
168

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

Rewards and Risks in P2P Content Delivery

Raimund K. Ege

Northern Illinois University

Dept. of Computer Science

DeKalb, IL

ege@niu.edu

Li Yang

Dept. of Computer Science

University of Tennessee

Chattanooga, TN

Li.Yang@utc.edu

Richard Whittaker

School of Comp. & Info Science

Florida International University

Miami, FL

rwhitt01@cs.fiu.edu

Abstract—The ever increasing speed of access to the

Internet has enabled sharing of data on an unprecedented

scale. Data of all forms and shapes is becoming easily

accessible: large multi-media files are being routinely

downloaded onto a plethora of end user devices. Peer-to-

peer content delivery approaches enable massive scale in

the amount of data volume that can be efficiently delivered.

The openness of delivery demands adaptive and robust

management of intellectual property rights. In this paper

we describe a framework and its implementation to address

the central issues in content delivery: a scalable peer-to-

peer-based content delivery model, paired with an access

control model that balances trust in end users with a risk

analysis to the data provider. Our framework enables data

providers to extract the maximum amount of return, i.e.

value, from making their original content available. Our

implementation architecture provides a protocol to leverage

the greatest amount of reward from the intellectual

property that is released to the Internet.

Keywords-broadband file sharing; peer-to-peer content

delivery; intellectual property rights for multi media

I. INTRODUCTION

Making multimedia content available online has

become a Killer-Application for the Internet. Services

such as iTunes, YouTube, Joost and Hulu are

popularizing delivery of audios and video content to

anybody with a broadband internet connection.

Additionally, virtual communities are emerging (such

as FaceBook, MySpace and Twitter) where users

communicate directly with one another to exchange

information or execute transactions in a peer-to-peer

fashion. These services are currently struggling with

the challenges of securing large-scale distribution. The

dynamism of peer-to-peer communities means that

principals who offer services will meet requests from

unrelated or unknown peers. Peers need to collaborate

and obtain services within environment that is

unfamiliar or even hostile. Therefore, peers have to

manage the risks involved in the collaboration when

prior experience and knowledge about each other are

incomplete. One way to address this uncertainty is to

develop and establish trust among peers. Trust can be

built by either a trusted third party [2] or by

community-based feedback from past experiences [3]

in a self-regulating system. Trust leads naturally to a

decentralized approach to security management that

can scale up in size, but must be balanced with a

measure of risk that is the flip side of trust.

Conventional approaches rely on well-defined

access control models [4, 5] that qualify peers and

determine authorization based on predefined

permissions. In such a complex and collaborative

world, a peer can protect and benefit itself only if it can

respond to new peers and enforce access control by

assigning proper privileges to new peers. The nature of

digital content requires access models that go beyond

checking authorization upon initial access:

authorization variables quickly change in a dynamic

context. The Usage Control Model (UCON) [6] is an

example of a framework to handle continuity of access

decisions and mutability of subject and object

attributes. Authorization decisions are made before an

access, and repeatedly checked during the access. On-

going access may be revoked if security policies are

violated. The more dynamic the situation is the more

likely access will be denied, therefore denying the data

provider any benefit.

The general goal of our work is to address both the

trust in peers which are allowed to participate in the

content delivery process, and quantifying the risk and

169

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

reward garnered from releasing data in to the network.

We investigate the design of a novel approach to

access control. If successful, this approach will offer

significant benefits to emerging peer-to-peer

applications. It will also benefit collaboration over the

existing Internet when the identities and intentions of

parties are uncertain. We integrate trust evaluation for

usage control with an analysis of risk/reward.

Underlying our framework is a formal computational

model of trust and access control that will provide a

formal basis to interface authentication with

authorization.

Our paper is organized as follows; the next section

will explain our approach to peer-to-peer content

delivery. Section III will elaborate on how the data

source and its peers can quantify gain from

participating in the content delivery. Section IV

explains our risk/reward model that enables a data

source to initially decide on whether to share the

content and keep some leverage after its release.

