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Abstract—Since the beginning, quantum mechanics has raised
major foundational and interpretative problems. Foundational
research has been an important factor in the development of
quantum cryptography, quantum information theory and, per-
haps one day, practical quantum computers. Many believe that,
in turn, quantum information theory has bearing on foundational
research. This is largely related to the so-called epistemic view of
quantum states, which maintains that the state vector represents
information on a system and which has led to the suggestion
that quantum theory needs no interpretation. I will argue that
this and related approaches fail to take into consideration two
different explanatory functions of quantum mechanics, that of
accounting for classically unexplainable correlations between
classical phenomena and that of explaining the microscopic
structure of classical objects. The epistemic view provides no
answer to what constitutes the main question of interpretation:
How can the world be for quantum mechanics to be true? I will
then review three different approaches to understanding quan-
tum mechanics, namely, Bohmian mechanics, Everett’s relative
states, and Cramer’s transactional interpretation. I will show
that these approaches answer the above question, as well as other
foundational ones. This paper is written from the perspective that
different logically consistent interpretations, far from leading to
confusion, in fact contribute to increased understanding of the
theory.

I. INTRODUCTION

Although the answer was intended to be clear, this paper’s
title was formulated interrogatively in my contribution to the
ICQNM 2009 conference [1]. Explicit consideration of several
interpretative schemes now motivates the positive formulation.

Ever since it was proposed more than 80 years ago, quantum
mechanics has raised great challenges both in foundations and
in applications.1 The latter have been developed at a very rapid
pace, opening up new vistas in most branches of physics as
well as in much of chemistry and engineering. Substantial
progress and important discoveries have also been made in
foundations, though at a much slower rate. The measurement
problem, long-distance correlations, and the meaning of the
wave function are three of the foundational problems on which
there has been and still is lively debate.

It is fair to say that foundational studies have largely con-
tributed to the burgeoning of quantum information theory, one
of the most active areas of development of quantum mechanics
in the past 25 years. Quantum information is dependent on
entanglement, whose significance was brought to light through
the Einstein-Podolsky-Rosen (EPR) argument [6]. The real-
ization that transfer protocols based on quantum entanglement

1Relevant reviews and paper collections are, for instance, [2], [3], [4], [5].

may be absolutely secure has opened new windows in the
field of cryptography [7]. And the development of quantum
algorithms thought to be exponentially faster than their best
classical counterparts has drawn great interest in the construc-
tion of quantum computers [8]. These face up extraordinary
challenges on the experimental side. But attempts to build
them are likely to throw much light on the fundamental
process of decoherence and perhaps on the limits of quantum
mechanics itself [9], [10].

Along with quantum information theory came also a reem-
phasis of the view that the wave function (or state vec-
tor, or density operator) properly represents knowledge, or
information [11], [12], [13]. This is often called the epis-
temic view of quantum states. On what the wave function
is knowledge of, proponents of the epistemic view do not
necessarily agree. The variant most relevant to the present
discussion is that rather than referring to objective properties
of microscopic objects (such as electrons, photons, etc.), the
wave function encapsulates probabilities of results of eventual
macroscopic measurements. The Hilbert space formalism of
quantum mechanics is taken as complete, and its objects in no
need of a realistic interpretation. Additional constructs, like
value assignments [14], Bohmian trajectories [15], multiple
worlds [16], or transactions [17] are viewed as superfluous at
best.

Just like foundational studies have contributed to the de-
velopment of quantum information theory, many investigators
think that the latter can help in solving the foundational and
interpretative problems of quantum mechanics. A number of
proponents of the epistemic view believe that it consider-
ably attenuates, or even completely solves, the problems of
quantum measurement, of long-distance correlations, and of
the meaning of the wave function. These problems will be
summarized briefly in Sec. II, and the way the epistemic view
deals with them will be presented in Sec. III. I will then argue,
in Sec. IV, that the epistemic view and related approaches
fail to take into consideration that quantum mechanics has
two very different explanatory functions: that of accounting
for classically unexplainable correlations between classical
phenomena, and that of explaining the microscopic structure
of classical objects [18], [19]. In Sec. V, I will ask the
question of what it means to interpret quantum mechanics,
or any scientific theory for that matter. Drawing from the so-
called semantic view of theories, I will argue than interpreting
quantum mechanics means answering the question, “How
can the world be for quantum mechanics to be true?” [20].
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The next three sections will examine how three interpretative
schemes of quantum mechanics, namely, Bohmian mechanics,
Everett’s many worlds, and Cramer’s transactional interpre-
tation, answer the above question and attempt to solve the
foundational problems. Concluding remarks will be made in
the last section.

II. THREE PROBLEMS IN QUANTUM MECHANICS

Although the way to apply quantum mechanics to prac-
tical situations was never a matter of dispute, the meaning
of the formalism has been problematic from the outset.
The first problem concerned the � function that appears in
Schrödinger’s fundamental equation. Is it something like the
electric and magnetic fields we are familiar with? Schrödinger
first proposed that the absolute square of � is proportional
to the electron’s charge distribution [21]. But this was quickly
found untenable. Born then proposed his probabilistic interpre-
tation, according to which the absolute square of � represents
the probability to find the electron at a given place. This
much, an instance of what is now known as Born’s rule, is
universally accepted. But it is still a matter of debate whether
� represents an individual system or a statistical ensemble of
systems [22], and whether it is a real field or has a strictly
operational significance.

The second problem also arose very early in the develop-
ment of quantum mechanics, and concerns the question of
measurement. Broadly speaking, the problem is the following.
Suppose we want to describe, in a completely quantum-
mechanical way, the process of measuring a physical quantity
Q pertaining to a microscopic system. For simplicity, assume
that the spectrum of Q is discrete and nondegenerate, that
x stands for the coordinates of the microscopic system,
and that the normalized eigenfunction �i�x� corresponds to
the eigenvalue qi. For the process to be fully described by
quantum mechanics, the measurement apparatus should also
be considered as a quantum system, which comes to interact
with the microscopic system. Let ����� denote the initial
wave function of the apparatus. Here � stands for the one-
dimensional pointer coordinate of the apparatus. The myriad
of other apparatus coordinates, representing all its microscopic
degrees of freedom, are not explicitly represented.

