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Abstract

A graph-based method is described for searching and
ranking clusters of polyhedra in large crystallographic
databases. It is shown how topologically equivalent sub-
structures can be determined for a given target cluster
based upon a graph representation of polyhedral networks.
A mathematical modeling of geometric embeddings of poly-
hedra graphs is provided which can be used to define geo-
metric similarity of polyhedral clusters. For a special kind
of similarity, an algorithm for solving the problem of ab-
solute orientation is applied in order to rank topologically
equivalent clusters appropriately.
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1 Introduction

In recent years, large databases have been built in organic
as well as in inorganic chemistry [2], [3]. These systems
offer query facilities for searching compounds given publi-
cation data, kinds of atoms, symmetry information, etc. For
databases storing information on organic and metal-organic
crystal structures, it is also possible to search for certain
patterns of combinations of atoms [4]. Similarity searching
in general has received considerable attention in the field of
molecular structures modeled as simple undirected graphs
[5]. Rigid substructures can be distinguished and used to
build indexes for fast search.

At present, such a kind of searching at the level of
substructures is not offered for inorganic crystallographic
databases. Whereas for organic compounds, search can be
built upon a set of substructures of reasonable size this ap-
proach is less meaningful for inorganic compounds. Here a
large variety of chemical elements and patterns can be ob-
served. The symmetry is generally higher than in organic
and many inorganic molecules leading to a rich diversity
of geometric configurations. Local arrangements of atoms
play an important role for the description and understanding

of structures.
In order to deal with this situation, an approach has been

presented in [6] which is based upon a description of inor-
ganic crystal structures at the level of coordination polyhe-
dra. Infinite networks formed by connections of polyhedra
can be represented by finite periodic graphs. This model-
ing allows to build an indexation of polyhedral networks by
chains, which can be used for the efficient determination of
topologically equivalent substructures. These structures can
have a quite different geometry. Hence a method is needed
to check for geometric similarity.

It has been argued that to determine geometric transfor-
mations first and then to test for preservation of topology is
more efficient in connection with geometric graph isomor-
phism [7]. However, when using rotations, translations, and
scaling to investigate geometric isomorphism the problem
arises that substructures with great similarity up to a sharp
difference at a single position cannot be found in principle.

In order to be flexible with respect to the definition of
similarity and to allow the user to decide which differences
in the geometry are tolerable, a two-step approach for deter-
mining similar structures is applied. In the first step, all sub-
structures in a given set of model structures are determined,
which are candidates for the result because they are topolog-
ically equivalent to the given search structure. By taking the
symmetries of structures into account, the set of candidates
can be reduced to symmetrically non-equivalent substruc-
tures. In the second step, geometric similarity is checked
for all candidates resulting in a ranking. This ranking can
be used for presenting the search results. Furthermore, the
concrete values of the similarity test provide information
about the relationship between the structures.

This paper is an extended version of [1]. It is organized
as follows. We start with describing some methods for de-
termining coordination polyhedra as they are implemented
in our system. Then we review the graph representation
of clusters of polyhedra and the definition of topological
equivalence. We discuss some properties of the ordered
face representation of polyhedra and show how the embed-
ding of subgraphs in model graphs can be done quite effi-



193

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

ciently in many cases. In the fourth section, the problem of
geometric similarity is discussed more generally. A mod-
eling of polyhedral clusters as joint structures is developed
and some forms of similarity based upon this modeling are
proposed. In Section 5, for one such form which is based
upon point sets the implementation in our system POLY-
SEARCH is described and some results are presented. We
conclude with remarks concerning the usage of the system
and future work.

2 Graph representation and topological
equivalence of polyhedral clusters

Graphs are often used to describe structural aspects of
chemical compounds. In this section we show how the
bonding between atoms in crystals can be represented by
special forms of labeled graphs.

2.1 Coordination polyhedra

Inorganic crystal structures are often modeled using co-
ordination polyhedra as components [8]. The vertices of
these convex polyhedra represent the atoms which are con-
sidered as ligands of a fixed central atom. In case of small
sets of ligands and regular forms (e.g. tetrahedra in sili-
cates) the determination of coordination polyhedra is rather
straightforward. If the number of ligands and their distance
to the central atom grows, polyhedra may become deformed
and their determination is less obvious. A generally appli-
cable formal definition of coordination polyhedra in crys-
tal structures seems to be impossible. It is therefore ad-
visable to apply different methods for determining coordi-
nation polyhedra and to have a closer look at the results
if they show differences. The following methods seem to
be suitable into that regard and are offered by our system
POLYSEARCH [9]:
- Search within a given maximal distance.
All atoms within the given distance are considered as lig-
ands. It is checked whether they determine a convex poly-
hedron.
- Determination of the maximal convex hull.
A convex hull algorithm is used in order to determine the
coordination polyhedron (the gift wrapping algorithm [10]
is appropriate since the number of vertices of coordination
polyhedra is small).
- Determination of the maximal convex hull restricted by a
given number of atoms.
The convex hull algorithm stops when the given number of
atoms is reached.
- Search for a polyhedron with a specified number n of lig-
ands.
Sets of n atoms around the central atom are built and
checked for convexity. Atoms not contained in such a set

may not have a distance to the central atom smaller than the
distance to the central atom of any atom of the set.
- Search for a maximal gap (linear).
Circumscribing spheres are defined by specifying an upper
limit ǫ for the differences between the distances of neigh-
bouring atoms to the central atom. Atomsa, a′ belong to
the same sphere if there is a sequencea = a1, ...., an = a′

such that the distances ofai andai+1 to the central atom are
less than or equal toǫ for i = 1, ..., n − 1. A gap between
two spheresS, S′ with S′ circumscribingS is the difference
between the minimal distance of an atom inS′ and the max-
imal distance of an atom inS. The gap∆ betweenS and
S′ is maximal if all gaps between spheres circumscribed by
S and the gap betweenS′ and the next sphere are smaller
than∆.
- Search for a maximal gap (volume).
A similar proceeding as in the linear case is applied. In-
stead of the differences of distances the differences of the
volumes of the spheres determined by the gaps are consid-
ered.