Section V gives an overview of our implementation

framework, and Section VI details the prototype

implementation of our framework that employs the

fairly new Stream Control Transmission Protocol

(SCTP) which improves over the current stand-bearers

Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP) for multi-stream session-

oriented delivery of large multi-media files over fast

networks. The paper concludes with our perspective on

how modern content delivery approaches will usher in

a new generation of Internet applications. An earlier

version of this paper was presented at the Fourth

International Conference on Systems (ICONS 2009),

Cancun, Mexico, March 2009 [1].

II. PEER to PEER CONTENT DELIVERY

Peer-to-peer (P2P) delivery of multimedia aims to

deliver multi-media content from a source to a large

number of clients. For our framework, we assume that

the content comes into existence at a source. A simple

example of creating such multimedia might be a video

clip taken with a camera and a microphone, or more

likely video captured via a cell phone camera, and then

transferred to the source. Likewise the client consumes

the content, e.g. by displaying it on a computing device

monitor, which again might be a cell phone screen

watching a YouTube video. We further assume that

there is just one original source, but that there are many

clients that want to receive the data. The clients value

their viewing experience, and our goal is to reward the

source for making the video available.

In a P2P delivery approach, each client participates

in the further delivery of the content. Each client

makes part or all of the original content available to

further clients. The clients become peers in a peer-to-

peer delivery model. Such an approach is specifically

geared towards being able to scale effortlessly to

support millions of clients without prior notice, i.e. be

able to handle a “mob-like” behavior of the clients.

The exact details of delivery may depend on the

nature of the source data: for example, video data is

made available at a preset quality using a variable-rate

video encoder. The source data stream is divided into

fixed length sequential frames: each frame is identified

by its frame number. Clients request frames in

sequence, receive the frame and reassemble the video

stream which is then displayed using a suitable video

decoder and display utility. The video stream is

encoded in such a fashion that missing frames don’t

prevent a resulting video to be shown, but rather a

video of lesser bit-rate encoding, i.e. quality, will result

[7]. We explicitly allow the video stream to be quite

malleable, i.e. the quality of delivery need not be

constant and there is no harm if extra frames find their

way into the stream. It is actually a key element of our

approach that the stream can be enriched as part of the

delivery process.

In our approach, multi-media sources are advertised

and made available via a central tracking service: at

first, this tracker only knows the network location of

the server. Clients that want to access the source do so

via the tracker: they contact the tracker, which will

respond with the location of the source. The tracker

will also remember (or track) the clients as potential

new sources of the data. Subsequent client requests to

the tracker are answered with all known locations of

sources: the original and the known client. Clients that

receive locations of sources from the tracker issue

frame requests immediately to all sources. As the

sources delivery frames to the clients, the client stores

them. The client then assumes a server role and also

answers requests for frames that they have received

already, which will enable a cascading effect, which

establishes a P2P network where each client is a peer.

Every client constantly monitors the rate of response it

gets from the sources and adjusts its connections to the

sources from which the highest throughput rate can be

achieved.

170

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

Figure 1 shows an example snapshot of a content

delivery network with one source, one tracker and

three clients. The source is where the video data is

produced, encoded and made available. The tracker

knows the network location of the source. Tracker and

source maintain a secure connection. Clients connect to

the tracker first and then maintain sessions for the

duration of the download: all 3 clients maintain an

active connection to the tracker. The tracker informs

the client which source to download from: Client 1 is

fed directly from the source; client 2 joined somewhat

later and is now being served from the source and

client 1; client 3 joined last and is being served from

client 1 and client 2. In this example, two of the clients

are also serving as intermediaries on the delivery path

from original source to ultimate client.

III. UNITS of RISK and REWARD

We assume that the data made available at the

source has value. Releasing the data to the Internet

carries potential for reaping some of the value, but also

carries the risk that the data will be consumed without

rewarding the original source. There is also a cost

associated with releasing the data, i.e. storage and

transmission cost. For example, consider a typical

“viral” video found on YouTube.com: the video is

uploaded onto YouTube.com for free, stored and

transmitted by YouTube.com and viewed by a large

audience. The only entity that is getting rewarded is

YouTube.com, which will accompany the video

presentation with paid advertising. The person that

took the video and transferred it to YouTube.com has

no reward: the only benefit that the original source of

the video gets is notoriety.

