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Abstract—The article proposes a novel multicast routing
algorithm without constraints and introduces the group mem-
bers arrangement as a new parameter for analyzing multicast
routing algorithms finding multicast trees. The objective of STA
(Switched Trees Algorithm) is to minimize the total cost of
the multicast tree using a modification of the classical Prim’s
algorithm (Pruned Prim’s Heuristic) and the SPT (Shortest
Path Tree) algorithm that constructs a shortest path tree
between a source and each multicast node. In the article, the
results of the proposed STA algorithm are compared with the
representative algorithms without constrains. The results part
of the article also contains some selected statistical properties
of the multicast routing algorithms finding multicast trees as
part of a wider research methodology.
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I. INTRODUCTION

The multicast technology is based on the simultaneous
transmission of data concurrently to multiple destinations,
from the source node to a group of destinations. Over the last
few years, multicast algorithms have become more important
due to the speciffc natureof data transmitted in transport
networks. Current research work on telecommunication net-
works considers especially real time data transmission. The
increase in traffic capacity of present-day networks has
offered great advantages in distributed applications such as
multimedia data transmission in real time, video-on-demand,
teleconferencing etc.

The implementation of multicasting requires solutions
to many combinatorial problems accompanying the con-
struction of optimal transmission trees. In the optimization
process one can distinguish: MST (Minimum Steiner Tree),
and the tree with the shortest paths between the source
node and each of the destination nodes SPT (Shortest Path
Tree). Finding the MST, which is a NP–complete problem,
results in a structure with a minimum total cost [1]. Relevant
literature provides a wide range of heuristics solving this
problem in polynomial time [2], [6], [7].

From the point of view of the application in data trans-
mission, the most commonly used is the KMB algorithm [2].
Other methods minimize the cost of each of the paths
between the sender and each of the members of the multicast
group by forming a tree from the paths having the least
costs. Doar and Leslie [8] show that the total cost of

MST constructed by the KMB heuristic is, on average, 5%
worse as compared to the exact cost incurred by the MST
algorithm [9].

The analysis of the effectiveness of the algorithms known
to the authors and the design of the new solutions utilize
the numerical simulation based on the abstract model of the
existing network. These, in turn, need structures (network
models) that reflect most accurately the Internet network.

In modelling the topology of the Internet network, it is
not necessary, or even advisable, to describe the whole of
the network. The dynamics of the changes of the topology
depends on random connections and disconnections of the
hosts and does not allow for building a model reflecting
a given current structure. From the point of view of the
effectiveness of the algorithms under scrutiny, the use of
such a approach in the simulation process is not economical
and introduces a great complexity of the calculations. An in-
vestigation into traffic in particular domains (or autonomous
system) as well as into inter-domain traffic is usually suffi-
cient enough because it takes into consideration the majority
of events taking place in the whole of the network.

If the communication network is presented as a graph, the
result of the implementation of the routing algorithm will
be a spanning tree rooted in the source node and including
all destination nodes in the multicast group. Two kinds of
trees can be distinguished in the process of optimization:
MST – Minimum Steiner Tree, and the tree with the shortest
paths between the source node and each of the destination
nodes – SPT (Shortest Path Tree). Finding the MST, which
is a NP-complete problem, effects in a structure with a
minimal total cost. The relevant literature provides a wide
range of heuristics solving the above problem in polynomial
time [2], [3], [4]. From the point of view of the application
in data transmission, the most commonly used is the KMB
algorithm [2]. The other method minimizes the cost of each
of the paths between the sender and each of the members
of the multicast group by forming a tree from the paths
having the least costs. Conventionally, it is first either the
Dijkstra algorithm [12] or the Bellman-Ford algorithm [5]
that is used, and then the branches of the tree that do not
have destination nodes are cut off.

The remarks presented above indicate the direction of the
research work carried out by the authors. The main goal
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of these investigations is to elaborate a methodology for a
reliable comparison of existing solutions and a proposition
of a new algorithm [28]. This methodology should define a
wide range of network topologies as a base for the simu-
lation process of multicast algorithms. A set of important
parameters that describes networks should be applied as
well. Some statistical properties of the results of multicast
algorithms are examined in the article.

The article is divided into seven sections. Section 2 de-
scribes the implemented network model. Section 3 presents
an overview of the STA algorithm. In Section 4, multicast
group members distribution methods are laid down. In
Section 5, the simulation methodology is described. Section
6 includes the results of the simulation of the implemented
algorithms (STA and others), while Section 7 sums up the
presented study.