The linear gap method is often used in the literature
[11] and applied in systems such as Pearson’s Crystal Data
[12] for determining coordination polyhedra. Because of
problems which may arise in determining the maximal gap,
Pearson’s Crystal Data also offers a maximal convex hull al-
gorithm. The volume method seems to be more appropriate
in connection with the use of distances between atoms if no
assumptions can be made about the arrangement of ligands
around the central atom in space.

Further conditions for the search of coordination polyhe-
dra in a given structure can be the kind of central atoms and
the kind of ligands. If only homogeneous polyhedra are of
interest, for example, a single kind of atoms can be allowed
as ligands.

In many structures coordination polyhedra with a small
number of ligands (up to six) in near neighbourhood to the
central atom are quite regular and have the symmetries of
the corresponding ideal forms (tetrahedra, octahedra). Such
regularity can, however, often not be found if the number
of ligands and their distance to the central atom increases.
Then deformations are frequent and the problem of how to
measure polyhedral distortion arises [13]. POLYSEARCH
compares a polyhedron found by one of the methods pre-
sented above with the description of a set of ideal polyhe-
dra. This comparison is done on the basis of the adjacency
matrices of the graphs representing the adjacency of the lig-
ands.

For the representation of polyhedra and clusters of poly-
hedra, a graph form has been introduced in [6]. It uses a
unique numbering of vertices and a description of faces by
ordered sequences of numbers for coordination polyhedra.
Depending on the purpose of their usage, these graphs can
be augmented by coordinates to get a complete description



194

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

of the geometry of clusters or they can be reduced to pure
topological information. Two views of coordination poly-
hedra are distinguished in [6] using the well-known corre-
spondence between convex polyhedra and three-connected
planar graphs (Theorem of Steinitz).
Definition: The geometrical viewof a coordination poly-
hedronP is a vertex-labeled simple three-connected planar
graph(V ∪ {c}, E, pos). The vertex setV ∪ {c} represents
the ligands ofP and the central atom, respectively; the set
of edges is determined by the adjacency relationship of the
ligands ofP and the functionpos : V ∪{c} → At×R

3 as-
signs to every element of the vertex set the element symbol
and the coordinates of the corresponding atom ofP .

Information on the symmetries of the polyhedron is not
included in the definition since it may be derived fromV
andpos.

In the first step of our similarity check we look for all
clusters in a given set of model structures which are topo-
logically equivalent to a given search cluster. For this
search, position data of atoms and the kind of atoms in-
volved are not needed. Hence the following view of poly-
hedra is suitable:
Definition: The pure topological viewof a coordination
polyhedronP is a simple three-connected planar graph
(V,E) with V representing the ligands ofP andE the ad-
jacency relationship of the ligands.

Since there is no information on locations of atoms, the
central atom must not be represented by a vertex. The topo-
logical view of a polyhedron provides no information on its
symmetry group. If symmetry properties are of interest, the
symmetry group of the polyhedron or subgroups of it may
be added.

When polyhedra are considered as elements of clusters
of polyhedra some of their vertices become fixed as con-
necting points. In case no geometric information shall be
used in order to refer to these vertices, some characteriza-
tion at the topological level is necessary. The following rep-
resentation by faces has shown to be useful in that regard
[6]:
Definition: Let P be a coordination polyhedron. Anor-
dered face representationof P can be obtained in the fol-
lowing way: Use elements of{1, ..., n} to number the lig-
ands{l1, ..., ln} in a unique way. For every facef , the num-
bers of its vertices are arranged into a unique sequence as
follows: P is viewed from outside and the vertices off are
collected clockwise starting with the smallest element.

Figure 1 shows a regular octahedron and an ordered face
representation of it. For any polyhedron with the same topo-
logical view the same ordered face representation can be
obtained by using an appropriate numbering for its vertices.
For a polyhedronP with n vertices there aren! different
ways to number these vertices; the number of different or-
dered face representations, however, isn!

r
. r is the order
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Figure 1: Ordered face representation.

of the rotation group of that ideal polyhedron which has the
same topological view asP and highest symmetry. This fol-
lows from the definition of an ordered face representation,
which does not refer to the geometry of a polyhedron.

Consider the topological view of a polyhedronP . An
ordered face representation ofP induces directions for the
edges of the graph. For a digraph, rotations are automor-
phisms that do not change the direction of edges. As a
consequence, a given ordered face representation ofP is
not changed as well by rotations. Consider the octahedron
in Figure 1. Apply the rotation given by the permutation
(1563)(2)(4). For the resulting numbering of vertices we
get the same ordered face representation of the octahedron.

The rotation groups of the Platonic solids are well
known. For arbitrary polyhedra they can be determined
using finding algorithms for geometric automorphism
groups [14].n-geometric automorphism groups of a graph
can be displayed as symmetries of a drawing of the graph
in n dimensions. Though the problem to determine whether
a graph has a nontrivial geometric automorphism in two
dimensions is NP-complete [15], it has been demonstrated
that using a group-theoretic method is very efficient in
practice for finding all 2- and 3-geometric automorphism
groups of a graph [14]. Since the set of different topological
views of coordination polyhedra in inorganic structures is
finite, we can assume that the rotation group is given for
every polyhedron under consideration.