In order to provide a model or framework to asses

risk and reward, we need to quantize aspects of the

information interchange between the original source,

the transmitting medium and the final consumer of the

data. In a traditional fee for service model the reward

“R” to the source is the fee “F” paid by the consumer

minus the cost “D” of delivery:

𝑅 = 𝐹 – 𝐷

The cost of delivery “D” consist of the storage cost

at the server, and the cost of feeding it into the Internet.

In the case of YouTube, considerable cost is incurred

for providing the necessary server network and their

bandwidth to the Internet. YouTube recovers that cost

by adding paid advertising on the source web page as

well as adding paid advertising onto the video stream.

YouTube’s business model recognizes that these paid

advertisings represent significant added value. As

soon as we recognize that the value gained is not an

insignificant amount, the focus of the formula shifts

from providing value to the original data source to the

reward that can be gained by the transmitter. If we

quantify the advertising reward as “A” the formula

now becomes:

𝑅 = 𝐹 – (𝐷 – 𝐴)

Even in this simplest form, we recognize that “A” has

the potential to outweigh “D” and therefore reduce the

need for “F”. As YouTube recognizes, the reward lies

in “A”, which is paid advertising that accompanies the

video.

In our prior work we focused on mediation

frameworks that capture the mutative nature of data

delivery in the Internet [8, 9]. As data travels from a

source to a client on lengthy path, each node in the

path may act as mediator. A mediator transforms data

source

tracker

client 2

client 1

client 3

Figure 1. Content delivery network

171

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

from an input perspective to an output perspective. In

the simplest scenario, the data that is fed into the

delivery network by the source and is received by the

ultimate client unchanged: i.e. each mediator just

passes its input data along as output data. However,

that is not the necessary scenario anymore: the great

variety of client devices already necessitate that the

data is transformed to enhance the client’s viewing

experience. We apply this mediation approach to each

peer on the path from source to client. Each peer may

serve as a mediator that may transform the content

stream in some fashion. Our implementation employs

the stream control transmission protocol (SCTP) which

allows multi-media to be delivered in multiple

concurrent streams. All a peer needs to do is add an

additional stream for a video overlay message to the

content as it passes through.

Figure 2 shows a sample path from the content

source to its consumer. The multi-media source is fed

as a multi stream into the content delivery path. Each

peer on the path receives a number of streams and will

do its best to deliver the streams to the next peer. “Peer

1” is an example of a peer that copies its input

faithfully to its output. “Peer 2” shows a peer that adds

an additional overlay stream to its output. Peer 3 is an

example of a peer that filters out a stream to make its

output more suitable for a specific target device.

The formula for reward can now be extended into

the P2P content delivery domain, where a large number

of peers serve as the transmission/storage medium.

Assuming “n” number of peers that participate and

potentially add value the formula is now:

𝑅 = 𝐹 – (𝐷𝑖

𝑛

𝑖=1

− 𝐴𝑖)

𝐷𝑖 and 𝐴𝑖 are now the delivery cost and value incurred

at each peer that participates in the P2P content

delivery. The reward available to the data originator is

potentially very large given the number of peers that be

involved. A second dimension is opened up when we

consider that the data will be consumed by many

clients, so that the ultimate reward formula is the sum

of all rewards gained from each client “c”:

𝑅𝑐 = 𝐹𝑐 – (𝐷𝑖

𝑛

𝑖=1

− 𝐴𝑖)

Whether or not the data originator will gain any reward

depends on whether the client pays fee “F” and

whether the peers are willing to share their gain from

the added value. In a scenario where clients and peers

are authenticated and the release of the data is

predicated by a contractual agreement, the source will

reap the complete benefit.

 In our model we quantify the certainty of whether

the client and peers will remit their gain to the source

with a value of trust “T”: T represents the trust in the

client that consume that data, T represents the trust in

each peer that participates in the content delivery:

𝑅 = 𝐹𝑐 − (𝐷𝑖

𝑛

𝑖=1

− 𝐴𝑖)

𝑐

 ∗ 𝑇𝑐

The formula captures the ultimate truth that no reward

will be materialized when there is no arrangement for

trust.

