
236

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

A Virtualized Infrastructure for Automated BitTorrent Performance
Testing and Evaluation

Răzvan Deaconescu George Milescu Bogdan Aurelian Răzvan Rughiniş
Nicolae Ţăpuş

University Politehnica of Bucharest
Computer Science Department

Splaiul Independenţei nr. 313, Bucharest, Romania
{razvan.deaconescu, george.milescu, bogdan.aurelian, razvan.rughinis, nicolae.tapus}@cs.pub.ro

Abstract

In the last decade, file sharing systems have gener-
ally been dominated by P2P solutions. Whereas email
and HTTP have been the “killer apps” of the earlier In-
ternet, a large percentage of the current Internet back-
bone traffic is BitTorrent traffic [15]. BitTorrent has
proven to be the perfect file sharing solution for a de-
centralized Internet, moving the burden from central
servers to each individual station and maximizing net-
work performance by enabling unused communication
paths between clients.

Although there have been extensive studies regarding
the performance of the BitTorrent protocol and the im-
pact of network and human factors on the overall trans-
fer quality, there has been little interest in evaluating,
comparing and analyzing current real world implemen-
tations. With hundreds of BitTorrent clients, each ap-
plying different algorithms and performance optimiza-
tion techniques, we consider evaluating and comparing
various implementations an important issue.

In this paper, we present a BitTorrent performance
evaluation infrastructure that we are using with two
purposes: to test and compare current real world Bit-
Torrent implementations and to simulate complex Bit-
Torrent swarms. Our infrastructure consists of a virtu-
alized environment simulating complete P2P nodes and
a fully automated framework. For relevant use, differ-
ent existing BitTorrent clients have been instrumented
to output transfer status data and extensive logging in-
formation.

Keywords: BitTorrent; virtualization; automa-
tion; performance evaluation; client instrumentation

1 Introduction

P2P sharing systems are continuously developing
and increasing in size. There is a large diversity of so-
lutions and protocols for sharing data and knowledge
which enable an increasing interest from common users
and commercial and academic institutions [22].

It is assumed [15] that BitTorrent is responsible for
a large portion of all Internet traffic. BitTorrent has
proven to be the “killer” application of the recent ears,
by dominating the P2P traffic in the Internet [24].

During the recent years BitTorrent [16] has become
the de facto P2P protocol used throughout the Inter-
net. A large portion of the Internet backbone is cur-
rently comprised of BitTorrent traffic [18]. The decen-
tralized nature of the protocol insures scalability, fair-
ness and rapid spread of knowledge and information.

As a decentralized system, a BitTorrent network is
very dynamic and download performance is influenced
by many factors: swarm size, number of peers, network
topology, ratio enforcement. The innate design of the
BitTorrent protocol implies that each client may get a
higher download speed by unchoking a certain client.
At the same time, firewalls and NAT have continuously
been a problem for modern P2P systems and decrease
the overall performance.

Despite implementing the BitTorrent specification
[23] and possible extensions each client uses different
algorithms and behaves differently on a given situation:
it may limit the number of peers, it may use heuristic
information for an optimistic unchoke, it could choose
a better client to download from. An important point
of consideration is the diversity and heterogeneity of
peers in the Internet. Some peers have low bandwidth
connections, some act behind NATs and firewalls, some
use certain improvements to the protocol. These as-



237

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

pects make a thorough analysis of the protocol or of its
implementations difficult as there is little to no control
over the parameters in a real BitTorrent swarm.

The results presented in this paper are a continu-
ation of previous work on BitTorrent applications as
described at ICNS 2009 [1].

Our paper presents a BitTorrent performance eval-
uation infrastructure [30] that enables creating a con-
tained environment for BitTorrent evaluation, testing
various BitTorrent implementations and offers exten-
sive status information about each peer. This informa-
tion can be used for analysis, interpretation and corre-
lation between different implementations and for ana-
lyzing the impact of a swarms state on the download
performance.

In order to simulate an environment as real as pos-
sible, hundreds to thousands of computer systems are
required, each running a particular BitTorrent imple-
mentation. Modern clusters could offer this environ-
ment, but the experiments require access to all systems,
making the availability of such a cluster an issue.

The approach we propose in this paper is to use a
virtualization solution to accommodate a close-to-real-
world testing environment for BitTorrent applications
at a fraction of the costs of a real hardware solution
(considering the number of computer systems). Our
virtualization solution uses the lightweight OpenVZ
[21] application that enables fast creation, limited exe-
cution overhead and low resource consumption. In this
paper we show that, by using commodity hardware and
OpenVZ, a virtual testing environment can be created
with at least ten times more simulated systems than
the real one used for deployment.

On top of the virtualized infrastructure, we devel-
oped a fully automated BitTorrent performance evalu-
ation framework. All tested clients have been instru-
mented to use command line interfaces that enable au-
tomated actions. Clients are started simultaneously
and results are collected after the simulation is com-
plete.

The paper is organized as follows: Section 2 pro-
vides background information, keywords and acronyms
used throughout the article, Section 3, 4, 5 present
the infrastructure and framework used for our BitTor-
rent experiments; Section 6 and 7 describe OpenVZ
and MonALISA, the virtualization and monitoring so-
lution we used; we present the experimental setups and
results of various experiments in Section 8; Section 9
describes the web interface architecture built on top of
the framework; Section 10 and 11 present concluding
remarks and related work.