2.2 Polyhedral clusters

Two coordination polyhedra of a structure can be con-
nected by sharing common ligands. Three different forms
of connection are of interest: vertex-, edge-, and face-
sharing, which means that the polyhedra share one, two, or
more common ligands, respectively. Connecting edges and
faces must be edges and faces of both polyhedra and partial
overlapping is not allowed. It is also possible that more than
two polyhedra share a common vertex or edge.

Figure 2 shows face-sharing octahedra in sodium chlo-
ride and edge- as well as vertex-sharing octahedra and
vertex-sharing tetrahedra in the silicate jadeite.

The ordered face representation allows to distinguish the
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Figure 2: Coordination polyhedra in sodium chloride and
the silicate jadeite.

relative orientation of polyhedra in clusters under certain
conditions. Consider Figure 3 showing two pairs of square
pyramids connected by an edge. There is no numbering
scheme for the pyramids such that the ordered face rep-
resentations and the labels of the connecting vertices be-
come identical. In Figure 4 a) two tetrahedra of a chain
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Figure 3: Non-equivalent pairs of pyramids.

of polyhedra are connected by a cube with connecting ver-
tices belonging to the same face of the cube (a so-called
trans-edge). In Figure 4 b) the connection is by vertices
of different faces of the cube. There is no possibility to
choose vertex numberings for the polyhedra such that the
corresponding polyhedra of the chains have the same face
oriented representation and the connecting vertices have the
same number in both chains. This means that the face ori-
ented representation allows to distinguish both chains.

(a)

(b)

Figure 4: Non-equivalent chains of polyhedra.

Clusters of polyhedra can be described by graphs with
nodes representing the polyhedra and edges representing

their connections. The information added to the nodes and
edges as labels depends on the usage of the graphs. In our
approach we make use of topological as well as geometrical
information on polyhedra. So we add an ordered face repre-
sentation for each polyhedron together with the geometrical
view as label to every node. The edges are labeled with
one or more pairs of natural numbers identifying the poly-
hedra vertices involved in the corresponding connections.
The following definition is from [6].
Definition: LetP be a cluster of polyhedra with an ordered
face representation given for every polyhedron. Apolyhe-
dra graphfor P is a graphGP = (NP , EP , λ) with:
(1)NP represents the polyhedra inP ; every node is labeled
with the geometrical view and the ordered face representa-
tion of the corresponding polyhedron.
(2) EP ⊆ NP × NP is the set of directed edges repre-
senting every connection between polyhedra inP in both
directions.
(3) λ : EP → 2N×N is a labeling function determining for
every edge the pairs of vertex numbers involved in the con-
nection between the polyhedra represented by the edge.

Obviously, with every edge a unique inverse is deter-
mined. For simplicity we do not remove this redundancy.

The ordered face representation of a polyhedron depends
upon the chosen numbering scheme. Hence a polyhedra
graph is unique up to these schemes. Figure 5 shows an
example with edge- and vertex-sharing.
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Figure 5: A cluster of polyhedra and its graph.

For labeled graphs to be isomorphic, all labels have to be
preserved by the mapping. For topological equivalence the
following definition is appropriate:
Definition: Let G = (NP , EP , λ) and G′ =
(NP′ , EP′ , λ′) be two polyhedra graphs. Letplanes be a
function which assigns the corresponding face representa-
tion to every polyhedron.
G andG′ aretopologically isomorphic, writtenG ∼= G′, if
the following holds:
LetSi denote the symmetric group of degreei.
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There are a bijectionϕ : NP −→ NP′ and a mapping
π : NP −→

⋃∞
i=1 Si, n 7→ πn, such that

[∀n ∈ NP : n, ϕ(n) are isomorphic]∧
[∀n, n′ ∈ NP ∀(i, j) ∈ N

2 :

(n, n′) = e ∈ EP ∧ (i, j) ∈ λ(e)

⇔
(ϕ(n), ϕ(n′)) = e′ ∈ E′

P ∧ (πn(i), πn′(j)) ∈ λ′(e′)]∧
[∀n ∈ NP : f = (i1, . . . , im) ∈ planes(n) ⇔

(f ′ = (πn(ik), . . . , πn(im), πn(i1), . . . , πn(ik−1))

∈ planes(ϕ(n))∧
πn(ik) = min{πn(i1), . . . , πn(im)})]

This definition makes use of the ordered face representa-
tion of polyhedra and therefore takes the relative orientation
of polyhedra into account.
Two clusters of polyhedra aretopologically equivalentif
their polyhedra graphs are topologically isomorphic.

The geometry of topologically equivalent clusters may
differ strongly. Consider Figure 6 showing two rings of
square pyramids sharing opposite edges of their square
faces. In one of the rings the apices of the pyramids are
directed to the outside and in the other ring they show to the
inside. Since in both rings the number of pyramids is the
same, they are topologically equivalent.

Figure 6: Topologically equivalent clusters.

