figure 6. It is clear that the recommender system was able
to retrieve and recommend server sets that performed well on
the representative set of jobs.

VII. EVALUATION OF THE GENERALIZATION OF THE
APPROACH

The previously described regression model was developed
using the results when using a single, representative workload

Fig. 6. The average job wait time for the top 5% recommended server sets
vs. the bottom 95%.

of one days’ worth of jobs from the local HPC system. For
this technique to be viable, it must be demonstrated that the
recommended server packages would perform well not only
for the representative day, but also for many different days
of HPC activity. To investigate this further, the following
methodology was used:

• Subjectively pull log data an additional 24 days across
the year (2 days per month)

• Use the discrete event simulator to simulate the execution
of the workloads for the same subset of 12,700 server
packages

• Identify the top 10% of server compositions with the
lowest average wait time for each day

• Evaluate the performance of the initial recommended
server sets using the additional labeled data

This computation was done in parallel using HPC resources
and involved over 150,000 CPU hours.

A. Generalized Results

To begin, 24 different days of HPC log data from throughout
the year were chosen subjectively (2 days per month). These
days were scheduled using the DES using the roughly 12,700
server combinations that were originally used to train the
regression model. See Figure 7 for the average wait times
for each of the days simulated. Since the job characteristics
for each day were different, this caused a re-ordering of the
“hits” for each day. For instance, if a day had many GPU
jobs, server combinations with more GPUs would have lower
average job wait times. Each day’s hits were defined as the
server set whose average job wait time was in the lowest
10% for that day. By counting the number of days across
the year for which that server combination was in the top
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Fig. 7. Boxplots of the average wait time for each of the days simulated
throughout the year.

10% of performant server combinations, we were able to
determine which server combinations were an overall “hit”
for the recommender system. A hit threshold of num hits> 6
was found to produce good results, meaning that for 7 or
more days of the 25 labeled days throughout the year, the
server combination was in the top 10% of performant server
packages. The results can be found in Table VII.

TABLE VII. PRECISION@K AND RECALL@K WHEN HIT THRESHOLD >6

Hit Threshold k precision@k recall@k F1@k
>6 10 1.00 0.005 0.01
>6 50 0.88 0.02 0.04
>6 100 0.83 0.04 0.08
>6 500 0.93 0.23 0.36
>6 1000 0.89 0.43 0.58
>6 2046 0.75 0.75 0.75
>6 5000 0.41 1.00 0.58
>6 10000 0.2 1.00 0.34

If k = 50, the recommender system achieves a pre-
cision@50=88%, which is slightly lower than the preci-
sion@50=92% when the day was evaluated on the same
day on which it was trained. Again, 50 recommendations
is thought the be an easily human parsable amount which
can be compared and evaluated by system administrators for
purchase. In other words, given the top 50 recommendations
returned to the user, 88% of them would be in the top 10%
of performant server sets for 7 out of the 15 days throughout
the year which were evaluated.

Increasing the hit threshold reduces the number of total hits
that the recommender system can find, and consequentially
lowers the precision@k. For instance, the threshold mentioned
in Table VII required a server set to be among the top 10%

Fig. 8. The precision@k as the hit threshold is varied.

for seven or more days out of the 25 days simulated. In
this case, there were 2,046 overall “hits” out of the 1̃2,700
total server sets whose performance was measured. If the hit
threshold is raised to 20, meaning 21 or more days found
these server combinations in the top 10% of performing server
sets, there are only 70 total hits for the recommender system
to find. Figure 8 shows how precision@k degrades when the
hit threshold is raised. When the hit threshold is raised to
20, the recall@500 is 67%, meaning that the top 500 results
returned by recommender system contained 67% of the 70
hits that were found. Table VIII shows the results at this hit
threshold. Though these results are less promising, there were
relatively few server sets that performed well for this many
days throughout they year. Using the recommender system
trained on days’ worth of representative jobs saved approxi-
mately 150,000 hours worth of computation time conducting
the simulations on the various jobs submitted throughout the
year.

TABLE VIII. PRECISION@K AND RECALL@K WHEN HIT THRESHOLD
>20

Hit Threshold k precision@k recall@k F1@k
>20 10 0.00 0.00 0.00
>20 50 0.14 0.10 0.12
>20 70 0.11 0.11 0.11
>20 100 0.10 0.14 0.12
>20 500 0.10 0.67 0.17
>20 1000 0.07 1.00 0.13
>20 5000 0.01 1.00 0.03
>20 10000 0.01 1.00 0.01

B. Time Savings for this Technique

Each simulation took around 30 minutes to complete, but
they were conducted in parallel using HPC resources. The
roughly 12,700 server compositions simulated to train the
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regression model took over 6,000 compute hours to complete.
Each of the 24 additional days took another 6,000+ hours, for
a total of over 150,000 compute hours required to validate the
recommendations across a representative sample throughout
the year. An exhaustive search of all 127,000 server combina-
tions for a single representative days’ worth of jobs would have
taken over 60,000 compute hours, and would have yielded a
definitive answer on which server combination would have
performed best on a single representative days’ worth of jobs.
Validating this across 24 days across a calendar year would
have required over 1.5 million compute hours on HPC re-
sources. The recommender system built using regression from
a subset of the possible servers required a 99.96% decrease
in the time required for computation while still achieving a
precision@50 of 92%. This model achieved a precision@50
of 88% when using the threshold that for 6 or greater days,
the server compositions had the lowest 10% average job wait
time for each day. The additional validation step of computing
24 days across the year could even be omitted, as the results
from the original trained model did quite well across the year.