II. NETWORK MODEL

Let us assume that a network is represented by an undi-
rected, connected graph G = (V,E), where V is a set of
nodes, and E is a set of links. The existence of the link
e = (u, v) between the nodes u and v entails the existence
of the link e′ = (v, u) for any u, v ∈ V (corresponding
to two-way links in communication networks). With each
link e ∈ E, the cost c(e) parameter is coupled. The cost
of a connection represents the usage of the link resources.
The multicast group is a set of nodes that are receivers
of the group traffic (identification is carried out according
to a unique i address), M = {m1, ..., mm} ⊆ V , where
m = |M | ≤ |V |. The node s ∈ V is the source for the
multicast group M . Multicast tree T (s,M) ⊆ E is a tree
rooted in the source node s that includes all members of
the group M and is called a Steiner tree. The total cost of
the tree T (s, M) can be defined as

∑
t∈T (s,M) C(t). The

path P (s,mi) ⊆ T (s,M) is a set of links between s and
mi ∈ M . The cost of path P (s,mi) can be expressed as:∑

p∈P (s,mi)
C(p).

A Steiner tree is a good representation for solving the
routing multicast problem. This approach becomes particu-
larly important when we have to deal with only one active
multicast group and the cost of the whole group has to be
minimum. However, due to the computational complexity
of this algorithm (NP-complete problem) [11], heuristic
algorithms are most preferable. If the set of the nodes of the
minimum Steiner tree includes all nodes of a given network,
then the problem comes down to finding the minimum
spanning tree (this solution can be obtained in polynomial
time).

III. OVERVIEW OF THE ALGORITHMS

The simplest way of running the routing algorithm for
multicast connections is the implementation of one of the
classic algorithms constructing a minimum spanning tree,
i.e. the Kruskal algorithm [22], or Prim’s algorithm [23].

The designated spanning tree is also constructed for n 6= M ,
which, in practice, effects in aggravation of unnecessary
traffic in the network since routers must determine paths
for each of the nodes. The cost of tree is disproportionately
high in relation to results returned by the exact algorithm
(MST).

These inconveniences can be solved by the pruning mech-
anism that can be introduced to the resulting spanning
tree. The PPH technique (Pruned Prim Heuristic) [19] is
a modification of the classical Prim’s algorithm which is a
good and efficient solution for solving the Steiner problem
when m ≈ n. PPH builds a minimum spanning tree in the
network represented by an undirected graph and removes
unwanted arcs – branches that do not contain multicast
nodes. Our analysis of algorithms results shows that PPH can
construct multicast trees with lower costs as compared to the
results of the popular SPT algorithm when the group density
parameter [13] is greater than 0.5. The mode of operation
of the PPH algorithm is presented in Algorithm 1.

Algorithm 1 Pruned Prim Heuristic
1: PPH(C, s, M )

C – adjacency matrix with costs of links in graph,
s – source node,
M – set of multicast nodes mi ∈ M .

2: Tfull ← Prim(C, s)
3: T ← DeleteLeaves(Tfull,M)
4: return T

Kou, Markovsky and Bermann have proposed the follow-
ing heuristic algorithm (KMB) determining (constructing) a
minimum multicast tree [2]:
• for any cohesive, undirected graph N = (V,E) that

includes a set of receiving nodes G, construct a cohe-
sive, undirected graph N1 = (V1, E1) that consists of a
sending node s only and of a set of receiving nodes G
(the paths between the nodes of graph N1 are the least
cost paths in the original graph N ),

• determine a minimum spanning tree T1 for graph G1

(if there are more than one solution, choose just one),
• construct a subgraph GS of graph G by replacing each

edge of the tree T1 with a corresponding path from
graph G,

• determine a minimum spanning tree TS for graph GS

(if there are more then one, choose one),
• construct a Steiner tree TKMB form the tree TS by

removing leaves that do not include receiving nodes.
A good representative for the class of algorithms that

construct a multicast tree with the shortest paths is the
SPT algorithm (Shortest Path Tree). The mode of opera-
tion is based on constructing the shortest paths tree only
for those nodes that are members of the multicast group
(Algorithm 2).
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Figure 1. Histogram of the node outdegree distributions and the illustration of the operation of the algorithm GroupHighDegree for an exemplary Waxman
(a) and Barabási-Albert network (b) (n = 100, m = 15, Dav = 4)

Algorithm 2 Shortest Path Tree
1: SPT(C, s, M )

C – adjacency matrix with costs of links in graph,
s – source node,
M – set of multicast nodes mi ∈ M .