2 Background

Our paper deals with recent concepts related to
peer-to-peer networks, BitTorrent in particular, and
virtualization. This section gives some definitions of
terms used throughout the paper.

P2P networks are part of the peer-to-peer
paradigm. Each peer is simultaneously a client and a
server. P2P networks are decentralized systems sharing
information and bandwidth as opposed to the classical
centralized client-server paradigm.

BitTorrent is the most used P2P protocol in the
Internet. Since its creation by Bram Cohen in 2001,
BitTorrent has proven to provide the best way to allow
file distribution among its peers. The BitTorrent pro-
tocol makes a separation between a file’s content and
its metadata. The metadata is stored in a specialized
.torrent file. The .torrent file stores piece information
and hashes and tracker information (see below) and is
usually distributed through the use of a web server.
BitTorrent is not a completely decentralized protocol.
A special server, called tracker is used to intermediate
initial connections between peers.

A set of peers sharing a particular file (i.e. having
access and using the same .torrent file) are said to be
part of the same swarm. A tracker can mediate com-
munication in multiple swarms at the same time. Each
peer within a swarm is either a seeder of a leecher. A
seeder is a peer who has complete access to the shared
file; the seeder is only uploading. For a swarm to ex-
ist there has to be an initial seeder with access to the
complete file and its associated metadata in the .tor-
rent file. A peer is a leecher as long as it has only
partial access to the file (i.e. it is still downloading). A
healthy swarm must contain a good number of seeders.

There is a great variety of BitTorrent clients, some
of which have been the subject of the experiments
described in this paper. There are also BitTorrent
libraries (such as libtorrent-rasterbar or libtorrent-
rakshasa) that form the basis for particular BitTorrent
implementations. Some of the more popular clients are
uTorrent, Azureus, Transmission, rTorrent, BitTorrent
(the official BitTorrent client, also known as Mainline).

Our paper describes the use of virtualization tech-
nology in the benefit of simulating partial or complete
BitTorrent swarms. For our experiments we have used
the OpenVZ [21] virtualization solution. OpenVZ is
an operating-system level virtualization solution. This
means that each virtual machine (also known as VE -
virtual environment) that it will run on the same kernel
as the host system. This approach has the advantage of
using a small amount of resources for virtual machine
implementation. Each OpenVZ VE uses a part of the



238

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

Figure 1. Overall Architecture of BitTorrent
Performance Evaluation Infrastructure

host file-system and each OpenVZ process is a process
in the host system.

Each host system acts as a gateway for the OpenVZ
VEs. For our infrastructure, the host system uses
NAT (Network Address Translation) to allow com-
munication between and OpenVZ VE and the outside
world. The current setup uses SNAT (Source NAT )
to enable access from the OpenVZ VEs to the outside
world and DNAT (Destination NAT ) to enable con-
nections to the virtual machines, for uploading.

As the base system is a Linux-based distribution
NAT is handled through the use of iptables, the tool
that handles packet filtering and manipulation. Our
framework also uses tc (traffic control) for traffic limi-
tation.

SSH (Secure Shell) is the basic communication pro-
tocol for commanding VEs and BitTorrent clients. It
has the advantage of being secure and allowing easy
communication with VEs. At the same time, it allows
automating commands through a scripted interface. As
the framework uses CLI (Command Line Interface) for
automating commands, the use of SSH is very helpful.

Our measurements use MonALISA [20] for real time
monitoring of BitTorrent parameters, usually down-
load speed and download percentage. MonALISA pro-
vides a specialized infrastructure for storing and visu-
alizing required parameters. A lightweight monitoring
agent is used on each OpenVZ VE to send periodic
updates to the MonALISA repository.

3 Overall architecture

Figure 1 presents a general overview of the BitTor-
rent performance evaluation infrastructure.

The infrastructure consists of commodity hard-
ware systems running GNU/Linux. Each system uses

OpenVZ virtual machine implementation to run mul-
tiple virtual systems on the same hardware node.

Each virtual machine contains the basic tools for
running and compiling BitTorrent clients. Tested Bit-
Torrent implementations have been instrumented for
automated command and also for outputting status
and logging information required for subsequent analy-
sis and result interpretation. As the infrastructure aims
to be generic among different client implementations,
the addition of a new BitTorrent client resumes only
at adding the required scripts and instrumentation.

Communication with the virtual machines is enabled
through the use of DNAT and iptables. TC (traffic
control) is used for controlling the virtual links between
virtual systems.

Each virtual machine uses a set of scripts to enable
starting, configuration, stopping and result gathering
for BitTorrent clients.

A test/command system can be used to start a series
of clients automatically through the use of a scripted
interface. The command system uses SSH to connect to
the virtual machines (SSH is installed and communica-
tion is enabled through DNAT/iptables) and command
the BitTorrent implementations. The SSH connection
uses the virtual machine local scripts to configure and
start the clients.

The user can directly interact with the automated
framework through the use of command scripts, can
embed the commanding interface in an application or
can use the web interface. The web interface was devel-
oped to facilitate the interaction between the user, the
BitTorrent clients and the virtual machines. It enables
most of the actions that an user is able to accomplish
trough direct use of the command scripts.

