
138International Journal on Advances in Systems and Measurements, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/systems_and_measurements/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Improving Effectiveness and Performance Based on
Dimensionality Reduction of CCD Image Features

in Fall Armyworm’s Control
Alex B. Bertolla 1,2 and Paulo E. Cruvinel 1,2

1Embrapa Instrumentation, São Carlos, SP, Brazil
2Federal University of São Carlos - Post Graduation Program in Computer Science, São Carlos, SP, Brazil

E-mails: alex.bertolla@embrapa.br, paulo.cruvinel@embrapa.br

Abstract—The pest control in agriculture based on digital
imaging sensors has increased significantly in the past decades.
Such a strategy has become possible due to the continuous im-
provements in computational intelligence and machine learning
techniques. However, the demand for analyzing and processing
such an amount of data generated by these sensors has become
a challenge due to the high dimensionality. This article presents
a study on the dimensionality reduction of features from digital
images acquired with a Charge-Coupled Devices sensor in an
agricultural field, to choose the optimal number of principal
components for reducing feature dimensionality. It also presents
a machine-learning method for the pattern recognition of this
species of caterpillar (Fall armyworms - Spodoptera frugiperda) in
its different growth stages. In such a context, selecting the optimal
number of principal components for dimensionality reduction,
retaining only the necessary information associated with the main
variables that describe the object of interest. The results have
shown that using Hu invariant moments for feature extraction,
dimensionality reduction was possible for all analyzed cases,
leading to 80% of the original data. In this context, it was possible
to preserve the semantic characteristics collected by the sensor.
Support Vector Machine classifiers have reached more than 70%
of accuracy and more than 80% of precision. Moreover, the
performance of the classifiers was 30% faster when working
with the dimensionality reduced of the feature vector than when
working with the original data.

Keywords-ccd sensor; digital image; feature extraction; dimen-
sionality reduction; principal component analysis.

I. INTRODUCTION

In agriculture pest control plays an important role. In maize
production, the Fall armyworm (Spodoptera frugiperda) has
been requiring special attention, since it sponsors significant
losses in production. In such a context, a previous study
has been presented at the Ninth International Conference
on Advances in Sensors, Actuators, Metering and Sensing
(ALLSENSORS 2024) [1].

Charge-coupled devices (CCD) are the most used imaging
sensors for digital image acquisition. They have built-in frame
capture systems and the analog-to-digital conversion is done
in the sensor itself [2].

CCD’s sensors have been used in such ways to acquire
images for different purposes. In agriculture, those sensors are
usually used to capture images of pests and diseases [3] [4].

Due to the complex and high dimensions of the data
captured by those sensors, storing and processing the amount

of data acquired has become a challenging task [5], known as
the curse of dimensionality [6]. This phenomenon is related to
the fact, that with a certain degree of accuracy from a function
estimation, the number of variables increases as the number
of samples also has to increase [7].

To solve the issue of the curse of dimensionality, different
methods based on dimensionality reduction techniques have
been proposed [8]. These methods transform the original
high-dimensional data into a new reduced dataset, removing
the redundant and non-relevant features [9]. Dimensionality
reduction algorithms allow an efficient reduction of the number
of variables, and if applied before machine learning models
can avoid overfiting.

In the literature, it is possible to find several available
researches about dimensionality reduction techniques for dif-
ferent types of data, such as Principal Component Analysis
(PCA) introduced in 1901 by Karl Pearson [10], and its
variations [11], Linear Discriminant Analysis (LDA) [12],
Singular Value Decomposition (SVD) [13] and Isometric Map-
ping (ISOMAP) [14], a non-linear dimensionality reduction
method based on the spectral theory, which tries to preserve
the geodesic distances in the lower dimension.

PCA is a linear dimension reduction technique and is the
most predominant method applied [15], and was considered
to compose this work.