Despite of this diversity of possible geometric realiza-
tions, the definition is practically useful since it does not
exclude clusters from the set of candidates in the search
for similar substructures when they differ with respect to
the embedding in space or the form of their polyhedra but
are identical with respect to the type of the polyhedra and
their connections. Small deviations in the angles of con-
nected polyhedra may sum up to quite large differences in
the overall geometry, but it is difficult to provide a limit for
differences being allowed. Furthermore, differences in the
relative positioning of two neighbouring polyhedra in oth-
erwise strongly similar clusters would lead to great differ-
ences when using methods like root mean square. Hence

these differences are analysed in a second step and are not
used for keeping structures out of the result.

An efficient method for determining topologically equi-
valent clusters of polyhedra in a given set of model struc-
tures is described in [6]. It uses a special index precom-
puted for the model structures in order to avoid the well-
known complexity problems in connection with subgraph
isomorphism. The method is applicable to crystal structures
in general, i.e. to the search for finite clusters in infinite but
periodic structures, and has been implemented as a web ap-
plication [9]. In the following, we concentrate on the prob-
lem how to determine the geometric similarity of the target
substructure and substructures of the infinite model struc-
tures; hence we only deal with finite clusters. For the mod-
eling of infinite periodic crystals in general see [6].

3 The embedding problem

For the determination of equivalent substructures in
model structures it is sufficient to find one mapping of the
polyhedra of the search structure to polyhedra of the sub-
structure such that the corresponding graphs are isomor-
phic. In order to check for geometric similarity, it is in
general not sufficient to consider a single mapping for two
graphs but all possible non-equivalent mappings have to be
taken into account. The equivalence of mappings can result
from symmetries in the model structures or from the exis-
tence of alternative permutations of the vertices of polyhe-
dra.

3.1 Possible mappings

Consider the five-membered chain of tetrahedra shown
in Figure 7. There are two ways to map the chain C con-
sidered as a cluster onto itself: mapping tetrahedroni to
itself or - as indicated by C’ - to tetrahedron(4 − i)′, for
i = 0, .., 4. Obviously, the second mapping does not fit to
the geometry of the chain indicated in the figure.
Consider the starlike clusterS of tetrahedra shown in Fig-
ure 7. It can be mapped to the clusterS′ in three different
ways. Only by using the mappingi → i′, i = 0, ..., 3, the
clusterS can be moved exactly onS′.

The number of possible mappings can be exponential in
the size of the given cluster. Consider the cycle in Figure 8
a). Let it represent a cycle of identical polyhedra with a sin-
gle kind of connection. Assume a fixed embedding of the
cycle into the graph shown in Figure 8 b) to be given. There
exist seven further mappings which differ from the chosen
mapping only with respect to the alternatives provided by
the three 4-membered cycles. It is easy to see that in gen-
eral for such a cycle with5 × n nodes there are2n possible
mappings constructable in this way when the model struc-
ture has the same form as the structure in Figure 8 b) with
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Figure 7: The embedding problem.

6×n nodes. Figure 8 c) demonstrates that this situation oc-
curs in real crystal structures like the silicate leifite. There
exist 315 non-translationally equivalent 15-membered rings
of corner-sharing tetrahedra in this crystal (for a definition
of rings in such crystal structures see [16]).

The number of mappings to consider can often be re-
stricted by taking the symmetries of the target structure into
account. It is sufficient to choose a single representative
for each class of symmetrically equivalent substructures in
the target structure. In leifite there are 44 different classes
of 15-membered rings. Furthermore, when looking for em-
beddings given a representative of such a class only embed-
dings have to be considered which are not symmetrically
equivalent. Consider again Figure 8. In the symmetry group
(space-group) of leifite there is a threefold rotation axis in
the center of the substructure shown in Figure 8 c). Let a
concrete mapping of a 15-membered ring into the shown
substructure be given. Then four additional mappings using
the same tetrahedra of the substructure have to be consid-
ered instead of fourteen if no symmetry would be applica-
ble.

3.2 Uniqueness criteria

To check two clusters for topological equivalence it is
necessary to find for every polyhedron in one of the cor-
responding polyhedra graphs a suitable permutation of the
vertices such that both graphs become identical (up to the
geometric information). Though the number of permuta-
tions for a polyhedron to consider can be restricted by tak-
ing the rotation group into account, the resulting set can still
be quite large. Therefore, all possibilities to restrict this set
further should be applied. The following properties of a
convex polyhedronP and an ordered face representation of

Figure 8: Exponential complexity.

it are helpful into that regard:
- Every edge ofP belongs to exactly two faces.
- Every face ofP has at least three edges.
- The representation of faces implies that every edge shows
up as a pair(i, j) in one face and as(j, i) in the other face.