The interaction between the microscopic quantum system
and the apparatus will represent a faithful measurement of Q
if the combined system evolves like

�i�x������ � �i�x��i���� (1)

where �i��� represents a state of the apparatus wherein the
pointer shows the value �i (with �i �� �j if i �� j).2

It is instructive to see how the evolution (1) can be realized
explicitly. Let the interaction between the microscopic system
and the apparatus take place in the interval � � t � T . In that
time interval, take the Hamiltonian as

H � gQP�� (2)

2For simplicity, we will always assume that the system’s states �i�x� don’t
change in a measurement.

where g is a real constant and P� is the momentum operator
conjugate to the pointer’s position operator. We have ne-
glected, here, terms in the Hamiltonian specifically connected
with the microscopic system or the pointer (for instance,
P �P��m), which is a good approximation if g is sufficiently
large and T is sufficiently small. If the initial combined wave
function is given by �i�x������, the final wave function will
be obtained straightforwardly [23] as

�i�x������ � exp

�
� iT

�
H

�
�i�x������

� exp

�
� iT

�
gQP�

�
�i�x������

� �i�x� exp

�
� iT

�
gqiP�

�
�����

� �i�x����� � gTqi�

� �i�x��i���� (3)

In its final state �i, the pointer is moved by a distance gTqi
from its initial state. We assume that the initial wave packet
����� is sufficiently narrow for all the �i��� to be essentially
non-overlapping.

If the Schrödinger equation is universally valid, the com-
bined evolution of the microscopic system and macroscopic
apparatus is unitary (assuming, unrealistically, that they form
together a closed system). But then, an initial state involving
the superposition of several eigenstates of an observable of
the microscopic system evolves into a final state involving a
superposition of macroscopically distinct states of the appa-
ratus (or of the apparatus and environment in more realistic
situations). Explicitly,�X

i

ci�i�x�

�
����� �

X
i

ci�i�x��i���� (4)

Obviously, we never see a macroscopic apparatus in a superpo-
sition of states corresponding to different pointer readings. The
discrepancy between this observation and the unitary evolution
expressed in (4) constitutes the measurement problem.

To solve the problem, von Neumann suggested a long time
ago that the unitary evolution breaks down somewhere in
the measurement process [24]. Specifically, von Neumann
postulated that in measurement interactions like (4), the right-
hand side abruptly collapses into one of its components. This
process is fundamentally indeterministic, and the probability
that the superposition collapses into �j�x��j��� is taken to
be equal to jcj j�. Von Neumann did not propose any specific
mechanism accounting for the collapse of the wave function,
but interesting suggestions along these lines were made in
subsequent years [25].3

A third problem that quantum mechanics has to deal with is
the one of long-distance correlations [13], [29]. Consider the
realization of the EPR setup in terms of two spin 1/2 particles

3Decoherence theory no doubt helps in making the measurement problem
sharper, but the present author shares the view that it is by itself insufficient
to solve the problem. For recent perspectives see [26], [27], [28].
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Fig. 1. Two particles prepared in the singlet state and leaving in opposite
directions.

(labelled 1 and 2), depicted in Fig. 1. The state vector j	i of
the compound system is taken to be an eigenstate of the total
spin operator with eigenvalue zero. In this case

j	i � �p
�
fj��nij��ni � j��nij��nig � (5)

Here the first vector in a (tensor) product refers to particle 1
and the second vector to particle 2. The vector j��ni, for
instance, stands for an eigenvector of the n-component of the
particle’s spin operator, with eigenvalue �� (in units of ���).
The unit vector n can point in any direction, a freedom which
corresponds to the rotational symmetry of j	i.

Suppose Alice measures the n-component of the spin of
particle 1 and obtains the value ��. Then she can predict with
certainty that if Bob measures the same component of the spin
of particle 2, he will obtain the value ��. It then seems that the
state of particle 2 changes immediately upon Alice’s obtaining
her result, and this no matter how far apart Alice and Bob
are. Since the word “immediately”, when referring to spatially
separated events, is not a relativistically invariant concept,
such a mechanism seems to imply instantaneous action at a
distance, and is certainly not easy to reconcile with the theory
of special relativity.

The interpretation of the wave function, the measurement
of a quantum observable, and long-distance correlations are
problems that an interpretation of quantum mechanics should
clarify.

III. THE EPISTEMIC AND RELATED VIEWS

In the epistemic view of quantum states, the wave func-
tion represents knowledge, or information. Let us examine
the arguments that advocates of the epistemic view offer to
solve the foundational and interpretative problems of quantum
mechanics. I should point out that they do not all attribute
the same strength and generality to these arguments. Some
advocates believe that the problems are completely solved by
the epistemic view, while others are of the opinion that they
are just attenuated. This distinction, however, is not crucial to
our purpose, and I will simply give the arguments as they are
typically formulated.

The problem that is directly addressed by the epistemic view
is the one of the interpretation of the wave function (or state
vector, or density operator). Just as the name suggests, the
state vector is normally interpreted as representing the state
of quantum systems. As we have seen, some believe that the
state pertains to an individual system, others to a statistical
ensemble of systems. But the epistemic view, which goes
back at least to writings of Heisenberg [30], claims that it
represents neither. It denies that the (in this context utterly

misnamed) state vector represents the state of a microscopic
system. Rather, it represents knowledge about the probabilities
of results of measurements performed in a given context with a
macroscopic apparatus, in other words, information about “the
potential consequences of our experimental interventions into
nature” [13]. This is often set in the framework of a Bayesian
approach, where probability is interpreted in a subjective way.