This paper presents a method for dimensionality reduction
optimization when using CCD sensor-based images to control
Fall armyworms in agriculture. In fact, the task of image
classification allows the machine to understand what type
of information is contained in an image, on the other hand,
semantic segmentation methods allow the precise location of
different kinds of visual information, as well as each begins
and ends. Besides, it also presents a case study based on se-
lecting Support Vector Machine (SVM) classifiers to evaluate
the reduced features and their relation with the original data.

After the introduction, the remainder of the paper is orga-
nized as follows: Section II describes the work methodology;
Section III shows the results, Section IV the discussion of the
experiments; and finally, Section IV presents the conclusion
of this paper and suggestions for future works.
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II. METHODS

All the experiments have been performed in Python, i.e., by
using both the image processing and machine learning libraries
in openCV, as well as scikit-image and scikit-learn algorithms
respectively. We also have considered an operating platform
with a 64-bit CPU Intel (R) model Core(TM) i7-970, 16Gb
RAM, and operational system Microsoft Windows 11.

A. Digital Image Sensor and Dataset

A digital image can be defined as a bi-dimensional function
f(x, y), where (x, y) are the intensity positions, defined as
pixel [16]. CCD’s sensors can capture images in different
color spaces, however, the most common color space is the
Red Green, and Blue (RGB), representing the visible spectrum
[17].

Table I presents the features of the images acquired using
the CCD sensor.

TABLE I
IMAGE FEATURES ACQUIRED BY CCD SENSOR

Image type JPG / JPEG
Color space RGB

Width 3072 pixels
Height 2048 pixels

Resolution 72 pixels per inch (ppi)
Pixel size 0.35mm

Regarding the image acquisition, a dataset was generated
using a CCD sensor. This dataset is composed of the Fall
armyworm images in real maize crops, where the pest was
found both in leaves and cobs maize.

B. Feature Extraction

The Hu invariant moments descriptor was considered for
the extraction of the geometric features of the pest. For
the calculation of the seven invariant moments of Hu, it is
necessary, a priori, to calculate the two-dimensional moments,
that is, the central moments and normalized central moments
[18]. Two-dimensional moments are understood to be the
polynomial functions projected onto a 2D image, f(x, y), and
size M ×N and order (p+ q).

The normalized central moments allow the central moments
to be invariant to scale transformations, being defined by:

ηpq =
µpq

µγ
00

for µ00 ̸= 0 (1)

where γ is defined as:

γ =
p+ q

2
+ 1 (2)

for p+ q = 2, 3, ..., positive integers ∈ Z.
In this way, the invariant moments can be calculated con-

sidering:
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2 + 4η211 (4)

ϕ3 = (η30 − 3η12)
2 + (3η21 − η03)

2 (5)

ϕ4 = (η30 + η12)
2 + (η21 + η03)

2 (6)

ϕ5 = (η30 − 3η12)(η30 + η12)
[(η30 + η12)

2 − 3(η21 + η03)
2]+

(3η21 − η03)
(η21 + η03)

[3(η30 + η12)
2 − (η21 + η03)

2]

(7)

ϕ6 = (η20 − η02)
[(η30 + η12)

2 − (η21 + η03)
2] + 4η11(η30 + η12)η21 + η03)

(8)

ϕ7 = (3η21 − η03)(η30 + η12)
[(η30 + η12)

2 − 3(η21 + η03)
2]+

(3η12 − η30)(η21 + η03)
[3(η30 + η12)

2 − (η21 + η03)
2]

(9)

Neither of the seven Hu invariant moments is directly related
to the size of an object in an image. However, the size of an
object can be indirectly inferred through either the first or
fourth moment [19].

After the features are extracted using the methods consid-
ered, a single feature vector is organized. Then, to reduce its
dimensionality, PCA is applied [20].

C. Principal Components Analisys

PCA considers an array X of data with n samples represent-
ing the number of observations and m independent variables
[21], that is:

X =

x11 · · · x1m

...
. . .

...
xn1 · · · xnm

 (10)

Herein, the principal components are obtained for a set of
m variables X1, X2, ..., Xm with means µ1, µ2, ..., µm

and variance σ2
1 , σ2

2 , ..., σ2
m, which are independent and have

covariance between the n-th and m-th variable [9], in the form:

Σ =

σ
2
11 · · · σ2

1m
...