VIII. TRAINING WITH ALL DATA

Though we have shown it is sufficient to train using a single
day’s worth of representative jobs, we obtained simulated
average wait times for jobs for 25 days throughout the year. We
wanted to explore the performance of a recommender system
trained on all data gathered and compare and contrast its
performance with the recommender system described above.
For each of the 25 days simulated, the average wait time
varied depending on the jobs which were submitted on those
days. Figure 7 shows boxplots of the average wait time by
day depicting the these variations. As such, these values were
scaled using min-max normalization prior to regression using
the following formula:

Normalized value = (actual value−min value)
(max value−min value)

Performing this normalization across each day transforms
the average wait time values into a a unitless value between 0
and 1 where values closer to zero represent the best performing
server sets with the lowest average wait time. Though the
predictions by the regression model will no longer predict the
number of seconds of average wait time a server compositions
is expected to to have, predicted lower values still represent
server packages with lower expected average wait time for
jobs. The regression model was not as accurate as when
training using a single representative set of jobs, as depicted in
Figure 9. Again, if the regression model were perfect, all the
predicted vs. actual values would lie upon the y = x line of the
graph. Though this model using normalization does not appear
to be as good as the previous one, some loss of precision is
expected when normalizing in this manner. We can still use
the regression model to power a recommender system and
evaluate its performance.

Table IX shows the results of the normalized model when
the hit threshold is greater than 16. Using the same k = 50
value from before, we achieve a precision@50 of 94%, which

Fig. 9. The predicted vs. simulated normalized average wait time values.

is thought to be excellent. In other words, 47 out of the top 50
recommendations returned by this model will be among the
top 10% of performant server combinations for 17 or more
days throughout the year. Though this model does slightly
better than the model trained on one representative days’ worth
of jobs, it took 24 times more computation to provide the
data to train it. Though the original model trained using a
single day achieved a lower precision, it was still able to return
good results across the year and required substantially less
computation time.

TABLE IX. Precision@k and Recall@k when Hit Threshold >16 for
Normalized Model

Hit Threshold k precision@k recall@k F1@k
>16 10 1.00 0.026 0.05
>16 50 0.94 0.12 0.22
>16 100 0.78 0.20 0.32
>16 386 0.61 0.61 0.61
>16 500 0.54 0.70 0.61
>16 1000 0.32 0.83 0.46
>16 5000 0.08 1.00 0.14
>16 10000 0.04 1.00 0.07

The results of summing the top 50 recommended server
sets can be found in Table X. These differ slightly from the
recommendations of the model trained using a single represen-
tative days’ worth of jobs. In both models, the more expensive
compute node with more cores was preferred, however the
model trained on all the days prefers the compute node with
more memory. The model trained on a single day preferred the
cheaper big memory node, and the model trained on all the
days preferred the more expensive one. Both models preferred
GPU nodes with fewer GPUs. Though they differ slightly in
the nodes types and quantities they prefer, they are fairly close
with their recommendations, and it is thought that the original
model using only a single representative day’s worth of jobs
would provide adequate enough recommendations for a HPC
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system administrator to evaluate and arrive at a good server
combination to purchase.

TABLE X. RECOMMENDATIONS DRAWN FROM NORMALIZED MODEL
PREDICTED RESULTS

Node Type Node Description Sum of Servers
Across Top 50

Compute Nodes

Low Cost CPU w/ 256Gb 0
Low Cost CPU w/ 512Gb 0
High Cost CPU w/ 256Gb 1,667
High Cost CPU w/ 512Gb 1,764

Big Memory Nodes Low Cost CPU w/ 1024Gb 34
High Cost CPU w/ 1024Gb 751

GPU Nodes
2 GPUs in one server 341
4 GPUs in one server 108
8 GPUs in one server 48

IX. CONCLUSIONS

We began with roughly 127,000 different possible server
packages that could have been purchased under our budget.
We uniformly sampled 10% of these, leaving us with roughly
12,700 different server packages. We chose a representative
days worth of jobs from local HPC log data, and simulated
the scheduling of these jobs on the 12,700 server packages,
so we could calculate the average jobs wait time for a given
composition of servers. By developing an XGBoost regression
model, we were able to predict the average job wait time for
the unsimulated server compositions. Finally, we were able to
verify that the recommender system made good recommenda-
tions by choosing different sets of jobs spaced throughout the
year and simulating the scheduling of different job workloads
using those server sets. An administrator considering purchase
options has an 88% chance of selecting a top performing server
packaged under their budget if they were to choose one from
the top 50 recommendations returned by the recommender
system. By simulating the performance of a small minority of
server packages, our recommender system was able to make
excellent recommendations.

The most benefit from using this system comes from the
time saved doing simulations. The roughly 127,000 initial
server combinations could be effectively summarized by sim-
ulating only 10% of them on a single representative set of
jobs, and it proved unnecessary to conduct simulations for days
spaced throughout the year. This was done for the research in
order to evaluate the performance of the recommender system,
and explore its feasibility when used to optimize hardware
procurement for HPC systems.

This recommender system is not intended to replace the
expertise of HPC administrators when it comes to decisions for
hardware procurement. It is our hope that this tool can provide
a data-driven technique that will help narrow the search space
with which administrators are confronted when they make
procurement decisions. Returning to the research question:
experimental simulation coupled with a regression model
enabled a recommender system to return server compositions
under a given budget with low average wait times with a
precision@50 of 92%. Additionally, the discrete event sim-
ulator, job data set, machine learning code, and recommender

system code are released under the GPLv3 license should
other researchers find it useful (https://github.com/shutchison/
Optimal-Hardware-Procurement-for-a-HPC-Expansion).
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