2: for each vertex mi ∈ M do
3: pi ← Dijkstra(C, s,mi)
4: AddPath(pi, T )
5: end for
6: DeleteLeaves(T, M)
7: return T

The above observation makes its possible to propose
a decision mechanism (STA) which chooses a multicast
tree with minimum cost obtained from SPT or PPH that
can work concurrently (Algorithm 3). The STA (Switched
Tree Algorithm) mechanism is based on two well-known
optimization algorithms: SPT (Shortest Path Tree) and PPH
(Pruned Prim Heuristic). The combination of these two
solutions allows us to achieve a better performance than
with the case of each of them working separately. The main
concept of the SPT algorithm is to build a shortest paths tree
between the source node (s) and each of multicast nodes
(mi) using the Dijkstra algorithm [12]. In the last step of
SPT, loops in graphs are removed using the Prim’s algorithm
and nodes with outdegree 1 which are not multicast members
are pruned as well. The STA technique is easy to implement
and very fast.

IV. MULTICAST GROUP MEMBERS DISTRIBUTION

An essential element of the conducted research study
process is a determination of methods for the distribution

Algorithm 3 Switched Tree Algorithm
1: STA(C, s, M )

C – adjacency matrix with costs of links in graph,
s – source node,
M – set of multicast nodes mi ∈ M .

2: TSPT ← SPT(C, s, M )
3: TPPH ← PPH(C, s, M )
4: if cSPT > cPPH then
5: T := TPPH

6: else
7: T := TSTA

8: end if
9: return T

of the multicast group members in a network [28]. Having
in mind various implementations of methods for generating
many network topologies, there is also a need for a wider
mechanism determining receiving nodes in a network by
geographical positioning or one that would be related to the
link and node parameters (for example, the outdegree of the
network). This will allow us to answer the question whether
the way receiving nodes are distributed has any influence on
the quality of multicast trees constructed by algorithms. The
following methods were used in the study:

• GroupRandom method,
A group of receiving nodes M is constructed by a
random choice of m network nodes from among all its
nodes (N ). The source node s is also randomly chosen
from among the number n of nodes in the network.
Apparently, this is the only method that has been used
so far in any research studies [14], [15], [16], [17], [18].
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• GroupRadius method,
Nodes that form a multicast group M and the source
node s are chosen from Nr nodes within a circle with
radius r = dm

2 . This method for creating a group was
presented by the authors in [19]. The method reflects
the geographical distribution of nodes in a real network.

• GroupHighDegree method.
The algorithm used for the purpose determines the out-
degree of the network – the number of outcoming links
from each node of the network i ∈ N – and then sorts
out the nodes in the diminishing order of this outdegree
value. The group {M ∪ s} is constructed from m + 1
of the most-preferred nodes (with the highest number
of links). Figure 1 shows a histogram for the node
outdegree distributions in exemplary (sample) networks
generated by the Waxman and the Barabási-Albert
methods and explains the operation of the algorithm
GroupHighDegree.

The method for the receiving nodes M distribution in
the network has not been addressed and analyzed earlier in
literature.

V. NETWORK TOPOLOGY

A. Generative methods

The Internet is a set of nodes interconnected with links.
This simple definition makes it possible to represent this real
structure as a graph. In fact, the Internet is a set of domains –
a number of grouped nodes (routers) which are under joined
administration and share routing information. The Internet
consists of thousands of domains and autonomous systems
(AS). It is possible to generate those kinds of synthetic
structures reflecting real topologies [20].

In the study, a flat random graph constructed according
to the Waxman method was used [1]. This method defines
the probability of an edge between node u and v as:

P (u, v) = αe
−d
βL (1)

where 0 < α, β ≤ 1, d is an Euclidean distance between the
node u and v, and L =

√
2 is the maximum distance between

two freely selected nodes. An increase in the parameter α
effects in the increase in the number of edges in the graph,
while a decrease of the parameter β increases the ratio of
the long edges against the short ones.