4 BitTorrent Clients

For our experiments we selected the BitTorrent
clients that are most significant nowadays, based on
the number of users, reported performance, features
and history.

We used Azureus, Tribler, Transmission, Aria,
libtorrent rasterbar/hrktorrent, BitTornado and the
mainline client (open source version). All clients are
open source as we had to instrument them to use a
command line interface and to output verbose logging
information.

Azureus, now called Vuze, is a popular BitTorrent
client written in Java. We used Azureus version 2.3.0.6.
The main issue with Azureus was the lack of a proper
CLI that would enable automation. Though limited,
a “Console UI” module enabled automating the tasks



239

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

of running Azureus and gathering download status and
logging information.

Tribler is a BitTorrent client written in Python and
one of the most successful academic research projects.
Developed by a team in TU Delft, Tribler aims at
adding various features to BitTorrent, increasing down-
load speed and user experience. We used Tribler 4.2.
Although a GUI oriented client, Tribler offers a com-
mand line interface for automation. Extensive logging
information is enabled by updating the value of a few
variables.

Transmission is the default BitTorrent client in the
popular Ubuntu Linux distribution. Transmission is
written in C and aims at delivering a good amount
of features while still keeping a small memory foot-
print. The version we used for our tests was trans-
mission 1.22. Transmission has a fully featured CLI
and was one of the clients that were very easy to auto-
mate. Detailed debugging information regarding con-
nections and chunk transfers can be enabled by setting
the TR DEBUG FD environment variable.

Aria2 is a multiprotocol (HTTP, FTP, BitTorrent,
Metalink) download client. Throughout our tests we
used version 0.14. aria2 natively provides a CLI and it
was easy to automate. Logging is also enabled through
CLI arguments. Aria2 is written in C++.

libtorrent rasterbar/hrktorrent is a BitTor-
rent library written in C++. It is used by a num-
ber of BitTorrent clients such as Deluge, BitTor-
rent and SharkTorrent. As we were looking for a
client with a CLI we found hrktorrent to be the
best choice. hrktorrent is a lightweight implementa-
tion over rasterbar libtorrent and provides the nec-
essary interface for automating a BitTorrent transfer,
although some modifications were necessary. Raster-
bar libtorrent provides extensive logging information
by defining the TORRENT LOGGING and TOR-
RENT VERBOSE LOGGING MACROS. We used
version 0.13.1 of rasterbar libtorrent and the most re-
cent version of hrktorrent.

BitTornado is an old BitTorrent client written in
Python. The reason for choosing it to be tested was
because of a common background with Tribler. How-
ever, as testing revealed, it had its share of bugs and
problems and it was eventually dropped.

BitTorrent Mainline is the original BitTorrent
client written by Bram Cohen in Python. We used ver-
sion 5.2 during our experiments, the last open-source
version. The mainline client provides a CLI and log-
ging can be enabled through minor modifications of the
source code.

Figure 2. Client Control Infrastructure

5 Framework

As shown in Figure 2, the client control infrastruc-
ture on top of which our framework runs consists of
a command station, a repository and a set of client
stations. Through the use of OpenVZ [21], the client
stations are virtual machines simulating common fea-
tures of a standard computer system.

The current infrastructure is located in NCIT Clus-
ter [29] in University Politehnica of Bucharest. We are
using commodity hardware systems as described in Sec-
tion 8. The systems we are using for BitTorrent/P2P
experiments are located in the same local area network.
Each system uses a 1 Gbit Ethernet link and the cluster
provides an 10 Gbit external link. Each system is able
to sustain a 25 MB/s download speed from external
download sources (i.e. not in cluster).

Communication between the OpenVZ virtual ma-
chines is handled by the host operating system, which
acts as a gateway enabling communication with other
virtual machines.

Communication between the CS (Command Sta-
tion) and the BTS (BitTorrent Client Station) is han-
dled over SSH for easy access and commanding. The
repository is used to store the control framework im-
plementation and .torrent files for download sessions.
Each BTS checks out from the repository the most re-
cent framework version and the .torrent files to be used.

The control framework is actually a set of small
shell scripts enabling the communication between the
CS and the BTS and running each BitTorrent client
through its command line interface.

For each download session the commander specifies
the .torrent file to be used and the mapping between
each BitTorrent client and a BTS. Through SSH a spe-
cific script is being run on the target BTS enabling the
BitTorrent client. The BTS doesn’t need to be in the



240

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

same network. The only requirement for the client sta-
tions is to run an SSH server and be accessible through
SSH.

Each BitTorrent client uses a specialized environ-
ment for storing logging and download status informa-
tion. All this data can then be collected and analyzed.

5.1 Repository access

6 Using a virtualized environment

Various extensions, sharing ratio enforcement poli-
cies and moderation techniques have been deployed to
improve the overall efficiency of the BitTorrent proto-
col. An important point to consider is the diversity and
heterogeneity of peers in the Internet. Some peers have
low bandwidth connections, some act behind NATs and
firewalls, some use certain improvements to the proto-
col. These aspects make a thorough analysis of the
protocol or of its implementations difficult as there is
little to no control over the parameters in a real Bit-
Torrent swarm.