. . .
...

σ2
n1 · · · σ2

nm

 (11)

where Σ represents the covariance matrix. To do this, the pairs
of eigenvalues and eigenvectors are found (λ1, e1), (λ2, e2), ...,
(λm, em), where λ1 ≥ λ2 ≥ ... ≥ λm and associated with Σ
[22], where the i-th principal component is defined by:

Zi = ei1X1 + ei2X2 + ...+ eimXm (12)

where Zi is the i-th principal component. The objective is to
maximize the variance of Zi, as:

V ar(Zi) = V ar(e′iX) = e′iV ar(X)ei = e′iΣei (13)
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where i = 1, ..., m. Thus, the spectral decomposition of the
matrix Σ is given by Σ = PΛP′, where P is the composite
matrix by the eigenvectors of Σ, and Λ the diagonal matrix
of eigenvalues of Σ [23]. Thus, it has to be:

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λm

 (14)

In general, the principal component of greatest importance
is defined as the one with the greatest variance, which explains
the maximum variability in the data vector. The second most
important component is the component with the second highest
variance, and so on, up to the least important component [13].

Likewise, the normalized eigenvectors represent the main
components that constitute the feature vector with reduced
dimension. Besides, such reduced components are used to de-
scribe the acquired images. Additionally, the reduced features
are used for the recognition of the patterns of Fall armyworm
(Spodoptera frugiperda), i.e., useful consideration for both
cases, leaf or cob maizes.

D. Machine Learning and Pattern Recognition

The ability of a computational system to improve the
performance of a task based on experience can be defined as
machine learning (ML), performed through either supervised
or unsupervised learning methods [24].

In such a context, the feature vector, with reduced dimen-
sionality, was used such that the classification was considered
according to its position in the feature space. Thus, groups
composed of similar characteristics could be identified and
classified using support vector machine (SVM) classifiers [25].

The SVM’s classifier can be established based on linear
behavior or even non-linear behavior. Classifiers with linear
behavior use a hyperplane that maximizes the separation be-
tween two classes from a training dataset and their respective
labels [26]. In this case, the hyperplane is defined by:

w · x+ b = 0 (15)

where w is the normal vector to the hyperplane, w · x is the
dot product of the vectors w and x , and b is a fit term. Thus,
Equation (16) divides the input space X into two regions, as
follows:

w · xi + b ≥ 1 se yi = +1
w · xi + b ≤ 1 se yi = −1

(16)

which can be summarized as:

yi(w · xi + b)− 1 ≥ 0, ∀(xi, yi) ∈ X (17)

Linearly separable datasets are classified efficiently by lin-
ear SVMs with some error tolerance with smooth margins.
However, in several cases, it is not possible to efficiently
classify training data using this modality of a hyperplane
[26], requiring the use of interpolation functions that allow

the operation in larger space, that is, using non-linear SVM
classifiers.

In such a manner, SVMS can deal with non-linear problems
through a Φ function, mapping the dataset from its original
space (input space) to a larger space (input space, character-
istics) [27], characterizing a non-linear SVM classifier.

Besides, from the choice of Φ, the training data set x, in
its input space R2 , is scaled to the feature space R3, as:

Φ(x) = Φ(x1, x2) = (x2,
2
√
2x1x2, x

2
2), (18)

h(x) = w ·Φ(x) + b =

w1x
2
1 + w2

2
√
2x1x2 + w3x

2
2 + b = 0

(19)

The data are initially mapped to a larger space, then a linear
SVM is applied over the new space. A hyperplane is then
found with a greater margin of separation, ensuring better
generalization [28].

Thus, the classifier obtained becomes:

g(x) = sgn(h(x)) =
sgn

(∑
xi∈SV α∗

i yiΦ(xi) · Φ(x) + b∗
) (20)

where b∗ is calculated as:

b∗ = 1
nSV :α∗<C

∑
xj∈SV :α∗

j<C(
1
yj

−
∑

xi∈SV α∗
i yiΦ(xi) · Φ(xj)

) (21)

Given that the feature space can be in a very high dimension,
the calculation of Φ might be extremely costly, or even
unfeasible. However, the only necessary information about the
mapping is the calculation of the scalar products between the
data in the feature space, obtained through function kernels
[26].