Another method was proposed by Barabasi in [21]. This
model suggests two possible causes for the emergence of
a power law in the frequency of outdegrees in network
topologies: incremental growth and preferential connectivity.
The network growth process consist of incremental addition
of new nodes. Preferential connectivity refers to the tendency
of a new node to connect to existing nodes that are highly
connected or popular. When a node u connects to the

(a) Waxman method

(b) Barabasi method

Figure 2. Visualization of network topologies (Dav=4, n=40)

network, the probability that it connects to a node v (already
belonging to the network) is yielded by:

P (u, v) =
dv∑

k∈V dk
(2)

where dv is the degree of a node belonging to the network, V
is the set of nodes connected to the network, and

∑
k∈V dk is

the sum of the outdegrees of the nodes previously connected.
With the construction of the network models based on

Waxman and Barabasi-Albert method, BRITE (Boston uni-
versity Representative Internet Topology gEnerator) [27]
was used as a tool for generation of realistic topologies. The
application provides a range of network topology models and
appropriate generative methods.

Fig. 2 shows typical topologies generated with the appli-
cation of the Waxman and Barabasi-Albert method.

A network model was adopted in which the nodes were
arranged on a square grid with the size of 1000 × 1000
(Waxman parameters: α = 0.15, β = 0.2). Onto the existing
network of connections, the cost matrix C(u, v) was applied
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(as a adjacency matrix of Euclidean distances between the
nodes).

It was an important element during the simulation process
to maintain a steady average node degree of the graph (for
each of the generated networks) defined as: Dav = 2k

n
(where n is the number of the nodes of the network, k
is the number of the edges) which, in practice, meant the
necessity of maintaining a steady number of edges. In the
implementations, the adopted degree of the graph was 4.

B. Parameters
The efficiency of multicast algorithms depends on the im-

plemented network structure. Thus, it is important to define
the basic parameters that describe the network topology:

mi s dm P
source node (s) multicast nodes (mi)

Figure 3. The explanation of the idea of the group spreading factor εm

(n = 200, Dav = 4)

• hop diameter - is the length of the longest shortest-path
between any two nodes; shortest paths are computed
using hop count metric,

• length diameter - is the length of the longest shortest-
path between any two nodes; shortest paths are com-
puted using the Euclidean distance metric,

• clustering coefficient (γv) of node v is the proportion
of links between the vertices within its neighbourhood
divided by the number of links that could possibly exist
between them [24].
Let Γ(v) be a neighborhood of a vertex v consisting of
the vertices adjacent to v (not including v itself). More
precisely:

γv =
|E(Γ(v))|(

kv

2

) =
|E(Γ(v))|
kv(kv − 1)

(3)

where |E(Γ(v))| is the number of edges in the neigh-
borhood of v and

(
kv

2

)
is the total number of possible

edges between neighborhood nodes.

Let V (1) ⊂ V denote the set of vertices of degree 1.
Therefore [25], [26]:

γ̂ =
1

|V | − |V (1)|
∑

v∈V

γv (4)

• group spreading factor (εm) – describes the arrange-
ment of the multicast group on the plane (Fig. 3). It is
defined as the diameter of the area (dm) containing all
multicast nodes divided by the size of plane (P ) where
all the nodes are situated (1).

εm =
dm

P
, (5)

VI. NUMERICAL RESULTS

In the study, a flat random graph constructed according
to the Waxman [1] and Barabási [21] methods was used
to generate networks topologies to validate the accuracy
of our algorithm. With the construction of the network
models based on the Waxman and the Barabási-Albert
methods, BRITE was used as a tool for generating realistic
topologies. The application provides a range of network
topology models and appropriate generative methods. The
research work was conducted with the application of the
networks generated by the above-mentioned methods that
were appropriately adopted and unified [29], [30], [31],
[32], [33], [35].

The numerical results are divided into three stages. The
first stage of the experiment investigates the efficiency
of STA and other algorithms. The evaluation of the new
constrained algorithm STA and the existing solutions (KMB,
DDMC and SPT) bases on the average cost of multicast
trees.
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Figure 4. Average cost of multicast tree versus the number of multicast
nodes m for Waxman model (n = 200, Dav = 4)

The quality of STA can be observed in Figures 4 and 5.
Regarding fixed network parameters, STA bases mainly on
PPH heuristic that constructs trees with lower costs as
compared to SPT. The convergence of the STA and the KMB
results for large groups occurs in the two examined network
topology models. The multicast group number growth causes
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Table I
VALUE OF THE AVERAGE COST OF MULTICAST TREE CONSTRUCTED BY THE ALGORITHMS WITHOUT CONSTRAINTS FOR DIFFERENT METHODS FOR