Now how does the epistemic view deal with the measure-
ment problem? It does so by construing the collapse of the
wave function not as a physical process, but as a change of
knowledge [31]. Insofar as the wave function is interpreted
as objectively describing the state of a physical system, its
abrupt change in a measurement implies a similar change in
the system, which calls for explanation. If, on the other hand,
and in line with a Bayesian view, the wave function describes
knowledge of conditional probabilities (i.e., probabilities of
future macroscopic events conditional on past macroscopic
events), then as long as what is conditionalized upon remains
the same, the wave function evolves unitarily. It collapses
when the knowledge base changes (this is Bayesian updating),
thereby simply reflecting the change in the conditions being
held fixed in the specification of probabilities.

The epistemic view also offers an explanation of long-
distance correlations like the ones produced in EPR setups.
We recall that when Alice obtains the value �� when she
measures the n-component of her spin, she can predict with
certainty that Bob will obtain �� when he measures the n-
component of his spin. But according to the epistemic view,
what changes when Alice performs a measurement is Alice’s
knowledge. Bob’s knowledge will change either if he himself
performs a measurement, or if Alice sends him the result of her
measurement by conventional means. Hence no information is
transmitted instantaneously, and there is no physical collapse
on an equal time or spacelike hypersurface.

Related to the epistemic view is the idea of genuine
fortuitousness [32], [33], a radically instrumentalist view of
quantum mechanics. The idea “implies that the basic event,
a click in a counter, comes without any cause and thus as a
discontinuity in spacetime” [33, p. 405]. Indeed

[i]t is a hallmark of the theory based on genuine
fortuitousness that it does not admit physical vari-
ables. It is, therefore, of a novel kind that does not
deal with things (objects in space), or measurements,
and may be referred to as the theory of no things.
(p. 410)

Such approaches to the interpretation of quantum mechanics
are to be contrasted with realist views that we will examine
later.4

4The “correlations without correlara” view of quantum mechanics [34],
also known as the Ithaca Interpretation, shares with the epistemic view the
idea that no reality is attributed to individual properties of quantum systems.
However, correlations do have physical reality and the Ithaca interpretation
strives to eliminate knowledge from the foundations.
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IV. TWO EXPLANATORY FUNCTIONS

To examine how appropriate the epistemic and related views
of quantum mechanics are, it is important to properly under-
stand the explanatory role of quantum mechanics as a physical
theory. Although all measurements are made by means of
macroscopic apparatus, quantum mechanics is used, as an
explanatory theory, in two different ways: it is meant to explain
(i) nonclassical correlations between macroscopic objects and
(ii) the small-scale structure of macroscopic objects [18],
[19]. That these two functions are distinct is best shown by
contrasting the world in which we live with a hypothetical,
closely related one [20].

Roughly speaking, the hypothetical world is defined so that
(a) for all practical purposes, all macroscopic experiments give
results that coincide with what we find in the real world, and
(b) its microscopic structure, if applicable, is different from
the one of the real world. Let us spell this out in more detail.

In the hypothetical world large scale objects, i.e., objects
much larger than atomic sizes, behave just like large scale
objects in the real world. The trajectories of baseballs and
airplanes can be computed accurately by means of classical
mechanics with the use of a uniform downward force, air
friction, and an appropriate propelling force. Waveguides and
antennas obey Maxwell’s equations. Steam engines and heat
pumps work according to the laws of classical thermody-
namics. The motion of planets, comets, and asteroids is well
described by Newton’s laws of gravitation and of motion,
slightly corrected by the equations of general relativity.

Close to atomic scales, however, these laws may no longer
hold. Except for one restriction soon to be spelled out, I
shall not be specific about the changes that macroscopic laws
may or may not undergo in the microscopic realm. Matter,
for instance, could either be continuous down to the smallest
scales, or made of a small number of constituent particles like
our atoms. The laws of particles and fields could be the same
at all scales, or else they could undergo significant changes as
we probed smaller and smaller distances.

In the hypothetical world one can perform experiments with
pieces of equipment like Young’s two-slit setup, Stern-Gerlach
devices, or Mach-Zehnder interferometers. Let us focus on
the Young type experiment. It makes use of two macroscopic
objects which we label E and D. These symbols could stand
for “emittor” and “detector” if it were not that, as we shall
see, they may not emit or detect anything. At any rate, E
and D both have on and off states and work in the following
way. Whenever D is suitably oriented with respect to E (say,
roughly along the x axis) and both are in the on state, D
clicks in a more or less random way. The average time interval
between clicks depends on the distance r between D and E,
and falls roughly as ��r�. The clicking stops if, as shown in
Fig. 2, a shield of a suitable material is placed perpendicularly
to the x axis, between D and E.

If holes are pierced through the shield, however, the clicking
resumes. In particular, with two small holes of appropriate size
and separation, differences in the clicking rate are observed for

E D

�
�
�
�

� �
x

Fig. 2. Shielding material prevents D from clicking

small transverse displacements of D behind the shield. A plot
of the clicking rate against D’s transverse coordinate displays
maxima and minima just as in a wave interference pattern. No
such maxima and minima are observed, however, if just one
hole is open or if both holes are opened alternately.

At this stage everything happens as if E emitted some kind
of particles and D detected them, and the particles behaved
according to the rules of quantum mechanics. Nevertheless,
we shall nor commit ourselves to the existence or nonexistence
of these particles, except on one count. Such particles, if they
exist, are not in any way related to hypothetical constituents
of the material making up D, E, or the shield, or of any
macroscopic object whatsoever. Whatever the microscopic
structure of macroscopic objects is, it has nothing to do with
what is responsible for the correlations between D and E.