We get as an immediate consequence: LetP andP ′ be
two polyhedra in ordered face representation. Letφ be an
isomorphism betweenP andP ′ ande = (i, j) an edge of
P . Then there is exactly one permutationπ of the vertices
of P ′ such that the following holds:(π(φ(i)), π(φ(j))) =
(i, j) andP andP ′ have the same ordered face representa-
tion.
The uniqueness of the permutationπ follows from the fol-
lowing observation:e andφ(e) shall have the same num-
bers; henceπ(φ(i)) := i andπ(φ(j)) := j. There are
exactly two facesF1 andF2 of P which are incident with
e. Without loss of generality it can be assumed thate oc-
curs in the representation ofF1 in the orderi, j and in the
representation ofF2 in the orderj, i. For every sequence
i, j there is exactly one representation of a face in the or-
dered faced representation of a polyhedron. This means that
the number of every vertexh in φ(F1) has to be mapped
by π to the number ofφ−1(h) in order to get the same se-
quence of vertex numbers as it occurs in the representation
of F1. The same holds forφ(F2). So π is uniquely de-
termined for the vertices ofφ(F1) andφ(F2). Since there
are now further edges ofP ′ determined, the permutation
is uniquely fixed for all vertices ofP ′. The vertices of an
edge being involved in a connection of a cluster of polyhe-
dra must be numbered identically to the corresponding edge
in a topologically equivalent cluster. Hence in case of edge-
or face-sharing the ordered face representation guarantees
that the vertex numbering in one of the corresponding poly-
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hedra graphs determines uniquely the vertex numbering in
the other graph. A similar situation is given when two poly-
hedra are linked by the two vertices of an edgee of another
polyhedronP . The permutation of the polyhedronP ′ in the
isomorphic graph is determined uniquely since the vertices
of e and the corresponding edge in the isomorphic graph
have to be identical.
Example:Consider the two chains of tetrahedra in Figure
9 a). They are topologically equivalent. A permutationπ
of P ′ of a topological isomorphism for the two chains must
map2 to 3 and4 to 1. The edgee = (3, 1) of P taken in
the given order determines the face(1, 2, 3) of P . The face
in P ′ with (2, 4) occuring in this order in its representation
is (2, 4, 1). We therefore getπ(1) = 2 andπ(3) = 4.
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Figure 9: Connections fixing a permutation.

For the uniqueness of the permutation of a polyhedron
P ′ it is even sufficient when the vertices ofP involved in
the connection are vertices of the same faceF : The vertices
of the corresponding faceF ′ in P ′ are uniquely determined
by the representation ofF since no pair of vertices of a
face which are not the endpoints of an edge can both be
vertices of a further face. Otherwise, the second face would
intersectF . Hence there is a single entry with both vertices
in the representation ofP . For an example, see Figure 9 b).
Vertices1 and3 of P occur together only in face(1, 2, 3, 4).
From the connections follows that the vertices4 and7 of
P ′ have to become1 and3, respectively. This implies the
change of1 to 2 and of3 to 4.

In case the permutation of a polyhedron cannot be fixed
by its neighbourhood, a representative of each class of per-
mutations resulting in the same ordered face representation
has to be considered. Take a single polyhedron, an octahe-
dron, for example, in its regular form. There are6! possible
ways to label its vertices with different numbers. There are,
however, much less ordered face representations of an oc-
tahedron, namely30. This results from the properties of
its symmetry groupm3̄m. It contains three perpendicular

fourfold rotations which are automorphisms.
Coordination polyhedra may have distortions which can

be used to restrict the set of geometrically reasonable per-
mutations when only a single vertex is fixed by a connec-
tion. This is a consequence of missing symmetries (the
topological view of polyhedra could be augmented by sym-
metry information such that it is not only sufficient to have
identical face representation but the symmetry groups must
fulfill conditions as well).

For a given cluster there can exist many isomorphic sub-
graphs in the same model graph. Hence the problem arises
which ones to present in the result of a query. Clusters with
isomorphic polyhedra graphs can have quite different ge-
ometries. We need a method to rank results which is fast
to compute and which nonetheless is suited to measure the
differences in the geometries of clusters since the number
of qualifying model structures can be very large as well.

4 Geometric similarity of embeddings

Geometric similarity of three-dimensional structures has
been defined in various different forms depending on the
underlying applications. For the comparison of clusters of
polyhedra we need a definition of similarity which takes
into account that coordination polyhedra represent strong
bonds and that connections between polyhedra are given by
the sharing of common atoms.

4.1 The problem

For molecular structures, operations such as rotations,
translations, and scaling as well as the editing of molecules
including the deletion or insertion of atoms are sometimes
applied to check for a possible matching [17]. Other ap-
proaches look for maximal subgraphs allowing distances of
atoms to vary in fixed ranges [5] or identify backbone struc-
tures in order to find rigid motions for solving the matching
problem for substructures [18].

For inorganic structures “the use of the term ’similar’, in
the definition of configurational and crystal chemical iso-
typism, arises from the inherent difficulty in defining a pri-
ori limits on the similarity of geometrical configurations
or physical/chemical characteristics” [19]. This means that
flexibility has to be taken into account like for organic struc-
tures.

Since for inorganic structures the notion of coordination
polyhedra is fundamental [8], it should be possible to define
and analyze similarity at the level of polyhedral networks.
A single coordination polyhedron characterizes the bonding
structure for a distinguished central atom and neighbouring
atoms. Mostly, these local bonds are strong compared to
other bonds. The form of a polyhedron depends upon the
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kind of the central atom, the number and kind of its lig-
ands, and other atoms in the vicinity. In a typical silicate,
for example, four oxygen atoms with strong bonds to a sil-
icon atom form a regular tetrahedron. Sodium and chlo-
rine atoms are forming regular octahedra in sodium chloride
whereas the octahedra formed by lithium and oxygen atoms
in some silicates are quite irregular.

Distortions of polyhedra from the perfect form can be
measured [13], [20], [21], but it is also argued that no
unique index can be defined for measuring the size of the
distortion since measures are never completely model-free
[22], [13]. Therefore, when comparing substructures of in-
organic compounds at the level of coordination polyhedra, a
distinction between the placement of polyhedra in the struc-
ture and the shape of polyhedra seems to be appropriate.
The placement of a polyhedron can be described by the co-
ordinates of its central atom. A difference in the coordinates
of the central atoms of two corresponding polyhedra implies
that the coordinates of the ligands are different as well or
that there are differences in the shape of the two polyhedra.