Peer 2

Peer 1

Peer 3

source

client

Figure 2. Varying peer behavior

added value

172

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

IV. TRUST MODEL

It comes down to the question whether to accept a

new peer into the content delivery network. For every

request from a peer a measure of trust, i.e. a trust value,

must be computed. The trust is evaluated based on both

actual observations and recommendations from

referees. Observations are based on previous

interactions with the peer. Recommendations may

include signed trust-assertions from other principals, or

a list of referees that can be contacted for

recommendations. The trust value, calculated from

observations and recommendations, is a value within

the [0, 1] interval evaluated for each peer that requests

to be part of the content delivery.

The trust is assumed to follow a beta distribution,

and is represented by the two parameters of the beta

distribution. The beta distribution, a conjugate prior, is

chosen because of its reproducibility property under

the Bayesian framework. When a conjugate prior is

multiplied with the likelihood function, it gives a

posterior probability having the same functional form

as the prior, thus allowing the posterior to be used as a

prior in further computations. For a given requester, we

define a sequence of variables 𝑇1, 𝑇2 ,…, 𝑇𝑘 to

characterize the trust at sampling time k.

For instance, at 𝑘𝑡𝑕 sampling time, 𝑁𝑘 observations

were collected about the peer. Let 𝐺𝑘 be the number of

normal requests or behaviors. If there is no history of

malicious behavior by the peer associated with a

request (i.e., neither malware nor spyware were

observed), the request is deemed as normal behavior.

Now suppose a prior probability density function

(pdf) of trust 𝑇𝑘−1, denoted by 𝑓𝑘−1(t), is known about

the peer. Then the posterior pdf of trust for this peer

(given 𝑁𝑘 = n and 𝐺𝑘 = g) can be obtained from Bayes

theorem [10, 11] as follows:

𝑓𝑘 𝑡 =
𝑓𝑘 𝑔! 𝑡, 𝑛 𝑓𝑘−1 𝑡

 𝑓(
1

0
𝑔! 𝑡, 𝑛) 𝑓𝑘−1 𝑡 𝑑𝑡

where 𝑓𝑘 𝑔! 𝑡, 𝑛 is called the likelihood function and

has the form of a binomial distribution:

𝑓𝑘 𝑔! 𝑡, 𝑛 =
𝑛

𝑔
 𝑡𝑔(1 − 𝑡)𝑛−𝑔

The prior pdf 𝑓𝑘−1(t) summarizes what is known about

the distribution of 𝑇𝑘−1. Under the assumption that

prior pdf 𝑓𝑘−1(t) follows a beta distribution, it can be

shown that the posterior pdf also follows a beta

distribution.

 In particular, if 𝑓𝑘−1 𝑡 ~ 𝑏𝑒𝑡𝑎(𝛼𝑘−1, 𝛽𝑘−1), we have

𝑓𝑘 𝑡 ~ 𝑏𝑒𝑡𝑎(𝛼𝑘−1 + 𝑔𝑘 , 𝛽𝑘−1 + 𝑛𝑘 − 𝑔𝑘) given that

𝑁𝑘 = 𝑛𝑘 and 𝐺𝑘 = 𝑔𝑘 . Therefore, 𝑓𝑘 𝑡 is characterized

by the parameters 𝛼𝑘 and 𝛽𝑘 defined recursively as

follows: 𝛼𝑘 = 𝛼𝑘−1 + 𝑔𝑘 and 𝛽𝑘 = 𝛽𝑘−1 + 𝑛𝑘 − 𝑔𝑘 .

Initially, there is no knowledge about the peer: we

assume that trust values follow a uniform distribution

of the interval [0,1], i.e. 𝑓𝑜 (t) ~ 𝑈 0,1 = 𝑏𝑒𝑡𝑎 1,1

which indicates our ignorance about the new peer’s

behavior at time 0. Time 0 is when the peer first

becomes known to the content delivery network.

 At time k, trust value 𝑇𝑐 for a given peer c is now:

𝑇𝑐 =
𝛼𝑘

𝛼𝑘 + 𝛽𝑘

There are two alternative ways to update trust

values. One is to update trust values based on all

known observations and recommendations. The other

ways is to update trust values based on recent

information only. The advantage of the latter one is

two folds: reduce the computation complexity and

detect a change in the peer’s behaviors early. For

instance, if a peer has been misbehaving for a short

time period, then recent observations together with

actual reports are more reflective of the behavior

change than would be if trust was based on all

available observations.