In a similar way, we can perform in the hypothetical
world experiments with Stern-Gerlach devices, Mach-Zehnder
interferometers, or other setups used in the typical quantum-
mechanical investigations carried out in the real world. Cor-
relations are observed between initial states of “emittors” and
final states of “detectors” which are unexplainable by classical
mechanics but follow the rules of quantum mechanics. We
assume again that, if these correlations have something to do
with the emission and absorption of particles, these are in
no way related to eventual microscopic constituents of the
macroscopic devices.

In the experiments just described that relate to the hy-
pothetical world, quantum mechanics correctly predicts the
correlations between D and E (or other “emittors” and “ab-
sorbers”) when suitable experimental configurations are set
up. In these situations, the theory can be interpreted in (at
least) two broadly different ways. In the first one, the theory
is understood as applying to genuine microscopic objects,
emitted by E and detected by D. Perhaps these objects follow
Bohmian-like trajectories (see Sec. VI), or behave between E
andD in some other way compatible with quantum mechanics.
In the other interpretation, there are no microscopic objects
whatsoever going from E to D. There may be something like
an action at a distance. At any rate the theory is in that case
interpreted instrumentally, for the purpose of quantitatively
accounting for correlations in the stochastic behavior of E
and D.

In the hypothetical world we are considering, I believe that
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both interpretations are logically consistent and adequate. Of
course, each investigator can find more satisfaction in one
interpretation than in the other. The epistemic view of quantum
mechanics corresponds to the instrumentalist interpretation. It
simply rejects the existence of microscopic objects that have
no other use than the one of predicting observed correlations
between macroscopic objects.

In the world in which we live, however, the situation is
crucially different. The electrons, neutrons, photons, and other
particles that diffract or interfere are the same that one appeals
to in order to explain the structure of macroscopic objects.
Denying their existence, as is done in the approach of genuine
fortuitousness, dissolves such explanatory power. Denying that
they have states, as is done in the epistemic view, leaves one
to explain the state of a macroscopic object on the basis of
entities that have no state.

V. INTERPRETING QUANTUM MECHANICS

The epistemic and related views therefore fail to account
for the second explanatory role of quantum mechanics. To
reinforce this conclusion, it is instructive to investigate what
it means to interpret a theory.

With most physical theories, interpretation is rather straight-
forward. But this should not blind us to the fact that even very
familiar theories can in general be interpreted in more than one
way. A simple example is classical mechanics.

Classical mechanics is based on a well-defined mathemat-
ical structure. This consists of constants mi, functions xi�t�,
and vector fields Fi (understood as masses, positions, and
forces), together with the system of second-order differential
equations Fi � miai. A specific realization of this structure
consists in a system of ten point masses interacting through the
��r� gravitational force. A hypothesis may then assert that the
solar system corresponds to this realization, if the sun and nine
planets are considered pointlike and all other objects neglected.
Predictions made on the basis of this model correspond rather
well with reality. But obviously the model can be made much
more sophisticated, taking into account for instance the shape
of the sun and planets, the planets’ satellites, interplanetary
matter, and so on.

Now what does the theory have to say about how a world
of interacting masses is really like? It turns out that such a
world can be viewed in (at least) two empirically equivalent
but conceptually very different ways. The first one consists in
asserting that the world is made only of small (or extended)
masses that interact by instantaneous action at a distance. The
second way asserts that the masses produce everywhere in
space a gravitational field, which then locally exerts forces
on the masses. These two ways constitute two different
interpretations of the theory. Each one expresses a possible
way of making the theory true (assuming empirical adequacy).
Whether the world is such that masses instantaneously interact
at a distance in a vacuum, or a genuine gravitational field is
produced throughout space, the theory can be held as truly
realized.

Similar remarks apply to classical electromagnetism. The
mathematical equations can be interpreted as referring to
charges and currents interacting locally through the mediation
of electric and magnetic fields. Alternatively, they can be
viewed as referring to charges and currents only, interacting
by means of (delayed) action at a distance [35].

In this respect, quantum mechanics seems different from all
other physical theories. There appears to be no straightforward
way to visualize, so to speak, the behavior of microscopic
objects. This was vividly pointed out by Feynman [36, p. 129]
who, after a discussion of Young’s two-slit experiment with
electrons, concluded that “it is safe to say that no one under-
stands quantum mechanics. [...] Nobody knows how it can be
like that.” But the process of interpreting quantum mechanics
lies precisely in taking up Feynman’s challenge. It is to answer
the question, “How can the world be for quantum mechanics
to be true?”

If we adopt this point of view (known as the semantic view
of theories [37], [38]), we can understand the motivation to
look for interpretative schemes of quantum mechanics. Each
such scheme provides one clear way that the microscopic
objects can behave so as to reproduce the quantum-mechanical
rules and, therefore, the observable behavior of macroscopic
objects. In the following sections, we shall look at three
such approaches, and see how each ones deals with the three
problems outlined before.

VI. BOHMIAN MECHANICS

A. One particle

Bohmian mechanics [15], [39], also known as the de
Broglie-Bohm theory owing to de Broglie’s early work [40],
is a realistic causal theory that (in its standard form) exactly
reproduces the statistical results of quantum mechanics. To
see how it works, consider a particle of mass m whose
Hamiltonian is given by

H �
�

�m
P �P� V �X� t�� (6)

The Schrödinger equation can be written as

i�




t
��x� t� � � �

�

�m
r���x� t� � V �x� t���x� t�� (7)

where the wave function ��x� t� is assumed to be normalized.
The complex function � can be written in polar form as

��x� t� � R�x� t� exp

�
i

�
S�x� t�

�
� (8)

where R and S are two real functions. Substituting (8) in (7)
and manipulating, one easily finds that





t
�R�� �r �

�
R� �

m
rS

�
� �� (9)


S


t
�

�

�m
�rS� � �rS� � V �x� t�� �

�

�m

�

R
r�R � �� (10)
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Suppose that, for an initial value ��x� t�� of the wave
function, the solution of (7) has been found. Define

VQ�x� t� � � �
�

�m

�

R
r�R (11)

and

Vtot�x� t� � V �x� t� � VQ�x� t�� (12)

Equation (10) then becomes


S


t
�

�

�m
�rS� � �rS� � Vtot�x� t� � �� (13)

Formally, (13) coincides with the Hamilton-Jacobi equation
associated with a classical particle with momentum

p �rS (14)

and Hamiltonian

H�x�p� t� �
�

�m
p � p� Vtot�x� t�� (15)

That observation is at the root of the de Broglie-Bohm theory,
which rests on the following hypotheses:

1) At every instant t, a quantum particle has a well-defined
position x and momentum p.