The reference coordinate axes of two structures cannot
be assumed to be identical. Hence rotations and transla-
tions are normally necessary to check for geometric isomor-
phism. The most restrictive definition of geometric similar-
ity requires a bijection to exist between the two given point
sets such that the coordinates of a point and its image in the
other set are allowed to differ only in the range of a given
small tolerance. This tolerance is necessary in connection
with experimental data. A weakened form of this defini-
tion assumes polyhedra to be rigid bodies according to the
fact that they model strong bonds. It considers vertex- and
edge-sharing connections of polyhedra in clusters as ’ball-
and-sockets’ and ’hinges’. Whereas a face-sharing allows
no flexibility, a vertex-sharing and an edge-sharing of two
polyhedra allow the central atoms to move on the surface of
a sphere and on circles, respectively, depending on the over-
all flexibility of the cluster. For two clusters it should be
possible to apply appropriate motions such that the result-
ing clusters are geometrically similar according to the def-
inition above. A distinction can be made whether motions
with intermediate interpenetrating polyhedra are allowedor
not.

Figure 10 shows an example where two structures be-
come identical if an appropriate hinge motion is applied. It
should be mentioned that these two rings of tetrahedra are
normally considered as strictly distinct clusters.

4.2 Polyhedral clusters as joint structures

For the mathematical modeling of geometric embed-
dings of polyhedra graphs the algebra presented in [23] is
well suited. It uses projective geometry as underlying the-
ory and allows to deal elegantly with motions and geomet-

Figure 10: Identification by hinge motion.

ric transformations. We first repeat some definitions of [23]
(for an introduction into projective geometry see [24], for
example).
Since we are only interested in embeddings into the Eu-
clidean space it is sufficient to consider projective spaces
over the real numbers.

Letn ∈ N. Forx, y ∈ R
n+1\{0} define the equivalence

relation

x ∼ y :iff there is aλ ∈ R with x = λy.

The set of equivalence classes

PR
n := (Rn+1 \ {0})/ ∼

is calledthe projective space of dimensionn overR; the el-
ements ofPR

n are calledprojective points.
Let x ∈ PR

n with x = (x0, . . . , xn). Thenx andλx de-
scribe the same projective point for allλ 6= 0. The equiv-
alence class ofx is usually denoted as(x0 : · · · : xn) and
(x0 : · · · : xn) are calledhomogeneous coordinatesof the
pointx.
Forx ∈ R

3 with x = (x1, x2, x3) it is convenient to use the
point

x̄ := (x, 1) := (x1, x2, x3, 1) ∈ PR
3

as representative of its equivalence class.
If ϕ : M −→ R

3 is a mapping of an arbitrary setM into
R

3, thenϕ̄ shall denote the continuation ofϕ on the home-
geneous coordinates of the images, i.e.

ϕ̄(m) := ϕ(m)

for all m ∈M .
For the description of all lines ofR3 properties and notions
of the Grassman-Cayley algebra are used. A general multi-
plication on the points ofPR

n is defined as follows:
Let a, b ∈ PR

3 with a = (a1, a2, a3, a4) and b =
(b1, b2, b3, b4). Consider the matrix

Da,b :=

(

a1 a2 a3 a4

b1 b2 b3 b4

)

.

Theouter productis defined as

∨ : PR
3 × PR

3 −→ R
6,
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a ∨ b := (d14, d24, d34, d23, d31, d12),

wheredij denotes the2×2-minor obtained from theith and
jth column ofDa,b.
The6-tupela ∨ b is called2-extensorof the pointsa andb;
it is also written in the formab.
The set of all such6-tupels for pairs of points is denoted by
L2.
Let a, b ∈ R

3 and ā, b̄ be the equivalent projective points.
Then the following holds:
āb̄ = ā ∨ b̄ = (a− b, a× b).
(a− b, a× b) are called thePlücker coordinatesof a andb.
Not all elements ofR6 correspond to pairs of points but
every such 6-tuple represents ascrew in R

3. This results
from the fact that every element ofR

6 can be obtained as
sum of two 2-extensors. The set of all 6-tuples or screws is
usually denoted byΛ2.

Consider the polyhedra graphGP = (NP , EP , λ) for
a polyhedral clusterP together with the geometrical views
of the polyhedra. The edgesEP of the graph can be parti-
tioned according to their corresponding type (vertex, edge,
or face):
EP = Ev∪̇Ee∪̇Ef .

Define the following mapping

H : Ee −→ L2,

e = (Pi, Pj) 7→ pos(Le1
) ∨ pos(Le2

) =: Li,j,

where{Le1
, Le2

} = VPi
∩ VPj

for every edge(Pi, Pj) ∈
Ee; VPi

, VPj
denote the sets of vertices of the polyhedra

Pi, Pj ∈ P , respectively.
Since for every edge(Pi, Pj) ∈ Ee we have

Li,j = −Lj,i,

it follows thatH is a hinge motion [25].
We are now ready to define when a polyhedral cluster

is flexible and when two given polyhedra graphs can be
considered as geometrically transformable into each other
by motions which respect the connections of the polyhedra.

Definition: Let G = (NP , EP , λ) be a polyhedra graph
with geometrical views given for all polyhedra. Let

S : NP −→ Λ2, Pi 7→ Si

be a mapping such that the following holds:

• for every connection by vertices(Pi, Pj) ∈ Ev with
VPi

∩ VPj
= {L} we have

Sipos(L) = Sjpos(L),

• for every connection by edges(Pi, Pj) ∈ Ee there ex-
ists a scalarλi,j ∈ R, such that

Si − Sj = λi,jLi,j ,

• for every connection by faces(Pi, Pj) ∈ Ef we have

Si = Sj .