Meanwhile, recommendations from referees bring

in new information 𝑇𝑟𝑞 on the peer’s behaviors. We

combine the new data 𝑇𝑟𝑞 with our own observation

𝑇𝑜𝑞 on the condition that the referee is highly trusted or

the recommendation passes the deviation test. The

deviation test is to decide whether a recommendation is

trustworthy or not. Recommendation R is learned from

past interactions the referee had with the requestor.

Trustworthiness of a recommendation also follows a

beta distribution. 𝑓𝑘(t) is adjusted by recommendations:

𝑇𝑜𝑞 ∶= 𝑇𝑜𝑞 + 𝜇𝑇𝑟𝑞 where 𝑇𝑜𝑞 is trust we have in the

peer, 𝑇𝑟𝑞 is trust that the referee has in the peer, and µ

is the trust in the referee’s recommendations.

In summary, when it comes down to the question

whether to accept a given peer into the content delivery

network, we now have a tool to assess the potential

gain balanced by the risk posed by the new peer:

𝑅 = 𝐹𝑐 − (𝐷𝑖

𝑛

𝑖=1

− 𝐴𝑖)

𝑐

 ∗ 𝑇𝑐

Our model correlates the reward gained from

accepting the new peer with the risk posed by the new

peer and to enable an informed decision.

173

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

V. IMPLEMENTATION FRAMEWORK

Peer-to-peer networks are open by definition. While

being open, ready to give access, our BitTorrent-style

of delivery uses a tracker approach. The tracker keeps

information that is global to the data exchange and can

be the place to gather and disseminate control

information. Each BT-style distribution of original

content requires at least one tracker. Additional

trackers can easily be established. The first and

subsequent trackers need to carry trust with the original

data source. If there is more than one tracker, we use a

public key infrastructure approach[12] to authenticate

and certify each tracker. The number of trackers

needed is small and will pose little overhead to our

model.

The tracker is the location where the decision on

which peers may participate in the content delivery is

made. While it may seem that the original source

should be the decision maker, for the purpose of our

model the original source is assumed to have delegated

this authority to the tracker(s).

Our framework therefore features 3 types of

participants:

1. tracker, where all information on the current status

of the content delivery network is maintained and

all access decisions are made.

2. client, where the consumption of the data occurs.

3. source, where the data is available for further

dissemination. The original source is the first

source. Clients that have downloaded and

consumed the data will immediately become new

sources.

What we called “peer” in our discussion so far, starts

out by requesting access from the tracker, then

becomes a client and ultimately a new source for that

data that is being tracked and access-controlled by the

tracker(s).

A. Client

The key to a smooth scaling of this ad-hoc p2p

network is the algorithm used by the client to request

frames from a source (either the original source or

another client). A client consists of three processes:

1) a process to communicate with the tracker. The

client initiates the negotiation with the tracker to

enable the tracker’s decision on whether the peer

is admitted into the content delivery network.

Upon success, the tracker informs the client which

sources the client should use, and the client will

update the tracker on its success in downloading

the source data;

2) a process to request data from the given sources.

Since the original data may be very large and exist

in multiple fragments. For example, video data is

typically made available as a series of frames.

Fragments or frames may be requested from

multiple sources. The bittorrent protocol uses

algorithms to determine which sources are most

likely to yield the best throughput; and

3) a process to receive frames/fragments from

sources and to assemble them into usable data.

All three processes share the following data:

 a list of recommended sources to download from.

This list is originally received from the tracker, but

can be modified by the client based on download

success;

 a list of backup servers to download from,

received from the tracker, but the client can move

servers from this list to the list of recommended

servers based on the client’s download success;

 current bandwidth utilization at the client.

The client continuously requests fragment/frame

sequences until the end of the transmission is reached.

It requests a fragment/frame sequences from each

available source. The “receive” process runs in a

continuous loop that accepts frames from servers.

While frames within a sequence will arrive in the

correct order the receiving process still needs to order

the frame sequences number. The process also records

which server delivered the frames.

The most vital process in the client is its

communication with the tracker. At first, the

communication focuses on qualifying the client for

participation the content delivery network. During the

ongoing download, the communication is meant to

validate the client’s continued credentials. Since trust

in the peer is calculated on a continuing basis, the

client needs to be in constant communication with the

tracker. No lapses in the continuous communication

are allowed.