2) The particle’s trajectory is governed by the Hamilton-
Jacobi equation (13) or, equivalently, by Newton’s equa-
tion

m
d�x

dt�
� �rVtot�x� t�� (16)

The potential Vtot is the sum of an external potential
V and of the quantum potential VQ, determined by the
solution of Schrödinger’s equation (	).

3) The particle’s position and momentum, although well-
defined, cannot be known exactly. One can only know
the probability density that at time t, the particle is at
point x. This probability density is equal to j��x� t�j� �
R��x� t�, where R�x� t� satisfies (
).5

Since it is usually not known, and is unpredictable on the basis
of the wave function alone, the well-defined particle’s position,
in Bohmian mechanics, is often called a hidden variable.

We should note that hypothesis (3) on the probability
density is consistent with the trajectories of the particles that
make up the statistical ensemble. Indeed let a large number
of identical particles be distributed according to a density
R��x� t�, with velocities equal to �

m
p�x� t�. The particle

number conservation law can then be written as





t
�R�� �r �

�
R� �

m
p

�
� � (17)

which, owing to (14), coincides with (9).

5More general forms of Bohmian mechanics relax the identification of the
probability density with j�j� [39].

One can also check the consistency of (14) and (16). Indeed
taking the total time derivative of the former and making use
of (10), we get

dp

dt
�
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rS � �v �r��rS�
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m
�rS �r��rS�

�r

�




t
S �
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�m
�rS��

�

� �r
�
V �x� t�� �

�

�m

�

R
r�R

�
� (18)

Hypothesis (3) provides the answer that Bohmian mechanics
gives to the first problem raised in Sec. II, the one of
the interpretation of the wave function. Here the absolute
square of the wave function quantifies the best knowledge
one can have of the particle’s precise position. But note the
difference with the epistemic view. In Bohmian mechanics,
the particle always has a precise position, which we do not
know exactly. In the epistemic view, no precise position is
attached to the particle, and in fact there may even be no
particle at all. The absolute square of the wave function,
in the epistemic view, only represents the probability that,
after a suitable macroscopic preparation procedure, a position-
measuring macroscopic apparatus will yield such and such
values. As we will see, Bohmian mechanics also correctly
predicts probabilities of measurement results. But it does so,
in position measurements, because the measurement result
corresponds to a position the particle really has.

With hypothesis (3), Bohmian mechanics always reproduces
the statistical results of quantum mechanics. It is instructive to
see how this works in the paradigmatic example of the two-slit
experiment. Here we look for the probability of detection at
various points on a screen behind the slits. It is well known that
in quantum mechanics, the detection probability when both
slits are open is not the sum of the detection probability when
the first slit is open and the detection probability when the
second slit is open. This is often interpreted by saying that
when both slits are open, one cannot affirm that the particle
went through one specific slit at the exclusion of the other.

In Bohmian mechanics, however, whether one or two slits
are open, any given particle goes through only one slit. How
can this reproduce the interference pattern at the screen? It
turns out that, for a given initial value of the wave func-
tion (say, when a particle is emitted), the solution of the
Schrödinger equation behind the slits, when only one slit
is open, is different from the corresponding solution when
both slits are open. The quantum potential, given in (11), is
therefore also different. Thus for a given value of the particle’s
position, its trajectory when one slit is open is different from
its trajectory when both slits are open, even if in both cases
the particle goes through the same slit. Bohmian trajectories in
the two-slit experiment were numerically calculated by Philip-
pidis et al �41�. The statistical results they obtained precisely
reproduce Young’s interference pattern, thereby providing an
illuminating answer to Feynman’s challenge.
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B. Two particles

Bohmian mechanics can be generalized to any number of
particles but, for our purposes, it will be enough to consider
only two. To be explicit, we will consider in this subsection
the case of two spinless particles interacting through a po-
tential V �x��x�� t�. The system’s configuration space has six
dimensions.

The Schrödinger equation can be written as

i�





t
� � �

�

�m�

r�
�
� �

�

�m�

r�
�
� V
� (19)

where r�
i (i � �� �) stands for the Laplacian with respect to

coordinates xi. Letting


�x��x�� t� � R�x��x�� t� exp

�
i

�
S�x��x�� t�

�
� (20)

one finds two coupled equations for the real functions R and
S. The equation that generalizes (10) is the Hamilton-Jacobi
equation for two particles with momenta

pi �riS� (21)

The particles interact through the potential Vtot � V � VQ,
where now

VQ�x��x�� t� � � �
�

�m�R
r�
�R� �

�

�m�R
r�
�R� (22)

They follow well-defined trajectories governed by (21) or,
equivalently,

mi

d�xi
dt�

� �riVtot�x��x�� t�� (23)

The probability density that, at time t, the first particle is at x�
and the second particle is at x� is given by R��x��x�� t�. The
equation that generalizes (9) represents the conservation of
probability, and it ensures that the evolution of the probability
density due to the particles’ motion is consistent with the
evolution of the wave function.