S is a joint motionof the configuration induced bypos. S

is calledtrivial if S ≡ D for someD ∈ Λ2.
G is calledflexible if it admits a non-trivial joint motionS.

Since the geometrical views of the polyhedra of a poly-
hedra graph determine a configuration of the graph, it is
possible to define the congruency of two polyhedra graphs
in analogy to general graphs. Based on this definition,
conditions for the possibility to transform the graphs into
each other by motions can be given.

Definition: LetG1 = (N1, E1, λ1) andG2 = (N2, E2, λ2)
be two polyhedra graphs with functionspos1 andpos2 as-
signing the coordinates to the vertices of the polyhedra of
G1 andG2, respectively.
G1 undG2 arecongruentif there exists a topological iso-
morphismϕ : G1 −→ G2 and aR

3-isometryT such that

T ◦ pos1 = pos2 ◦ ϕ.

Let SE(3) denote the set of proper rigid motions ofR
3.

Let M : Λ2 −→ SE(3) be a mapping assigning the ho-
mogeneous representation to every screw. If a motionS

of G1 exists such thatG1 after applying the (homogeneous
representation) of the motionS andG2 are congruent with
respect topos1 andpos2, i.e., if there exists anR4-isometry
T such that for allni ∈ N1

(T ◦ M(Si) ◦ pos1)(ni) = (pos2 ◦ ϕ)(ni)

holds, thenS is called ageometric transformationof G1

into G2 andG1 is calledgeometrically transformable into
G2 by joint motions.

This definition fixes when two polyhedra graphs can be
transformed into each other geometrically. The underly-
ing assumptions are that polyhedra are rigid bodies and that
only joint motions can be applied.

Consider a set of topologically isomorphic polyhedra
graphs. Assume that corresponding polyhedra in the graphs
are congruent. The question arises whether for any pair
of graphs (G1, G2) in the set,G1 is geometrically trans-
formable intoG2 by joint motions. Look again at the rings
of polyhedra in Figure 6. Applying hinge motions and mov-
ing the pyramids through one another allows to transform
one ring into the other. However, if we add two handles to
each of the rings with edge-sharing pyramids and with con-
nections to the ring at opposite pyramids again by sharing
edges (a kind of ’crown’ is built), the resulting clusters are
topologically equivalent but no geometric transformationis
possible. The reason for the missing of a transformation is
that the pyramids of the handles as well as those of the ring
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have to be moved through one another in order to change the
direction of their apices. Applying such a motion to one of
the handles results in a squeezing of the other handle since
each handle and the ring can only be moved perpendicular
to their hinges. This follows from the fact that the complete
structure has only connections by edges.

Two non-flexible topologically isomorphic clusters
which are not geometrically transformable into one another
can be constructed as follows: Take a cube and place a pyra-
mid on each of its faces; remove the cube from the clus-
ter. The resulting configuration of edge-sharing pyramids
is topologically equivalent to the cluster which we obtain
when the apices of the pyramides are all pushed in. Since
the two clusters are not flexible, no geometric transforma-
tion is possible.

The notion of geometric transformation can be weakened
in order to get a definition of similarity which takes into
account that in crystal structures we do not deal with ideal
polyhedra. One idea is to restrict thepos-functions in the
definition of a geometric transformation to vertices involved
in connections and to allow differences in the coordinates
of corresponding vertices up to some fixed limit. A second
possibility is to restrict these functions to the central atoms
of the polyhedra with the same relaxation with respect to
the coincidence of coordinates.

When two structures are geometrically similar to one an-
other according to one of these definitions they can be fur-
ther analysed for the similarity of corresponding polyhe-
dra. Symmetries can be checked, for example, the kinds
of atoms can be compared, or measures of distortions can
be used. In the following, we concentrate on the first step.
Furthermore, we do not consider non-trivial joint motions
to change the geometry of structures. We rather use the root
mean square method to measure the ’distance’ of two struc-
tures with respect to the positions of the central atoms of
their polyhedra.

5 Implementation and results

The problem of minimization of distances for two sets
of points in three-dimensional space is sometimes called
’problem of absolute orientation’. Two well-known meth-
ods for solving this problem have been investigated: the
algorithm of B.K.P. Horn [26], a closed-form solution of
the problem using unit quaternions to represent rotations,
and the algorithm of W.A. Dollase [27] using infinitesimal
rotations. We have given preference to the algorithm of
Horn since it avoids the potentiation of numeric instabili-
ties, which may arise in connection with orthonormalization
in the algorithm of Dollase.

Let GP = (NP , EP , λP) andGP′ = (NP′ , EP′ , λP′)
be two finite polyhedra graphs withNP = {P1, . . . , Pn}
andNP′ = {P ′

1, . . . , P
′
n}.

Let ϕ : P −→ P ′, Pi 7→ P ′
i , be an isomorphism and let

CP = {c1, . . . , cn} andCP′ = {c′1, . . . , c′n} be the sets of
coordinates of the central atoms ofP andP ′, respectively
(referring to a common Cartesian coordinate system), i.e.
ci = posP(Pi) and c′i = posP′(P ′

i ), for i = 1, . . . , n.
Herepos is the function from polyhedra to the coordinates
of their central atoms derived from the geometrical views of
the polyhedra.
ϕ induces a mapping

ψ : CP −→ CP′ ,

posP(cP ) = ci 7→ c′i = posP′(cϕ(P ))

that sends the coordinates of the central atom of every poly-
hedron ofP to the coordinates of the central atom of its
image underϕ.