A solution is creating a contained environment for
BitTorrent evaluation. However, in order to simulate
an environment as real as possible, hundreds to thou-
sands of computer systems are required, each running
a particular BitTorrent implementation. Modern clus-
ters could offer this environment, the experiments re-
quire access to all required systems, making the avail-
ability of such a cluster an issue.

The approach we propose is to use a virtualization
solution to accommodate a close-to-real-world testing
environment for BitTorrent applications at a fraction
of the costs of a real hardware solution (considering
the number of computer systems). Our virtualization
solution uses the lightweight OpenVZ [21] application
that enables fast creation, limited execution overhead
and low resource consumption. In this paper we show
that, by using commodity hardware and OpenVZ, a
virtual testing environment can be created with at least
ten times more simulated systems than the real one
used for deployment.

Creating a virtualized environment requires the
hardware nodes where virtual machines will be de-
ployed, the network infrastructure, a set of OpenVZ
templates for installation and a framework that enables
commanding clients inside the virtual machines.

Each virtual machine runs a single BitTorrent ap-
plication that has been instrumented to use an easily-
automated CLI.

6.1 OpenVZ

OpenVZ [21] is an operating system-level virtualiza-
tion solution. It can run only a Linux virtual environ-
ment over an OpenVZ-enabled Linux kernel. A virtual
machine is also called a container or virtual environ-
ment (VE). OpenVZ is a lightweight virtualization so-
lution incurring minimal overhead compared to a real
environment.

OpenVZs advantages are low-resource consumption
and fast creation times. As it is using the same ker-
nel as the host system, OpenVZs memory and CPU
consumption is limited. At the same time, OpenVZ
file-system is a sub-folder in the hosts file-system en-
abling easy deployment and access to the VE. Each
VE is thus a part of the main file-system and can be
encapsulated in a template for rapid deployment. One
simply has to uncompress an archive, edit a configu-
ration file and setup the virtual machine (host name,
passwords, network settings).

OpenVZs main limitation is the environment in
which it runs: the host and guest systems must both
be Linux. At the same time certain kernel features
that are common in a hardware-based Linux system
are missing: NFS support, NAT, etc., due to inherent
design.

Despite its limitations, OpenVZ is the best choice
for creating a virtualized environment for the evalua-
tion of BitTorrent clients. Its minimal overhead and
low-resource consumption enables running tens of vir-
tual machines on the same hardware node with little
penalty.

7 Monitoring with MonALISA

Deploying a large number of virtual environments
implies gathering important amount of information for
analysis and interpretation. While status and logging
information is gathered and stored for each experimen-
tal session, we enabled the use of the MonALISA [20]
client for real time monitoring and data storage.

MonALISA uses a distributed infrastructure to
monitor various experiments and activities. It has a di-
versity of features ranging from easily integrated API,
real time monitoring, graphical representation, data
storage for further use, etc.

We extended our framework to use MonALISA for
real time monitoring of download speed and other fac-
tors. Each client can be configured to send data to a
MonALISA agent. The MonALISA agent parses that
data and creates a close-to-real-time graphical evolu-
tion of the download speed. There is a small delay



241

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

Figure 3. MonALISA Monitoring Infrastruc-
ture

between the client collecting sufficient data and send-
ing it and the MonALISA agent processing it.

Figure 3 is an overview of the monitoring infrastruc-
ture involving MonALISA. All virtualized systems are
able to send data to a MonALISA server and subse-
quently to a MonALISA repository. A web interface
application uses data from the repository to publish it
as history or real time graphs. Besides the web inter-
face, MonALISA offers an interactive client that must
be installed on the user system. The client enables read
access to information in different clusters and can be
used to create on-demand graphical representation of
measured features.

8 Experimental setups

We used two major experimental setups. The first
setup has been used before the addition of the virtual-
ized environment and was dedicated to measurements
and comparisons between different BitTorrent clients.
The second setup is the current one and uses two bene-
fits of the virtualized environment to simulate complete
swarms: client station characteristics and network in-
terconnections.

8.1 Performance evaluation experiment
setup

Our first experimental setup consisted of six identi-
cal computers running the same operating system and

Figure 4. Test Swarm 1

Figure 5. Test Swarm 2

software. The hardware configuration includes Pen-
tium 4 2GHz CPU, 1 GB RAM, 160 GB HDD. We
used Ubuntu 7.10 Gutsy Gibbon as an operating sys-
tem.

The six computers are connected in the same net-
work, thus using common bandwidth to access the In-
ternet. The computers have been firewalled from each
other such that communication is enabled only with
peers from the Internet.

Most of our experiments were simultaneous down-
load sessions. Each system ran a specific client in the
same time and conditions as the other clients. Results
and logging data were collected after each client fin-
ished its download.

8.1.1 Results

Our framework was used to test different swarms (dif-
ferent .torrent files). Most scenarios involved simul-
taneous downloads for all clients. At the end of
each session, download status information and exten-
sive logging and debugging information were gathered
from each client. Figure 4 and figure 5 are compar-
isons between different BitTorrent clients running on



242

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

the same environment in similar download scenarios.
The graphical representation show the download ra-
tio/percentage evolution with respect to time.