The most general solution of the two-particle Schrödinger
equation (19) can be written as a sum of products of functions
of the form


�x��x�� t� �
X
i

�i�x�� t��i�x�� t�� (24)

Let us assume that, for some interval of time, the potential V
is the sum of two terms that each involve the coordinates of
one particle only, that is,

V �x��x�� t� � V��x�� t� � V��x�� t�� (25)

Let us further assume that, at some time t� in that interval, the
wave function 
 is a product state, which means that there is
only one term in the right-hand side of (24). In other words,


�x��x�� t�� � ��x�� t����x�� t��� (26)

It is then easy to show that the wave function remains a product
state for as long as V satisfies (25), with � and � satisfying
one-particle Schrödinger equations associated with potentials
V� and V�, respectively.

If we write

� � R� exp�iS���� and � � R� exp�iS����� (27)

one immediately sees that

R�x��x�� t� � R��x�� t�R��x�� t� (28)

and

S�x��x�� t� � S��x�� t� � S��x�� t�� (29)

Equation (28) implies that the quantum potential VQ in (22),
and therefore the total potentiel Vtot, are sums of one-particle
terms. The first particle’s Bohmian trajectory is therefore
independent of the second particle’s coordinates, and vice
versa. This conclusion also follows from (21) and (29).

In the general case where V is not the sum of one-particle
terms, however, or even when it is such a sum but the initial
wave function is not a product state, then the wave function at
time t is given by (24) with the right-hand side having more
than one term. In this case, (28) and (29) do not hold and the
first particle’s Bohmian trajectory will in general depend on
the second particle’s coordinates. This, we will see, is what
accounts for the long-distance correlations.

C. The measurement problem

In a measurement interaction, the initial state of the quantum
system and apparatus is a product state, which transforms into
an entangled state according to (4). The problem consists in
understanding why is the joint system described by only one
term of the superposition.

In Bohmian mechanics, the particle whose observable is to
be measured and the apparatus pointer both have well-defined
positions at t � �, before the measurement interaction begins.
As the interaction unfolds, they follow trajectories governed
by (21), to end up again at well-defined positions at t � T .
The position of the pointer at that time is directly interpreted
as the apparatus reading, which is entirely well-defined.

We can calculate the probability P �i� that, at time T ,
the pointer shows the value �i. This is obtained through
the marginal distribution of the pointer observable, equal to
the average over the particle’s coordinates of the absolute
square of the total wave function at T . Making use of the
orthogonality of the eigenfunctions �j�x�, we find thatZ

dx j
�x� ��j� �
X
i�j

c�i cj�
�
i ����j���

Z
dx��i �x��j�x�

�
X
j

jcj j�j�j���j�� (30)

Since the pointer’s wave functions �j��� T � are essentially
non-overlapping, the probability P �i� that the pointer’s po-
sition is within the support of �i is equal to jcij�, which is
the statement of Born’s rule.6

6If the measurement interaction does not yield orthogonal particle states, a
similar argument can be made using the orthogonality of the final states of
the environment.
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When the measurement interaction is over, the pointer’s
wave functions �j remain orthogonal for as long as one
may care. This, in fact, is due to the myriad of degrees
of freedom of the pointer other than �, whose evolution is
different corresponding to different pointer positions. If the
pointer has entered wave packet �i, therefore, it will never end
up in a different �j . To do so, it would have to go through a
region of configuration space associated with zero probability.
The Bohmian trajectories of both the particle and apparatus
henceforth develop as though only the ith term was present.
The other ones still are, but they have no effect whatsoever on
subsequent trajectories. Although the wave function has never
collapsed, the system evolves as if it had.

D. Long-distance correlations

As I summarized in [42], one can incorporate spin in
Bohmian mechanics by adding spinor indices to the wave func-
tion, in such a way that 
 � 
i�i� . There can be several ways
to associate particle spin vectors with the wave function [39],
but one way or other they involve the expressions
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��
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Here �� and �� are Pauli spin matrices for the two particles.
In the singlet state, the initial wave function typically has

the form


 � ���x�����x��j	i� (32)

where j	i is given in (5). With such a wave function, it is easy
to show that s� � � and s� � �. That is, both particles initially
have spin zero. This underscores the fact that in Bohmian
mechanics, values of observables outside a measurement con-
text do not in general coincide with eigenvalues of associated
operators.

Spin measurement was analyzed in detail by Dewdney
et al. [43], [44]. In the EPR context, in particular, these
investigators first wrote down the two-particle Pauli equation
adapted to the situation shown in Fig. 1. With Gaussian initial
wave packets �� and ��, the equation can be solved under
suitable approximations. Bohmian trajectories can then be
obtained by solving (21). These equations of motion involve
the various components of the two-particle wave function in
a rather complicated way, and must be treated numerically.

Suppose that the magnetic field in the spin-measuring
apparatus on the left of Fig. 1 is oriented in the n direction.
Consider the case where particle 1 enters that apparatus much
before particle 2 enters the one on the right-hand side. What
was shown was the following. When particle 1 enters the
apparatus along a specific Bohmian trajectory, the various
forces implicit in (21) affect both the trajectory and the spin
vector, the latter building up through interaction with the
magnetic field. The beam in which particle 1 eventually ends
up depends on its initial position. If particle 1 ends up in the
upper beam of the spin-measuring apparatus, its spin becomes
aligned with n. Meanwhile there is an instantaneous action on
particle 2, simultaneously aligning its spin in the �n direction.

Similarly, if particle 1’s initial position is such that it ends up
in the lower beam, its spin becomes aligned with �n, and the
spin of particle 2 simultaneously aligns in the n direction.

Thus the nonlocal forces, present in Bohmian mechanics as
a consequence of the nonfactorizability of the wave function,
have, once the measurement of the spin of particle 1 has
been completed, resulted in particle 2 having a spin exactly
opposed. A subsequent measurement of the spin component of
particle 2 along n then reveals the perfect correlation predicted
by quantum mechanics.