Table II presents the kernels analyzed to validate the devel-
oped method.

TABLE II
SUPPORT VECTOR MACHINE FUNCTION KERNELS

Kernel Function K(xi, xj) Parameters
Polynomial (δ(xi · xj) + κ)d δ, κ e d

Radial basis function kernel exp(−σ ∥xi − xj∥2) δ, κ e d
Sigmoidal tanh(δ(xi · xj ) + κ) δ e κ

The Radial basis function kernel (RBF), which is based on
a Gaussian function, has been chosen for the ML process, to
classify the Fall armyworm growth stage.

Accuracy and precision metrics have been measured for
validation of the SVM classifiers, illustrated by both the
confusion matrix and the receiver operating characteristic
(ROC) curve.

III. RESULTS

Figure 1(a to e) illustrates one example of each stage of
growth, also named Instar, Figure 1(f) illustrates two different
Instar in the same image.
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Figure 1. Fall armyworm (Spodoptera frugperda) in different stages of
growth.

TABLE III
FEATURE VECTOR COMPOSED OF HU INVARIANT MOMENTS. EXAMPLE OF

THREE IMAGES

Hu Images
invariant
moments Image 1 Image 2 Image 3

ϕ1 6.692 6.6178 6.524
ϕ2 13.581 13.424 19.102
ϕ3 24.321 23.944 22.370
ϕ4 25.919 26.245 23.445
ϕ5 51.517 -52.023 46.665
ϕ6 34.307 -33.305 -34.728
ϕ7 -51.458 -51.556 47.656

Table III presents the seven Hu invariant moments, as
examples, from three different images, which were processed
using the dataset.

Table IV presents the normalized seven Hu invariant mo-
ments from three different images.

TABLE IV
NORMALIZED FEATURE VECTOR. EXAMPLE OF THREE IMAGES

Hu Images
invariant
moments Image 1 Image 2 Image 3

ϕ1 0.274 0.162 0.021
ϕ2 -1.048 -1.121 1.496
ϕ3 1.035 0.817 -0.092
ϕ4 1.408 1.669 -0.575
ϕ5 0.719 -1.607 0.610
ϕ6 0.808 -1.289 -1.333
ϕ7 -0.863 -0.865 1.199

Figure 2 shows the scree plot of the variance ratio.
Table V presents the maximum variance to each of the four

principal components concerning the original data.
Figure 3 illustrates the maximum variance to each of the

four principal components concerning the original data with
the absolute values.

Figure 2. Scree plot.

TABLE V
MAXIMUM VARIATION OF DATA IN RELATION TO EACH PRINCIPAL

COMPONENT. BASED ON FOUR PRINCIPAL COMPONENTS.

Hu Principal components
invariant
moments PC 1 PC 2 PC 3 PC 4

ϕ1 -0.147 -0.630 -0.120 -0.568
ϕ2 0.501 -0.295 0.036 0.230
ϕ3 -0.395 -0.424 0.087 0.027
ϕ4 -0.378 0.501 -0.158 -0.479
ϕ5 -0.376 -0.277 -0.310 0.286
ϕ6 -0.355 -0.011 0.865 0.127
ϕ7 0.398 -0.078 0.325 -0.543

Table VI presents the values of the four principal compo-
nents.

TABLE VI
FEATURE VECTOR COMPOSED OF FOUR PRINCIPAL COMPONENTS.

EXAMPLE OF THREE IMAGES

Principal Images
components

Image 1 Image 2 Image 3
PC1 0.333 2.121 -0.742
PC2 -2.280 -1.156 1.306
PC3 0.551 -1.243 -0.528
PC4 0.181 -1.193 0.012

The distribution of the variation of the four principal com-
ponent values is illustrated in Figure 4.