B. Source

A peer that is admitted into the content delivery

network will operate initially as a client. As soon as

sufficient data has been downloaded, the tracker will

determine whether the client can also serve as source

for further downloads. The decision depends on the

amount of data the client holds, and which portions of

174

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

the original data are already collected in the client.

Once the tracker determines that the client can serve as

source, further negotiation is necessary to assess which

added values the new source will contribute to the

calculation of reward:

𝑅 = 𝐹𝑐 − (𝐷𝑖

𝑛

𝑖=1

− 𝐴𝑖)

𝑐

 ∗ 𝑇𝑐

The tracker needs to know the values of “D” and “A”

that this new source will incur. “D” is the cost of

transmission and storage that the new source will have

to pay, whereas “A” is the added value that the new

source might be able to realize by being part of the

delivery network. Based on the outcome of the

negotiation with the tracker, the new source will then

serve as a new mediator for the original data. The

higher the trust “T” is that the tracker places onto the

new source, the higher to overall reward will become

for the original data owner. However, even a smaller

amount of trust will realize an additional gain for the

original source. In addition, ongoing monitoring of

downloading peers must be maintained.

C. Tracker

The core of the content delivery model is the tracker.

While the tracker might initially be a single unit, it can

easily be duplicated, as long as a strong trust

relationship is maintained between the trackers, and

continuous exchange of peer information is

maintained.

The tracker is first enabled by the original source

of the data content. The tracker knows the location of

the original/first source. The tracker starts by

initializing its database of peers. The initial state of

peer database can be augmented by historical data

and/or a distributed-hash-table style if control data

dissemination.

Peers that wish to participate in the content

delivery must first locate the tracker. Public directories

are the usual places where trackers are listed. Search

engines exist for the sole purpose of publicizing

content that is available for download.

A peer will start by establishing a connection to a

tracker. The tracker will consider the request from a

new peer and gather the necessary data on the trust in

the new peer. The tracker will seek information to

establish the peer’s trust value:

𝑇𝑐 =
𝛼𝑘

𝛼𝑘 + 𝛽𝑘

If the peer is new and not yet listed in the tracker(s)

database, then a new entry is created. The tracker will

also determine the new peer’s contribution to the

reward formula. The peer will contribute a value “D”

and “A”, to reflect the additional cost and added value.

The tracker is the location where the determination is

made whether the gain possible from admitting the

new peer outweighs the risk of releasing the data

content to an untrusted peer. Only if the overall reward

formula shows a potential gain, then is the new peer

accepted. Initially, the peer is admitted as client. As the

peer accumulates downloadable volume, the tracker

may elevate the status to create a new source that is

allowed to provide new added content.

VI. PROTOTYPE IMPLEMENTATION

Our current prototype is implemented using the

Java programming language. Since we are using the

newly standardized SCTP protocol, we require the use

of the OpenJDK version 7 [13] which is currently

undergoing beta evaluation. To enable truly large

numbers of truly large frames in our multimedia

content delivery network, we keep all elements of the

implementation in the 64bit space. Unfortunately 64bit

implementations of SCTP are not yet standard within

the Microsoft Windows family of operating system, so

we are currently limited to running our prototype

elements on Linux 64bit operating systems that

provide direct kernel support for the new protocol via

the lksctp [14] library.

SCTP [15] is a Transport Layer protocol, serving

in a similar role as the popular TCP and UDP

protocols. It provides some of the same service features

of both, ensuring reliable, in-sequence transport of

messages with congestion control.

We chose SCTP because of its ability to delivery

multimedia in multiple streams. Once a client has

established a SCTP association with a server, packages

can be exchanged with high speed and low latency.

Each association can support multiple streams, where

the packages that are sent within one stream are

guaranteed to arrive in sequence. Each source can

divide the original video stream into set of streams

meant to be displayed in an overlay fashion. Streams

can be arranged in a way that the more streams are

fully received by a client, the better the viewing quality

will be. When sending a packet over a SCTP channel

we need to provide an instance of the MessageInfo

class, which specifies which stream the packet belongs

to. The first stream is used to deliver a basic low

quality version of the video stream. The second and

consecutive streams will carry frames that are overlaid

onto the primary stream for the purpose of increasing

175

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

the quality. In our framework we also use the

additional streams to carry content that is “added

value”, such as advertising messages or identifying

logos. The ultimate client that displays the content to a

user will combine all streams into one viewing

experience.