DISTRIBUTION OF RECEIVING NODES AND METHODS FOR MODELING NETWORK TOPOLOGY (n = 100, m = 20, Dav = 4)

model multicast group KMB DDMC STA SPT PPH

Waxman

GroupRandom 4732 4739 6442 7252 6651
GroupRadius(0, 2) 5594 5742 6634 6962 7156
GroupRadius(0, 4) 4836 4867 6200 6655 6565
GroupHighDegree 4797 4819 6294 7230 6427

Barabási

GroupRandom 7241 7243 8959 9618 9405
GroupRadius(0, 2) 9058 9463 9902 10273 10409
GroupRadius(0, 4) 7590 7721 8887 9316 9435
GroupHighDegree 7275 7282 8977 10030 9240

Table II
VALUE OF THE AVERAGE COST OF MULTICAST TREE CONSTRUCTED BY THE ALGORITHMS WITHOUT CONSTRAINTS FOR DIFFERENT METHODS OF

DISTRIBUTION OF RECEIVING NODES AND METHODS FOR MODELING NETWORK TOPOLOGY (n = 500, m = 100, Dav = 4)

model multicast group KMB DDMC STA SPT PPH

Waxman

GroupRandom 19998 20022 25814 30286 25854
GroupRadius(0, 2) 28631 29386 34212 36189 34493
GroupRadius(0, 4) 21909 22102 27554 30523 27692
GroupHighDegree 20697 20786 25819 30710 25827

Barabási

GroupRandom 35230 35243 42489 45979 42777
GroupRadius(0, 2) 43884 45891 47781 50420 48006
GroupRadius(0, 4) 36344 36928 42161 44987 42434
GroupHighDegree 35468 35505 42470 48175 42533
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Figure 5. Average cost of multicast tree versus the number of multicast
nodes m for Barabási-Albert model (n = 200, Dav = 4)

a growth in the average cost of multicast trees. The costs
increase linearly.

Beside conventional parameters of simulation, such as the
number of multicast nodes in the network m, we also took
into consideration the group spreading factor (εm) [19]. A
change in this parameter influences the way receiving nodes
are distributed in the implemented network. The influence
of the group spreading factor εm on the average cost of the
multicast tree was examined for fixed values of the network
parameters,(Figures 6 and 7).

In order to choose and mark nodes in the networks
as group members in the area bounded by a circle, the
GroupRadius method was implemented. The number of
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Figure 6. Average cost of multicast tree versus the group spreading factor
εm for Waxman model (n = 200, m = 20, Dav = 4)

network nodes m = 15 is required to constitute the multicast
group in a narrow area (εm = 0.2).

The dependency of group spreading factor is observable
for all the examined algorithms. An increase in the area
bounded by the circle is followed by a decrease in the
average costs of trees constructed by the KMB algorithm. To
be more precise, decreasing the factor εm to the value 0.2
effects in an increase in the costs of trees 60% on average for
the Waxman model (Fig. 6) and 48% for the Barabási-Albert
model (Fig. 7). The proposed STA algorithm is less sensitive
– the difference is 27%. Above the value εm = 0.7, multicast
nodes spread randomly throughout the whole network and
the costs of trees are similar to those obtained by the
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Figure 7. Average cost of multicast tree versus the group spreading factor
εm for Barabási-Albert model (n = 200, m = 20, Dav = 4)

GroupRandom method.
Using the methods proposed in Section IV, a research

study on the influence of these methods on the average costs
of multicast trees was carried out in relation to the following
parameters:
• method of generating network topology (Waxman or

Barabási-Albert methods),
• method for estimation of the costs of links (as the Eu-

clidean distance and randomly chosen from the interval
10 . . . 1, 000),

• change in the scale (linear increase of the number of
network nodes and receiving nodes) – for (n = 100,
m = 20) and (n = 500, m = 100).

The indicated studies make sense mainly for algorithms
without constraints, where the cost metric is the Euclidean
distance, thus being heavily dependant on the distribution of
nodes in the plane. The results of the studies carried out for
link costs represented as Euclidean metrics are presented in
Tables I and II.

Basing on observations related to the influence of the pa-
rameter εm on the costs of obtained trees, the characteristic
values εm = 0.2 and εm = 0.4 were chosen, for which the
above-mentioned costs were respectively the highest and the
lowest [19].