This information can be observed in Figure 5, which illus-
trates a boxplot chart of the four principal component values
and their distribution.

After the original data were reduced to two and four princi-
pal components, the experiments performed for classification
considered SVM with a Gaussian function kernel, and the
feature vector with reduced dimensionality was split into 70%
for training and 30% for testing.
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Figure 3. Maximum of data variation concerning each principal component,
based on four principal components.

Figure 4. Histogram of distribution of the four principal components values.

Table VII presents the results of the classification of the five
different stages of growth of the Fall armyworm based on four
principal components.

Figure 6 illustrates the confusion matrix based on the data
presented in Table VII.

Figure 7 illustrates the ROC curve based on the data
presented in Table VII.

Figure 5. Boxplot of four principal components values.

TABLE VII
THE FALL ARMYWORM CLASSIFICATION RESULTS BASED ON FOUR

PRINCIPAL COMPONENTS

Instar Precision Recall F1-score
1 0.63 0.74 0.68
2 0.72 0.76 0.74
3 0.72 0.65 0.68
4 0.69 0.75 0.72
5 0.86 0.68 0.76

Based on the use of PCA the vector with the features
for pattern recognition has been reduced in dimensionality,
after that, the resultant vector was classified using an SVM
classifier, i.e., having Gaussian kernel.

Table VIII presents the results of the classification of the
five different stages of growth of the Fall armyworm.

TABLE VIII
THE FALL ARMYWORM CLASSIFICATION RESULTS BASED ON TWO

PRINCIPAL COMPONENTS

Instar Precision Recall F1-score
1 0.44 0.59 0.50
2 0.34 0.54 0.42
3 0.50 0.28 0.36
4 0.52 0.42 0.47
5 0.68 0.54 0.60

Figure 8 illustrates the confusion matrix based on the data
presented in Table VIII.

Figure 9 illustrates the ROC curve based on the data
presented in Table VIII.

The SVM classifier based on two principal components
performed the classification of the five different stages of
growth of the Fall armyworm with an accuracy of 47%.

Figure 10 illustrates the performance of the SVM classifier
considering these selected components.
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Figure 6. Confusion matrix for four principal components.

Figure 7. ROC curve for four principal components.

IV. DISCUSSION

For this study, an image dataset composed of 2280 images
acquired with CCD’s sensor was used. These images represent
the Fall armyworm (Spodoptera frugperda) acquired in a real
environment of maize crop in its five different stages of
growth, grouped in 456 images for each stage.

Considering all images contain at least one Fall armyworm
in different stages, the Hu invariant moments descriptor has
been considered for instance. Thus, for each image of the
Fall armyworm, a feature vector was generated, containing
the seven Hu invariant moments ( ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6 and
ϕ7), which are related to the shape and geometrical features of
this pest. The features contained in these vectors will allow the
classification of the Fall armyworm (Spodoptera frugperda) in
its different stages of growth.

Figure 8. Confusion matrix for two principal components.

Figure 9. ROC curve for four principal components.

As the values of the feature vectors were in different scales,
it was necessary to normalize them. To generate a database of
characteristics of the Fall armyworm (Spodoptera frugperda),
the feature vectors referring to each image were saved on disk.

The remotion of duplicated and less significant information,
based on the application of PCA, has allowed improvements
in computational performance. In fact, the appropriate number
of principal components that explain the original data were
considered.

Therefore, it is possible to infer that by applying two to four
principal components it is possible to explain almost 55% to
80% of the variability of the original data. Considering that,
the experiments were based on four principal components.

As already discussed, neither of the seven invariant mo-
ments is directly related to the size of an object. However, the
first and the fourth moments can be used to infer the size of
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Figure 10. Classification time processing considering two and four principal
components and the original data.

an object in an image.
Moreover, through the maximum variation ratio metric it

is possible to measure the weight of each of Hu invariant
moments in each principal component.

Even though the maximum variation ratio presents some
negative values, the weights for each principal component are
considered absolute values. For example, in PC2, the first
moment (ϕ1) has the highest weight.