The first test runs simultaneous sessions for five
clients (hrktorrent, aria, azureus, transmission, tribler)
part of the same swarm. The swarm uses 2900 seed-
ers and 2700 leechers and a 908MB file. All clients
were started at the same time on different systems in
the same network. The operating system, hardware
and network characteristics are identical for all clients.
Aria is the clear loser of the race. A tight compe-
tition is going between hrktorrent and Tribler at the
beginning of the download session. Both clients dis-
play a high acceleration (increase in download speed).
However, Tribler’s speed/download rate is gets lower at
around 20% of the download and hrktorrent comes out
as the clear winner. Tribler and Azureus finish their
download at around the same time, with Transmission
coming out fourth, and Aria last.

The second test also runs simultaneous sessions for
all clients presented in Section 4. The current swarm
uses a 4.1 GB file, 761 seeders and 117 leechers. hrktor-
rent again displays an excellent start, with all the other
clients lagging. Tribler starts a bit late, but manages
to catch up and, at about 25% of the download size,
is faster than hrktorrent. At the end of the session,
the first three clients are the same (hrktorrent, Tribler,
Azureus) with Transmission, Aria and Mainline finish-
ing last.

Table 1. Test Swarms Results
Client Test1 Test2 Test3 Test 4
file size 908MB 4.1GB 1.09GB 1.09GB
seeders 2900 761 521 496
leechers 2700 117 49 51
aria2c 1h17m 53m53s 8m 10m23s
azureus 32m41s 38m33s N/A 7m
bittorrent 4h53m 60m39s 26m 14m
libtorrent 9m41s 15m13s 2m30s 2m14s
transmission 40m46s 53m 7m 5m
tribler 34m 21m N/A N/A

Table 1 presents a comparison of the BitTorrent
clients in four different scenarios. Each scenario means
a different swarm. Although much data was collected,
only the total download time is presented in the table.

Due to bugs with the Tribler and Azureus clients,
some results are missing and are marked with N/A in
Table 1. The two clients did continue their download
but at a negligible speed and they were stopped.

The conclusions drawn after result analysis were:

• hrk/libtorrent is continuously surpassing the other

Figure 6. Close-to-real-time Monitoring

clients in different scenarios;

• tribler, azureus and transmission are quite good
clients but lag behind hrktorrent;

• mainline and aria are very slow clients and should
be dropped from further tests;

• swarms that are using sharing ratio enforcement
offer better performance; a file is downloaded at
least 4 times faster within a swarm using sharing
ratio enforcement.

8.1.2 Integration with MonALISA

Figure 6 is a screenshot of a download session ren-
dered using MonALISA. By using a MonALISA client,
a close-to-real-time evolution of a BitTorrent download
session can be obtained.

8.2 Virtualized experimental setup

Our current setup consists of 8 computers each run-
ning 5 OpenVZ virtual environments (VEs). All sys-
tems are identical with respect to the CPU power,
memory capacity and HDD space and are part of the
same network. The network connections are 1Gbit
Ethernet links.

The hardware configuration for each system in-
cludes:

• 2GB RAM

• Intel(R) Pentium(R) 4 CPU 3.00GHz dual-core

• 300GB HDD

All systems are running the same operating sys-
tem (Debian GNU/Linux Lenny/testing) and the same
software configuration.



243

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

8.3 Resource consumption

With all 5 VEs active and running a BitTorrent
client in each of them, memory consumption is 180MB-
250MB per system. With no VE running, the memory
consumption is around 80MB-110MB. The amount of
memory used by the VEs is:

V Emem = sV Emem− smem
where:

• V Emem is the memory consumption of VEs

• sV Emem is the memory consumption of base-
system and VEs

• smem is the memory consumption by the ”bare-
bones” base-system

This means that the minimum and maximum values
of memory consumption by the VEs are:

min V Emem = min sV Emem−max smem
max V Emem = max sV Emem−min smem
Given the above values, it results that the 5 VEs

use between 70MB and 170MB of RAM or a rough
estimate of 15MB to 35MB per VE.

The BitTorrent client in use is hrktorrent, a
libtorrent-rasterbar based implementation. hrktorrent
is a light addition to the libtorrent-rasterbar library,
so memory consumption is quite small while still de-
livering good performance. On average, each virtual
machine uses at most 40MB of RAM when running
hrktorrent in a BitTorrent swarm.

The current partitioning scheme for each system
leaves 220GB of HDD space for the VEs. However,
one could upgrade that limit safely to around 280GB.
Each basic complete VE (with all clients installed) uses
1.7GB of HDD space. During a 700MB download ses-
sion, each client outputs log files using 30-50MB of
space.

Processor usage is not an issue as BitTorrent appli-
cations are mostly I/O intensive.

8.3.1 Scalability

As mentioned above, 5 active VEs running the hrktor-
rent client use about 70 to 250MB of RAM. This gives
a rough estimate of about 15 MB to 35 MB of memory
consumption per VE. As the basic system also uses at
most 110MB of RAM, it results that the total memory
consumption is at most num V Es ∗ 35MB + 110MB.

From the HDD perspective, the basic system can be
tuned to use 20GB of space with no major constraints
on the software configuration. Each complete VE (able
to run all CLI-based BitTorrent clients) uses 1.7GB of
space. At the same time, 1GB of space should be left on

each system for testing and logging purposes and 5GB
for file transfer and storage. This means that about
8GB of space should be reserved for each VE.