VII. EVERETT’S RELATIVE STATES

Everett’s relative states, or many-worlds, interpretation is
an attempt to meet the challenge of interpretation while
eschewing the introduction of the collapse of the wave function
or of hidden variables. The wave function is taken to apply
to individual systems and is meant to represent the true state
of the quantum system at all times. Everett also claimed to
be able to deduce Born’s rule from the other postulates of
quantum mechanics. That claim has been the subject of much
controversy [45], but its analysis falls outside the scope of the
problems raised here.

Everett considers the wave function of a compound system
after a quantum measurement, represented for instance by the
right-hand side of (4). Confronted with the fact that all pointer
readings appear, Everett takes the bull by the horns and claims
that they indeed all exist. They all exist, but each reading
(say �j) is associated with only one value of the quantum
observable (in this case qj). Everett calls �j�x� and �j���
relative states. In other words, the value qj exists relative to
�j , and vice versa.

Since all pointer readings exist at once, understanding that
multiplicity is a crucial question, to which many answers
have been given. For simplicity, I shall focus on the one
usually attributed to DeWitt [46], called the many-worlds view.
Although that answer was frequently criticized as extravagant,
it has the merit of being perhaps the clearest one.

In the many-worlds view, whenever there is a quantum
measurement, the world in which the measurement is initiated
splits into a large number of worlds.7 There is at least one
such world corresponding to each term in the right-hand side
of (4). In world j, for instance, the quantum system ends up
in state �j�x� and the apparatus in state �j���. That world
henceforth continues to evolve according to the Schrödinger
equation, in a way completely independent of the other ones.

This is Everett’s solution to the measurement problem.
There is no need for collapse because different readings
occur in different worlds. Everett also shows that if the same
quantum observable is repeatedly measured, every observer in
every world will record that the results are repeated identically,
just as quantum mechanics with collapse predicts.

Long-distance correlations are also explained quite straight-
forwardly in the many-worlds view. Suppose that two particles

7Some believe that splitting occurs whenever there is a quantum interaction,
not necessarily one involving a macroscopic object.
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have been prepared in the singlet state (5), and that Alice and
Bob each have spin-measuring apparatus in initial states j��i
and j��i, respectively. The compound system’s initial state is
thus given by

�p
�
fj��nij��ni � j��nij��nig j��ij��i� (33)

After each particle has interacted with its measurement appa-
ratus, the final state of the compound system is, in obvious
notation, given by

�p
�
fj��nij��nij��ij��i
� j��nij��nigj��ij��i� (34)

The splitting into many worlds yields worlds where Alice’s
pointer shows � and Bob’s pointer shows�, and worlds where
Alice’s pointer shows � and Bob’s pointer shows �. There
are no worlds where Alice’s and Bob’s pointers both show �,
nor are there worlds where they both show �. Hence in all
worlds, correlations predicted by standard quantum mechanics
are perfectly satisfied.

VIII. CRAMER’S TRANSACTIONAL INTERPRETATION

Cramer’s transactional interpretation [17], [47] postulates
that quantum processes (e.g., the emission of an alpha particle,
followed by its absorption by one of several detectors) involve
the exchange of offer waves (solutions of the Schrödinger
equation) and confirmation waves (complex conjugates of
the former). The confirmation waves propagate backward in
time. Cramer’s approach is inspired by the Wheeler-Feynman
electromagnetic theory [35], [48], in which advanced electro-
magnetic waves are as important as retarded waves. The wave
function and its complex conjugate are thus real fields, very
much like the classical electric and magnetic fields.

Suppose that D, at point x, is one of a number of detectors
that can absorb the particle. The offer wave, emitted at t� from
the alpha particle source, will arrive at D with an amplitude
proportional to ��x� t�, the Schrödinger wave function. The
confirmation wave produced by D is stimulated by the offer
wave, and Cramer argues that it arrives back at the source
with an amplitude proportional to ��x� t����x� t� = j��x� t�j�.
Similar offer and confirmation waves are exchanged between
the source and all potential detectors, and all confirmation
waves reach the source exactly at t�, the time of emission.
Eventually, what Cramer calls a transaction is established
between the source and one of the detectors, with a probability
proportional to the amplitude of the associated confirmation
wave at the source. The quantum process is then completed.

The transaction is, in Cramer’s approach, what corresponds
to the collapse of the wave function in standard quantum
mechanics. Like collapse, the transaction picks just one of
the pointer positions (which corresponds, in our example, to
the detector that has fired). But unlike collapse, the transaction
does not occur at a specific time. It occurs on the whole space-
time region that links the source and the detector, in what
Cramer calls pseudotime.
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Fig. 3. Offer waves (upward arrows) and confirmation waves (downward
arrows) in the EPR setup.

The transactional interpretation provides a rather vivid rep-
resentation of the mechanism of long-distance correlations.
Fig. 3 is a space-time representation of an EPR setup, viewed
in the transactional interpretation [42]. Arrows pointing in the
positive time direction label offer waves, and those pointing in
the negative direction label confirmation waves. Two particles
are emitted by the source, and in Cramer’s sense both Alice’s
and Bob’s particles can be absorbed by two detectors. They
correspond to the two beams in which each particle can emerge
upon leaving its spin-measuring device.

Let us focus on what happens on the left-hand side. An offer
wave is emitted by the source, and in going through the spin-
measuring device it splits into two parts. One part goes into
the detector labelled �, and the other goes into detector �.
Each detector sends back a confirmation wave, propagating
backward in time through the apparatus and reaching the
source at the time of emission. A transaction is eventually
established, resulting in one of the detectors registering the
particle. A similar process occurs on the right-hand side, with
one of the two detectors on that side eventually registering the
associated particle.

If offer and confirmation waves represent a special kind of
causal influences, one can see that these influences can be
transmitted between the spacelike-separated detectors on dif-
ferent sides along paths that are entirely timelike or lightlike.
The EPR correlations are thus explained without introducing
any kind of superluminal motion, which is one more way to
meet Feynman’s challenge.