The setsCP andCP′ are now considered as rigid sub-
sets ofR3, which shall be moved such that the best possible
matching results. This means that a motionT ∈ SE(3) is
looked for solving the following least-squares problem:

U :=
∑

P∈NP

||(posP′ ◦ ϕ)(P ) − (T ◦ posP)(P )||22 = min .

With the notations from above we get the following equiva-
lent formulation:

U :=

n
∑

i=1

||c′i − T (ci)||22 = min .

An optimal rigid Euclidean motionT moves the centroid
of CP to the centroid ofCP′ [26]. By placing centroids
into the origin of the common coordinate system, the least-
squares problem reduces to the determination of a rotation
T solving the equation above forCP andCP′ relative to
their centroids.

For measuring the similarity of two structuresP andP ′

the root mean square

ǫ :=

√
U

n

is taken. The similarity increases with decreasingǫ. What
we have to keep in mind is that polyhedra distortions and ro-
tations allowed by their connections may lead to differences
in the shape of otherwise similar clusters.

For our problem it is sufficient to consider quaternions
as unit vectors ofR4. Each unit quaternion uniquely rep-
resents a rotation in three-dimensional space. Furthermore,
scaling of point sets is not wanted since motions shall be
rigid. Therefore, we assume the scaling factor in the algo-
rithm of Horn to be1.
Algorithm:
Input : Two finite topologically isomorphic clusters of poly-
hedraC1 andC2 with sets of polyhedra{P1, ..., Pn} and
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{P ′
1, ..., P

′
n}, respectively, and a topological isomorphism

ϕ such thatP
′

i = ϕ(Pi), for i = 1, ..., n.
Output : Root mean square of the deviation ofC1 andC2

after an optimal distance minimizing movement of the cen-
tral atoms according toϕ in a common coordinate system.
// Initialization

Transform the coordinates of all atoms ofC1 andC2 into
Cartesian coordinates; generate the setsAC1

= {c1, ..., cn}
andAC2

= {c′1, ..., c′n} of coordinates of the central atoms
of C1 andC2, resp.
CentralizeAC1

andAC2
:

c̄ := 1
n

∑n

i=1 ci;

c̄′ := 1
n

∑n
i=1 c

′
i;

for i = 1, ..., n do
ci := ci − c̄;
c′i := c′i − c̄′;

end
// Solution of the balancing problem

Compute with the algorithm of Horn the rotation matrixRq,
which movesAC1

optimally onAC2
.

// Computation of the result and parameter

// extraction (rotation angle Θres and axis

// (lres, mres, nres) ∈ R
3)

U :=
∑n

i=1 ‖c′i −Rq(ci)‖2
2;

ǫ :=
√

U
n

;

ComputeΘres, lres,mres, nres givenRres = Rq.

The implementation of the algorithm in C++ has been
integrated into our system POLYSEARCH [6]. A graphical
interface of POLYSEARCH allows to mark a substructure
of a chosen crystal for search. Topologically equivalent sub-
structures in a set of model structures are determined based
upon a representation of the crystals by periodic graphs.
When building the result, the number of substructures of
the same crystal structure being geometrically equivalentto
each other is reduced by exploiting the symmetries of the
structure. The information on the subgraphs correspond-
ing to the remaining substructures is used to determine the
ranking, which can be done fast (cp. [28]). The execution
time of the search for equivalent substructures mainly de-
pends on the selectivity of the search structure relative tothe
given set of model structures [6]. The extension of our web
application [9] by an appropriate graphical interface for the
representation of the geometric similarity of substructures
is in progress.

Figure 11 shows screenshots of a search structure in the
silicate aminoffite and three substructures of the result with
their root mean square values (RMS). In this example, the
structures consist of tetrahedra with nearly identical geom-
etry. The different RMS values mainly result from the dif-
ferences in the orientation of the tetrahedra in the clusters.

Search structure
in aminoffite

Epididymite:
RMS 0.162449

Paracelsian:
RMS 0.485688

Merrihueite:
RMS 0.711812

Figure 11: Search structure and three similar substructures.

6 Conclusions

In this paper, the main focus has been to show how ge-
ometric similarity of clusters of coordination polyhedra can
be defined and computed by an appropriate algorithm. The
integration of the algorithm into our system for the retrieval
of isomorphic substructures in large sets of model structures
allows to search for geometrically similar substructures in
large inorganic crystal structure databases. The search can
be combined with other information about the target struc-
ture such as publication data, symmetries, or the assignment
to a special class.

A further application can be seen in the field of structure
prediction. In recent years, the enumeration of hypothetical
inorganic structures has attracted much attention [29], [30].
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Geometric embeddings are computed for graphs which are
generated in an enumeration process. It is very helpful to
analyse these hypothetical structures with respect to their
similarity with real structures.

As mentioned above, our system only checks for the sim-
ilarity of point sets built from the coordinates of central
atoms. In the future, we intend to implement methods for
taking all information about polyhedra into account and to
provide information about motions, which can be applied to
get a better matching of two topologically isomorphic struc-
tures. A further idea is to apply methods developed in the
field of maximal subgraph search in order to be able to com-
pare structures without referring to a target substructure.

Recently, a graphical interface has been implemented in
POLYSEARCH offering operations for constructing poly-
hedral clusters artificially. A collection of different kinds
of polyhedra as often found in crystal structures is available
and methods for constructing clusters and modifying them
by applying joint motions have been realized. For the gener-
ated clusters, embeddings into polyhedral networks of real
crystal structures can be determined and ranked.
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