The analysis of the average costs of trees indicates the
existence of the influence of one particular method applied
in the distribution of receiving nodes in the network. De-
pending on the algorithm under scrutiny, the lowest costs
of trees are obtained for the GroupRandom method and the
GroupHighDegree method. The differences in the results for
the same algorithm in relation to the applied method fluc-
tuate within the interval 7–21% (Table I, Waxman model),
whereas the DDMC algorithm is the most sensitive to the
way multicast nodes are distributed (21%), and the least
sensitive is the STA algorithm (7%). It should be also noted
that these differences are maintained at a similar level for
the Barabási-Albert model (10–30%).

Reliability of conducted studies requires an experimental

phase that would take into consideration other network
parameters. For this purpose, the number of nodes in the
network was increased fivefold (n = 500) and the number of
multicast nodes to (m = 100). Similarly to the previous case,
the lowest costs of trees were obtained for the GroupRandom
method and for the GroupHighDegree method. The differ-
ences in the results for the same algorithm in relation to the
applied method fluctuate between 19–46% for the Waxman
model (Table II). The most sensitive for the method of
multicast nodes distribution is the DDMC algorithm (46%),
while the least sensitive is the SPT algorithm (19%). For the
Barabási-Albert model, the results are the lowest (10–30%).

The conclusions of thus conducted study, however, are not
so conclusive and obvious. There is, indeed, a dependency
between the algorithms and the methods for distribution of
receiving nodes, but every analyzed algorithm requires, how-
ever, an individual approach, with such criteria taken into
consideration as: the result of the algorithm (cost of tree or
path), the model used and the network parameters, the num-
ber of receiving nodes, and so on. For example, the lowest
costs of tree are yielded by the DDMC algorithm in networks
with 500 nodes and 100 multicast nodes generated by the
Waxman model with the application of the GroupRandom
method as compared with the GroupRadius(0.2) method
(Table II).

The authors made numerous experiments for different
topologies to develop appropriate research methodology. The
research investigation was conducted for 1,000 networks.
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A similar analysis was made for a cost metric that was
a random value taken from within the interval 10 . . . 1000
(Figs. 8 and 9). The findings show that the algorithms
optimizing cost of trees (KMB and PPH) are more ef-
fective with the application of the GroupRandom and the
GroupHighDegree methods. In turn, the SPT algorithm
yields the lowest costs of trees for the GroupRandom method
and the GroupRadius method with the parameter εm = 0.2.
The above observations are correct and accurate both for the
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Table III
DESCRIPTIVE STATISTICS OF UNCONSTRAINED ALGORITHMS RESULTS FOR 1,000 NETWORKS (n = 200, m = 20, Dav = 4)

model parameter KMB DDMC STA SPT PPH

Waxman

mean value 4731,2 4741,0 7037,8 7471,7 7774,0
minimum value 3275,0 3275,0 4268,0 4473,0 4268,0
maximum value 6436,0 6569,0 10385,0 11817,0 12752,0
standard deviation 527,1 531,9 1012,2 1189,3 1309,0
variation coefficient 0,111 0,112 0,143 0,159 0,168
skewness 0,251 0,241 0,227 0,368 0,262
kurtosis 0,056 0,033 -0,037 -0,038 0,001

Barabási

mean value 7130,1 7134,1 9328,8 9779,9 10260,0
minimum value 4607,0 4607,0 5673,0 5863,0 5673,0
maximum value 10616,0 10616,0 16689,0 19314,0 16689,0
standard deviation 910,1 914,9 1525,2 1690,3 1820,6
variation coefficient 0,127 0,128 0,163 0,172 0,177
skewness 0,388 0,398 0,506 0,627 0,374
kurtosis 0,323 0,331 0,479 0,943 -0,084
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Figure 9. Value of the average cost of multicast tree for different
methods for distribution of receiving nodes and Barabási-Albert model
(n = 100, m = 20, Dav = 4)

Waxman method and for the Barabási-Albert method. The
differences in the costs of trees within the same algorithm
are 8–30%.

The third stage of the research investigation was con-
ducted for 1,000 networks and the costs of the obtained
trees were averaged. The implementation of descriptive
statistics as standard deviation, minimum and maximum
value, variation coefficient, skewness and kurtosis, allows
to confirm the efficacy of this approach (Table III).