The above values are a rough estimate. A carefully
tuned system would manage to use less resources. How-
ever, we aimed to show that given these high values,
an average PC could still sustain a significant amount
of VEs with little overhead and resource penalty.

Table 2 gives an estimated maximum number of
OpenVZ virtual environments a basic PC is able to
run. Bold font means limitation is due to RAM ca-
pacity, while italic font means limitation is due to HDD
space.

Table 2. Estimated Maximum Number of VEs
per System

HDD Memory 1GB 2GB 4GB 8GB 16GB
80GB 7 7 7 7 7
120GB 12 12 12 12 12
200GB 22 22 22 22 22
300GB 26 35 35 35 35
500GB 26 55 60 60 60
750GB 26 55 91 91 91
1TB 26 55 113 122 122

The above mentioned values assume the usage of
the hrktorrent/libtorrent BitTorrent client. They also
assume the scheduling impact of all processes in the
VEs induces low overhead on the overall performance.
However, even considering the scheduling overhead, a
modest system would still be able to run at least 10 to
20 VEs.

It can also be noticed that the primary limiting fac-
tor is the hard-disk, not the physical memory. How-
ever, given a large number of VEs the processing power
also becomes important. Consequently the later num-
bers are realistic only with respect to memory and
HDD, neglecting the context-switch overhead and CPU
power.

We can safely conclude that a virtualized testing
environment based on OpenVZ would provide similar
testing capabilities as a non-virtualized cluster with at
most 10% of the cost. Our experimental setup consist-
ing of just 8 computers is able of running at least 100
virtualized environments with minimal loss of perfor-
mance.

The virtualized environment is thus a cheaper and
more flexible alternative to a full-fledged cluster, with
little performance loss. Its main disadvantage is the
asymmetry between virtualized environments that run
on different hardware system. The main issue is net-



244

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

work bandwidth between VEs running on the same
hardware node and VEs running on different hardware
nodes. This can be corrected by using traffic limitation
ensuring a complete network bandwidth symmetry be-
tween the VEs.

8.3.2 Testing scenarios and results

Currently we are simulating swarms comprising of
a single seeder and 39 initial leechers. 19 leechers
are high bandwidth peers (512KB/s download speed,
256KB/s upload speed) and 20 leechers are low band-
width peers (64KB/s download speed, 32KB/s upload
speed).

The total time of an experiment involving all 40
peers and a 700MB CD image file is around 4 hours. It
only takes about half an hour for the high bandwidth
clients to download it.

We have been using Linux Traffic Control (TC) tool
combined with iptables set-mark option to limit down-
load and upload traffic to and from a VE.

Figure 7 and Figure 8 are real time representations
of download speed evolution using MonALISA. The
first figure shows the initial phase (first 10 minutes) of
an experiment with the low bandwidth clients limited
by the 64KB/s download speed line, and the high band-
width clients running between 100KB/s and 450KB/s.
The second figure presents the mid-phase of an exper-
iment when high bandwidth clients finished download-
ing.

Figure 7 show the limitation of the low bandwidth
peers while the high bandwidth peers have sparse
download speed. Each high bandwidth client’s speed
usually follows an up-down evolution, and an increas-
ing median as time goes by.

For the second swarm, at around 13:05, the high
bandwidth clients have finished their download or are
finishing in the following minutes, while the low band-
width clients are still downloading. The high band-
width clients have a large speed interval, while the
low bandwidth clients are “gathered” around the 64KB
limitation.

9 Web interface

In order to ease the use of the automated framework
we developed a web interface that acts as a front-end
to the scripted framework. Functionalities provided by
the scripted framework are integrated within the web
interface.

A web-based approach was chosen in favor of other
possible interfaces because of certain advantages. An
important advantage is accessibility: a browser is all

Figure 7. Download Speed Evolution (initial
phase)

Figure 8. Download Speed Evolution (mid
phase)



245

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

Figure 9. Web Interface Architecture

that is required in order to use the interface. This
also means that the command server (see Figure 9) is
installed on a single hardware system without further
installation actions on client systems available to the
user.

From a resource requirements perspective, the in-
terface requires little (if any) complex graphical effects
or additional software packages. The web technolo-
gies employed by the interface (HTTP, HTML, CSS,
JavaScript) completely satisfy the requirements.

Another advantage is portability. The application,
the web server and the tools employed are portable
across different operating systems. From an interface
point of view, this means that the application can be
easily migrated from one system to another.

9.1 Web interface architecture

The web interface, as presented in Figure 9, is
a front-end to the automated evaluation framework.
More precisely, it is used as a substitute to the com-
mand station (CS) described in Figure 2. Command
and control requests employed by the user in the CS
can now be accessed through the use of the web inter-
face. Communication between the web interface and
the BitTorrent stations (BTS) is done, as in the case of
the CS-BTS communication, through SSH. The web in-
terface can be used to command, control, report client
status and upload .torrent files to the client stations.

The web server used by the web interface is an
Apache Tomcat server. The technologies employed are
servlets, Java Server Pages, Java Struts and Java Tiles.

From the application perspective, the command
server (web interface server in this case) sends com-
mands to clients. The clients execute the com-
mands/requests and return the error status.