IX. DISCUSSION

Bohmian mechanics, the many-worlds view, and the transac-
tional interpretation are three possible answers to the question
of how can the world be for quantum mechanics to be true.
Bohmian mechanics tells us that microscopic particles follow
deterministic trajectories influenced by the quantum potential.
The many-worlds view asserts that all results of a quantum
measurement simultaneously exist, but in different worlds
that cannot communicate with each others. The transactional
interpretation tells us that backward-in-time connections are
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effected through the complex conjugate Schrödinger field, and
that transactions are established between emittors and specific
detectors.

Of course these interpretations of quantum mechanics, just
like others that I have not considered explicitly, also have
problems, since none of them has gained universal acceptance.
Bohmian mechanics, for instance, is not easy to reconcile with
the theory of special relativity. The many-worlds view is often
deemed extravagant, while more benign implementation of
Everett’s approach may not be so well-defined. And the notion
of transaction needs to be spelled out more precisely.

Apart from specific criticisms, the whole program of inter-
preting quantum mechanics has been questioned by adherents
of the epistemic view. Why bring forward interpretations that
add no empirical content to the theory? If, for instance,
Bohmian mechanics exactly reproduces the statistical results
of quantum mechanics, aren’t the trajectories superfluous, and
shouldn’t they be discarded? The analogy has been made
between such trajectories and the concept of the ether prevalent
at the turn of the twentieth century [49], [50]. H. A. Lorentz
and his contemporaries viewed electromagnetic phenomena as
taking place in a hypothetical medium called the ether. From
this, Lorentz developed a description of electromagnetism in
moving reference frames, and he found that the motion is
undetectable. Following Einstein’s formulation of the elec-
trodynamics of moving bodies, the ether was recognized as
playing no role, and was henceforth discarded. So should it
be, according to most proponents of the epistemic view of
quantum states, with interpretations of quantum mechanics that
posit observer-independent elements of reality like Bohmian
trajectories. They predict no empirical differences with the
Hilbert space formalism, and should therefore be discarded.

It is true that, just like the ether in special relativity,
constructs like Bohmian trajectories don’t lead to specific
empirical consequences. I have argued, however, that although
they could be dispensed with in the hypothetical world of
Sec. IV, they cannot in the real world unless, just like the ether
was eventually replaced by the free-standing electromagnetic
field, they are replaced by something that can account for the
structure of macroscopic objects.

In all physical theories other than quantum mechanics, there
are straightforward and credible answers to the question raised
above, of “How can the world be for the theory to be true?”
In quantum mechanics there are a number of answers, like the
ones we have reviewed in this paper. None is straightforward,
and none gains universal credibility. Should we then adopt the
attitude of the epistemic or related views, which decide not
to answer the question? I believe that, from a foundational
point of view, this is not tenable. For how can we believe in
a theory, if we are not prepared to believe in any of the ways
it can be true, or worse, if we do not know any way that it
can be true?

The epistemic view of quantum mechanics is an attempt
to solve or attenuate the foundational problems of the theory.
It would succeed if quantum mechanics were used only to
explain nonclassical correlations between macroscopic objects.

But it is also used to explain the microscopic structure of such
objects. Interpreting the theory means finding ways that it can
be intelligible. I believe that each clear and well-defined way
to do so adds to the understanding of the theory. In many
instances, however, much work remains to be done to achieve
that clarity and precision.

ACKNOWLEDGMENT

This work was supported by the Natural Sciences and
Engineering Research Council of Canada.

REFERENCES

[1] L. Marchildon, “Does quantum mechanics need interpretation?” Pro-
ceedings of the Third International Conference on Quantum, Nano and
Micro Technologies, D. Avis, C. Kollmitzer, and V. Privman, Eds. Los
Alamitos, CA: IEEE, 2009, pp. 11–16.

[2] T. M. Nieuwenhuizen, B. Mehmani, V. Spicka, M. J. Aghdami, and
A. Y. Khrennikov, Eds. Proceedings of the Beyond the Quantum Work-
shop. Singapore: World Scientific, 2007.

[3] L. Accardi, G. Adenier, C. Fuchs, G. Jaeger, A. Y. Khrennikov,
J. A. Larsson, and S. Stenholm, Eds. Foundations of Probability and
Physics - 5. AIP Conference Proceedings 1101, Berlin: Springer, 2009.

[4] G. C. Ghirardi, “The interpretation of quantum mechanics: where do
we stand?” Journal of Physics: Conference Series, 174: 012013, 1–16
(2009).

[5] M. Genovese, “Research on hidden variable theories: a review of recent
progresses,” Physics Reports, 413: 319–396 (2005).

[6] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical de-
scription of physical reality be considered complete?” Physical Review,
47: 777–780, May 1935.

[7] C. H. Bennett and G. Brassard, “Quantum cryptography: public key
distribution and coin tossing,” Proceedings of the IEEE International
Conference on Computers, Systems and Signal Processing. New York:
IEEE, 1984, pp. 175–179.

[8] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” Proceedings of the 35 th Annual Symposium on Foun-
dations of Computer Science, S. Goldwasser, Ed. Los Alamitos, CA:
IEEE, 1994, pp. 124–134.

[9] G. ’t Hooft, “Quantum gravity as a dissipative deterministic system,”
Classical and Quantum Gravity, 16: 3263–3279, October 1999.

[10] A. J. Leggett, “Testing the limits of quantum mechanics: motivation,
state of play, prospects,” Journal of Physics: Condensed Matter, 14:
R415–R451, April 2002.

[11] C. Rovelli, “Relational quantum mechanics,” International Journal of
Theoretical Physics, 35: 1637–1678, August 1996.

[12] C. A. Fuchs and A. Peres, “Quantum theory needs no ‘interpretation’,”
Physics Today, 53: 70–71, March 2000.

[13] C. A. Fuchs, “Quantum mechanics as quantum information (and only
a little more),” in Quantum Theory: Reconsideration of Foundations,
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