The second feature of SCTP we use is its new

class “SctpMultiChannel” which can establish a one-

to-many association for a single server to multiple

clients. The SctpMultiChannel is able to recognize

which client is sending a request and enables that the

response is sent to that exact same client. This is much

more efficient than a traditional “server socket” which

for each incoming request spawns a subprocess with its

own socket to serve the client. Figure 3 shows the Java

source code where an incoming request is received.

Each packet that is received on the channel carries a

MessageInfo object which contains information on the

actual client that is the actual other end point of this

association. The Java code on line 06 retrieves the

“association” identity from the incoming message

“info” instance. The association is then used to send

the response via the same SctpMultiChannel instance

but only to the actual client that had requested the

frames. The code on line 17 shows that a new outgoing

message info instance is created for the same

“association” that carried the incoming request. The

message info instance is then used to send the response

packet to the client. The code to receive

SctpMultiChannel packets is logically similar to any

UPD or TCP style of socket receive programming.

Figure 4 shows a sample.

01 SocketAddress socketAddress = new InetSocketAddress(port);

02 channel = SctpMultiChannel.open().bind(socketAddress);

03 MessageInfo info;

04 while ((info = channel.receive(bb, null, null)) != null) {

05 // determine requestor

06 Association association = info.association();

07 // determine which frame range

08 bb.flip();

09 int fromFrame = bb.getInt();

10 int toFrame = bb.getInt();

11 // send frames to requestor

12 for (int i=fromFrame; i<= toFrame; i++) {

13 bb.clear();

14 bb.putInt(i);

15 bb.put(framePool.getFrame(i));

16 bb.flip();

17 channel.send(bb,

 MessageInfo.createOutgoing(association, null,0));

18 }

19 }

Figure 3. SctpMultiChannel maintains one-to-many association

176

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

The three major components of the framework are

implemented as “SourceMain”, “TrackerMain” and

“ClientMain”, which are composed from classes that

implement the core behavior of maintaining

communication sessions, accepting requests for frames

and delivering them, and requesting and receiving

frames. The major classes are FrameRequestor and

FrameServer. The original source starts out as the sole

instance of FrameServer. The first client starts out as

the sole instance of FrameRequestor. As the client

accumulates frames it then also instantiates a

FrameServer that is able to receive requests from other

clients. A client that contains both a FrameRequestor

and FrameServer instance becomes a true peer in the

P2P content delivery framework.

In summary, tracker, source and client together

contribute to build a highly efficient delivery network.

VII. CONCLUSION

In this paper we have described a model and

framework for a new generation of content delivery

networks. Our framework is designed enable content

originators to assess the potential reward from

distributing the content to the Internet. The reward is

quantified as the value added at each peer in the

content delivery network and gauged relative to the

actual cost incurred in data delivery but also correlated

to the risk that such open delivery poses. We described

an implementation architecture that follows a

bittorrent-style of P2P network, where a tracker

disseminates information on which sources are

available to download from. This information is

constantly updated and communicated to new clients.

New clients join the content delivery network and

become new sources for new clients to download from.

Such P2P content delivery has great potential to enable

large scale delivery of multimedia content.

Consider the scenario we described earlier in the

paper: a typical “viral” video found on YouTube.com:

the video is uploaded onto YouTube.com for free,

stored and transmitted by YouTube.com and viewed by

a large audience. The only entity that is getting a

reward is YouTube.com, which will accompany the

video presentation with paid advertising. The only

benefit that the original source of the video gets is

notoriety.

Using our model, the original data owner can

select other venues to make the video available via a

peer-to-peer approach. The selection on who will

participate can be based on how much each peer

contributes in terms of reward but also risk. Peers will

have an interest in being part of the delivery network,

much like YouTube.com has recognized its value.

Peers might even add their own value to the delivery

and share the proceeds with the original source.