The web interface enables the user to configure min-
imal administration of the client stations and the .tor-
rent files. It can start and stop download sessions
for BitTorrent clients, it can schedule starts and stops
and it can report the current status for a specified

client. For flexibility reasons the interface offers means
through which the machines may be commanded in-
dividually or simultaneously, depending on the user’s
preference.

9.2 Integration with back-end framework

The commanding module consists of multiple sub-
systems, each fulfilling a specific task. It is responsible
of keeping information about the client stations such as
the availability information, connection details, avail-
able .torrent files, running client process, download ses-
sions status and scheduled tasks.

Some data structures require periodic updates pro-
vided by the automated framework. The command
module is also responsible of launching threads at spe-
cific times to complete these tasks.

The interface agent calls the BitTorrent client
through the automated framework and sends it the
parameters specified by the command module. Each
specific action uses a different set of commanding pa-
rameters. Communication between the interface agent
and the automated interface is handled through SSH.

10 Related work

While there are extensive studies and proposals re-
garding the internals of the BitTorrent protocol, there
has been little concern about comparing and evaluating
real world implementations. Guo et. al [6] developed
an extensive study of P2P systems, but focusing on
how the overall behavior of the swarm affects the per-
formance. Pouwelse et. al [10] [11] have also gathered
large amount of information and used it for detailing
BitTorrent swarm behavior.

Most measurements and evaluations involving the
BitTorrent protocol or BitTorrent applications are ei-
ther concerned with the behavior of a real-world swarm
or with the internal design of the protocol. There has
been little focus on creating a self-sustained testing
environment capable of using hundreds of controlled
peers for gathering results and interpreting them.

Pouwelse et al. [11] have done extensive analysis on
the BitTorrent protocol using large real-world swarms,
focusing on the overall performance and user satisfac-
tion. Guo et. al [5] have modeled the BitTorrent proto-
col and provided a formal approach to the its function-
ality. Bharambe et. al [3] have done extensive studies
on improving BitTorrents network performance.

Iosup et al. [7] used a testing environment involving
four major BitTorrent trackers for measuring topology
and path characteristics. They used nodes in Planet-



246

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

Lab. The measurements were focused on geo-location
and required access to a set of nodes in PlanetLab.

Garbacki et al. [4] have created a simulator for test-
ing 2Fast, a collaborative download protocol. The sim-
ulator was useful only for small swarms that required
control. Real-world experiments involved using real
systems communicating with real BitTorrent clients in
the swarm.

11 Conclusions and future work

The paper presents a BitTorrent performance evalu-
ation infrastructure that uses virtualization to simulate
hardware nodes and network interconnection features.

While there have been extensive studies regarding
the performance of the BitTorrent protocol and how it
can be improved by using carefully crafted algorithms,
little attention has been given to analyzing and com-
paring real world implementations of the BitTorrent
specifications. We created an easily deployable solution
that enables automated testing of different BitTorrent
clients in real world situations.

The proposed virtualized environment enables eval-
uation of the BitTorrent applications with only a frac-
tion of the costs of a full-fledged cluster system. The
advances of virtualization technologies and hardware
systems ensure that complete experiments can be run
in a virtualized environment with little penalty over a
real environment.

Our approach makes use of the excellent OpenVZ
virtualization software that incurs minimum overhead
when creating and running virtualized environments.
OpenVZ’s low memory and HDD consumption enable
tens of VEs, each running a BitTorrent client, to run
on an average PC system (2GB RAM, 200GB HDD,
3GHz dual core CPU).

Given its flexibility, the virtualized environment can
be used for a large variety of experiments and scales
very well with respect to the number of simulated peers
in a swarm. Our current experiments deal with low
bandwidth/high bandwidth peers. We plan to extend
these experiments to more peers, and to simulate a
more dynamic swarm (with clients entering and leav-
ing).

Our results identified the libtorrent-rasterbar imple-
mentation as the fastest client, clearly ahead of other
implementations. We intend to analyze the logging
output and investigate its source code to identify the
clever tweaks that enable such an improvement over
the other clients.

The current SSH communication means that BTS
can be commanded only if its SSH server can be con-
tacted. This makes it very difficult for clients that are

behind NAT or firewalls to participate in a testing sce-
nario. We aim to develop and deploy a server that ac-
cepts incoming connections regardless of NAT/firewall
constraints and uses these connections to command
BitTorrent clients.

Planned work is also to detect any potential prefer-
ences among clients, by enabling different BitTorrent
implementations in a single closed swarm.

At the same time we intend to expand the reporting
interface with information related to processor usage,
memory consumption and number of connections for
easy result interpretation and analysis. The MonAL-
ISA interface will also be extended for live reporting of
various transfer parameters.

The virtualized environment gives easy access to
modifying the number of seeders in a swarm, the num-
ber of firewalled clients, seeding time and many other
variables. With full control over the entire swarm, one
or more of the swarm parameters could be easily altered
and then measure, analyze and interpret the results.

Our infrastructure uses real-world implementations
of BitTorrent clients and a low-overhead virtualized
testing environment. The virtualized testing environ-
ment is a novel approach that enables easy BitTor-
rent experiment creation, evaluation and analysis, and
its flexibility allows potential extensions and improve-
ments to be added resulting in better diversity over the
experiments.