The experiment with four principal components showed
that, as can be visualized in Figure 3, to have the most
representative weights either from the first moment or the
fourth moment, it was necessary to work with two or four
principal components.

The feature vector’s dimensionality reduction was per-
formed Based on prior experiments. Table VI presents the
values of the four principal components.

Once the values of the four principal components are ob-
tained, it is necessary to evaluate if it is sufficient to work with
two principal components, or whether it should be considered
four principal components. For this purpose, the maximum
variation of each principal component should be considered
concerning the original data, the extent to which the principal
components could explain the original data and the minimum
error.

This experiment demonstrated that working with four prin-
cipal components was the ideal option. Because both the first
and fourth moments are very representative, four principal
components can explain 80% of the original data, and even
with a low increase in the error, it is not considerable to
decrease the estimation.

Furthermore, SVM classifiers with Gaussian function kernel
have been considered for machine learning processes. Both
accuracy and precision were taken into account to validate
the classification of the Fall armyworm, with features vector
dimensionality reduced.

The features vector composed of two and four principal
components was split into two segments, one for training the
SVM classifier with the proportion of 70% and the other one,
with 30% for testing purposes.

Results obtained in the classification process with two
principal components and illustrated in the ROC curve pre-
sented in Figure 9, showed the SVM classifier has performed
satisfactorily, with the accuracy rate of 30% demonstrates that
working with two principal components might have satisfac-
tory performance for representing the original data, however,
in the proposed scenario, the classification of the different
stage of growth of the Fall armyworm with two principal
components might not be enough.

On the other hand, when the classification process was
performed with four principal components, the ROC curve
illustrated in Figure 7 showed the classification of the five
different stages the accuracy ratio assessed increased to 71%,
obtained an efficient classification of patterns of the Fall
armyworm.

Finally, Figure 10 shows the performance of the SVM
classifiers in milliseconds to execute the testing of the dataset
classification. As expected, the original feature vector took
more time to be processed, 61.1 milliseconds, while the
feature vector with reduced dimensionality took less time to
be classified, 43.5 and 43.4 for PC4 and PC2, respectively.

V. CONCLUSION AND FUTURE WORK

This paper presented a study of dimensionality reduction
using Principal Components Analysis (PCA), considering fea-
ture vectors composed of extracted Hu invariant moments.

Before measuring the number of principal components nec-
essary to represent the original data from the Fall armyworm
digital images, the feature vectors were normalized, to obtain
all the seven Hu invariant moments.

The measure of the explained variance ratio to the original
data was applied to verify the quantity number of principal
components necessary to explain the maximum of the original
data.

In addition, the first and fourth invariant moments were used
to infer the estimated size of the Fall armyworm (Spodoptera
frugperda) in the images.

Likewise, the measure of the maximum variation of each
principal component, concerning each Hu invariant moment,
was performed to find how much these moments contribute to
recognizing the main features acquired with the CCD’s sensor.

The measurements have shown that computing two to four
principal components was sufficient to explain 55% to 80% of
the original data, and either the first or fourth moments were
contained in two and four principal components.

Despite seven invariant moments being used, such analysis
led to the conclusion that when using 4 principal components,
one may achieve the explanation of 80% for the original data,
with low error, as well as, not a significative variation.

Besides, considering the better arrangement of features, i.e.,
PC2 and PC4, it is possible to observe the performance in
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computing processing. In other words, the gain in performance
reaches to 30% compared to the original data.

Finally, support vector machine classifiers have been applied
to classify the five different stages of growth of the Fall
armyworm.

Concerning the set of SVM classifiers, the results demon-
strated the efficiency and innovation of the classification
method in the proposed scenario. The results also revealed that
the Gaussian kernel function exhibited the best classification
accuracy and precision.

The results also have shown that the developed method is
capable of helping in the control of one of the main pests of
maize crops, the Fall armyworm (Spodoptera frugiperda)

For future works, it is suggested to extend this research to
an unsupervised method to reach the selection of the principal
components numbers to remain with the semantic features
from a recognized agricultural pest.
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