Whereas in the YouTube.com approach the reward

is only reaped by one, and the original source has

shouldered all the risk, i.e. lost all reward from the

content, our model will enable a more equitable

mechanism for sharing the cost and reward. Our model

might just enable a new and truly openness of content

delivery via the Internet.

01 SocketAddress socketAddress =

 new InetSocketAddress(peer.address, peer.port);

02 SctpChannel channel = SctpChannel.open(socketAddress, 1, 1);

03 // send requested frame range to peer

04 ByteBuffer byteBuffer = ByteBuffer.allocate(128);

05 byteBuffer.putInt(fromFrame);

06 byteBuffer.putInt(toFrame);

07 byteBuffer.flip();

08 channel.send(byteBuffer, MessageInfo.createOutgoing(null, 0));

09 // here is where we read response

10 byteBuffer = ByteBuffer.allocate(64000);

11 while ((channel.receive(byteBuffer, null, null)) != null) {

12 byteBuffer.flip();

13 int frame = byteBuffer.getInt();

14 System.out.print("Message received: " + frame);

15 …

Figure 4. Packets from SctpMultiChannel being received by client

177

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

REFERENCES

[1] Raimund K. Ege, Li Yang, Richard Whittaker. Extracting

Value from P2P Content Delivery. Proceedings of the Fourth

International Conference on Systems (ICONS 2009), pages

102-108 Cancun, Mexico, March 2009.

[2] Y. Atif. Building trust in E-commerce. IEEE Internet

Computing, 6(1):18–24, 2002.

[3] P. Resnick, K. Kuwabara, R. Zeckhauser, and E.

Friedman. Reputation systems. Communications of the

ACM, 43(12):45–48, 2000.

[4] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A

logical framework for reasoning about access control models.

In SACMAT ’01: Proceedings of the sixth ACM symposium

on Access control models and technologies, pages 41–52,

New York, NY, USA, 2001.

[5] S. Jajodia, P. Samarati, M. L. Sapino, and V. S.

Subrahmanian. Flexible support for multiple access control

policies. ACM Transaction Database System, 26(2):214–260,

2001.

[6] J. Park and R. Sandhu. The UCON usage control model.

ACM Transaction Information System Security, 7(1):128–

174, 2004.

[7] C. Wu, Baochun Li. R-Stream: Resilient peer-to-peer

streaming with rateless codes. In Proceedings of the 13th

ACM International Conference on Multimedia, pages 307-

310, Singapore, 2005.

[8] R. Whittaker, G. Argote-Garcia, P. Clarke, R. Ege,

Optimizing Secure Collaboration Transactions for Modern

Information Systems, Proceedings of the Third International

Conference on Systems (ICONS 2008), pages 62-68,

Cancun, Mexico, 2008.

[9] R. K. Ege, L. Yang, Q. Kharma, and X. Ni. Three-layered

mediator architecture based on dht. Proceedings of the 7th

International Symposium on Parallel Architectures,

Algorithms, and Networks (I-SPAN 2004), Hong Kong,

SAR, China. IEEE Computer Society, pages 317–318, 2004.

[10] L. Yang, R. Ege, Integrating Trust Management into

Usage Control in P2P Multimedia Delivery, Proceedings of

Twentieth International Conference on Software Engineering

and Knowledge Engineering (SEKE'08), pages 411-416,

Redwood City, CA, 2008.

[11] A. Papoulis. Probability, Random Variables, and

Stochastic Processes. McGraw-Hill, New York, 1991.

[12] Gutmann, P., 1999. The Design of a Cryptographic

Security Architecture, Proceedings of the 8th USENIX

Security Symposium, pages 153-168, Washington, D.C.,

1999.

 [13] java.net – The Source for Java Technology

Collaboration, The JDK 7 Project, http://jdk7.dev.java.net.

[accessed September 22, 2009]

[14] The Linux Kernel Stream Control Transmission

Protocol (lksctp), a SourceForge project to provide SCTP for

the Linux kernel, http://lksctp.sourceforge.net/. [accessed

September 22, 2009]

 [15] R. Stewart (ed.), Stream Control Transmission Protocol,

Request for Comments: 4960, IETF Network Working

Group, September 2007, http://tools.ietf.org/html/rfc4960.

[accessed September 22, 2009]