12 Acknowledgements

This paper is part of the research efforts within the
P2P-Next FP7 project [22]. The code used within is
project is open-source. Anyone can access its repos-
itory [30] or use the web interface [31] to browse the
sources.

References

[1] Deaconescu, R., R. Rughiniş, N. Ţăpuş (2009). A
BitTorrent Performance Evaluation Framework,
In: Proceedings of ICNS 2009

[2] Deaconescu, R., R. Rughiniş, N. Ţăpuş (2009). A
Virtualized Testing Environment for BitTorrent
Applications, In: Proceedings of CSCS 17

[3] Bharambe, A. R., C. Herley, and V. N. Padman-
abhan (2006). Analyzing and Improving a Bit-
Torrent Network’s Performance Mechanisms. In:
Proceedings of Infocom’06



247

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

[4] Garbacki, P., A. Iosup, D. Epema, M. van Steen
(2006). 2Fast: Collaborative Downloads in P2P
Networks. In: Peer-to-Peer Computing, 23-30

[5] Guo, L., S. Chen, Z. Xiao, E. Tan, X. Ding, and
X. Zhang (2005). Measurements, Analysis, and
Modeling of BitTorrent-like Systems. In: Inter-
net Measurement Conference

[6] Guo, L., S. Chen, Z. Xiao, E. Tan, X. Ding,
and X. Zhang (2007). A Performance Study of
BitTorrent-like Peer-to-Peer Systems. In: IEEE
Journal on Selected Areas in Communications,
Vol. 25, No. 1

[7] Iosup, A., P. Garbacki, J. Pouwelse, D. Epema
(2006). Correlating Topology and Path Charac-
teristics of Overlay Networks and the Internet.
In: CCGRID

[8] Mol, J. J. D, J. A. Pouwelse, M. Meulpolder, D.
H. J. Epema, and H. J. Sips (2007). Give-to-Get:
An Algorithm for P2P Video-on-Demand

[9] Padala, P., X. Zhu, Z. Wang, S. Singhal, K. G.
Shin (2007). Performance Evaluation of Virtual-
ization Technologies for Server Consolidation. In:
HPL-2007-59R1

[10] Pouwelse, J. A., P. Garbacki, D. H. J. Epema,
and H. J. Sips (2004). A Measurement Study
of the BitTorrent Peer-to-Peer File-Sharing Sys-
tem. In: Technical Report PDS-2004-003

[11] Pouwelse, J. A., P. Garbacki, D. H. J. Epema,
and H. J. Sips (2005). The BitTorrent P2P file-
sharing system: Measurements and Analysis. In:
Fourth International Workshop on Peer-to-Peer
Systems (IPTPS)

[12] Pouwelse, J. A., P. Garbacki, J. Wang, A.
Bakker, J. Yang, A. Iosup, D. H. J. Epema, M.
Reinders, M. R. van Steen, H. J. Sips (2005).
Tribler: a social-based peer-to-peer system. In:
Concurrency and Computation: Practice and
Experience, Volume 20 Issue 2

[13] Vlavianos, A., M. Iliofotou, and M. Faloutsos
(2006). BiToS: Enhancing BitTorrent for Sup-
porting Streaming Applications

[14] Aria, The Fast and Reliable Download Utility
(2009), http://aria2.sourceforge.net/, accessed
2009

[15] Arstechnica (2009), http://arstechnica.com/
news.ars/post/20070903-p2p-responsible-for-
as-much-as-90-percent-of-all-net-traffic.html,
accessed 2008

[16] BitTorrent (2009), http://bittorrent.com, ac-
cessed 2009

[17] Hrktorrent (2009), http://50hz.ws/hrktorrent/,
accessed 2009

[18] ipoque Internet studies, 2009, http://
www.ipoque.com/resources/internet-studies/,
accessed 2009

[19] Libtorrent (2009), http://www.rasterbar.com/
products/libtorrent/, accessed 2009

[20] MonALISA, MONitoring Agents using a
Large Integrated Services Architecture (2009),
http://monalisa.cacr.caltech.edu, accessed 2009

[21] OpenVZ wiki (2009), http://wiki.openvz.org, ac-
cessed 2009

[22] P2P-Next (2009), http://www.p2p-next.org/,
accessed 2009

[23] Theory Wiki (2009), http://wiki.theory.org/ Bit-
TorrentSpecification, accessed 2008

[24] TorrentFreak (2009), http://torrentfreak.com/
p2p-traffic-still-booming-071128/, accessed 2008

[25] TorrentFreak (2009), http://torrentfreak.com/
bittorrent-launches-ad-supported-streaming-
071218/, accessed 2008

[26] Transmission (2009), A Fast, Easy
and Free BitTorrent Client (2009),
http://www.transmissionbt.com/, accessed
2009

[27] Tribler (2009), http://www.tribler.org/trac, ac-
cessed 2009

[28] Vuze (2009), http://www.vuze.com/app, ac-
cessed 2009

[29] http://cluster.grid.pub.ro/, accessed 2009

[30] http://svn.tribler.org/abc/branches/razvan/perf

[31] http://www.tribler.org/browser/abc/branches/razvan/perf