The standard deviation is the lowest for the KMB and
the DDMC algorithms. It has a slightly higher value for
the networks generated with the application of the Barabási-
Albert model. The values of the variation coefficient show
that the results of KMB, DDMC and STA are least differ-
entiated. The analysis of the skewness parameter indicates
an asymmetry (positive skew) of the distribution of the
algorithms results. The asymmetry is maximum for the STA
algorithm. In the case of the Waxman model, the distribu-
tions of algorithms results are close to a normal distribution.
The implementation of the Barabási-Albert model leads to

a leptokurtic distribution (similar to gamma distribution).
Kurtosis defines a relative measure of the concentration

and the flatness of the dispersion of the results for costs of
trees. In the case of the Waxman model, the result dispersion
has a shape similar to normal dispersion (mesokurtic). This
observation applies to all algorithms under scrutiny in the
present study. The implementation of the Barabási-Albert
model is followed by large values of kurtosis – the dispersion
graph becomes more slender than that for normal dispersion
(except for the PPH algorithm).

A comparison of the algorithm requires a construction
of confidence intervals for average values. The construc-
tion of confidence intervals makes it possible to examine
whether it is correct to compare the algorithms results only
on the basis of the average obtained from 1,000 results.
The data presented in Table IV are arranged according to
the ascending value of the average cost of trees cT . The
analysis of the ordered data in the table allows us to observe
that also the edges of the confidence intervals for both
generative methods are arranged in the ascending order.
Moreover, except the KMB and DDMC algorithms – for
which the values are comparable, the confidence intervals
of the remaining algorithms do not overlap. For the given
network parameters and algorithm parameters, the following
dependence is then correct:

cKMB ≈ cDDMC < cSTA < cSPT < cPPH . (6)

VII. CONCLUSIONS

The article proposes a novel multicast routing algorithm
without constraints and introduces the group members ar-
rangement as a new parameter for analyzing multicast rout-
ing algorithms finding multicast trees. In the article, the
results of the proposed STA algorithm are compared with
the representative algorithms without constrains.

The article extends the existing methodology for the
evaluation of multicast routing algorithms. Analyzing group
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Table IV
CONFIDENCE INTERVALS FOR AVERAGE VALUES OF COSTS OF TREES FOR GROUP TRANSMISSION CONSTRUCTED BY STUDIED ALGORITHMS WITHOUT

CONSTRAINT FOR 1,000 NETWORKS (n = 200, m = 20, Dav = 4)

algorithm Waxman model Barabási-Albert model
cT − uα

SN√
N

cT cT + uα
SN√

N
cT − uα

SN√
N

cT cT + uα
SN√

N

KMB 4698,53 4731,20 4763,88 7073,68 7130,08 7186,48
DDMC 4708,04 4741,01 4773,98 7077,45 7134,10 7190,75
STA 6975,04 7037,78 7100,51 9234,30 9328,84 9423,37
SPT 7397,94 7471,65 7545,37 9675,09 9779,85 9884,62
PPH 7692,86 7773,99 7855,12 10147,39 10260,24 10373,08

members arrangement constitutes an essential input in the
research methodology. This kind of approach has not been
considered in relevant literature so far. The article examines
unconstrained routing algorithms for multicast connections
emphasizing the quality of the network model (the accuracy
of the illustration of a real Internet topology) and presents
a new proposal.

The research has been conducted by the authors for
several years. Initially, the studies focused on the accuracy
of multicast routing algorithms in relation to the exact
algorithm (MST) and were provided for networks consisting
of several nodes [34]. The next stage of research work eval-
uated the inffuence of the parameters describing graphs (that
represents real topologies) on the costs of trees constructed
by examined algorithms [29], [30]. The studies are unique
because they analyze the algorithms in wide range of net-
work sizes (from several to ten thousand nodes) [31], [33].
Analyses are conducted for networks generated as random
graphs with an implementation of Waxman and Barabási-
Albert method and with an application of Inet heuristic gen-
erator. Separate track of the research analyzed the inffuence
of network topology parameters on the cost of multicast tree
constructed by selected genetic algorithms [35].

The research results show that obtaining of a tree with
the lower cost can be the result of the application of the
generative methods and not only the result of the application
of a more efficient routing algorithm. Although the Barabási-
Albert method returns trees with higher costs, it reflects the
real topology of the Internet in the most accurate way. The
study also shows that the selection of the generative method
should depend on the size of the network (the number of
the nodes) and the size of the multicast group.

Finally, authors have proposed the simulation method-
ology that reflect some network parameters proposed by
authors and examine these parameters influence on the
costs of multicast trees constructed by multicast routing
algorithms.
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