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Abstract of structures.
In order to deal with this situation, an approach has been

A graph-based method is described for searching and presented in [6] which is based upon a description of inor-
ranking clusters of polyhedra in large crystallographic ganic crystal structures at the level of coordination pelyh
databases. It is shown how topologically equivalent sub- dra. Infinite networks formed by connections of polyhedra
structures can be determined for a given target cluster can be represented by finite periodic graphs. This model-
based upon a graph representation of polyhedral networks. ing allows to build an indexation of polyhedral networks by
A mathematical modeling of geometric embeddings of poly-chains, which can be used for the efficient determination of
hedra graphs is provided which can be used to define geo-topologically equivalent substructures. These strustoas
metric similarity of polyhedral clusters. For a special Bin  have a quite different geometry. Hence a method is needed
of similarity, an algorithm for solving the problem of ab- to check for geometric similarity.
solute orientation is applied in order to rank topologicall It has been argued that to determine geometric transfor-
equivalent clusters appropriately. mations first and then to test for preservation of topology is

) more efficient in connection with geometric graph isomor-
Keywords: Crystallographic databases, polyhedral clus- phism [7]. However, when using rotations, translations, an

ters, polyhedra graphs, similarity search, ranking scaling to investigate geometric isomorphism the problem
arises that substructures with great similarity up to aghar
1 Introduction difference at a single position cannot be found in principle

In order to be flexible with respect to the definition of

In recentyears, large databases have been built in organigimilarity and to allow the user to decide which differences
as well as in inorganic chemistry [2], [3]. These systems inthe geometry are tolerable, a two-step approach for deter
offer query facilities for searching compounds given publi mining similar structures is applied. In the first step, abhs
cation data, kinds of atoms, symmetry information, etc. For Structures in a given set of model structures are determined
databases storing information on organic and metal-oegani Which are candidates for the result because they are topolog
crystal structures, it is also possible to search for certai ically equivalentto the given search structure. By takimg t
patterns of combinations of atoms [4]. Similarity searchin symmetries of structures into account, the set of candidate
in general has received considerable attention in the field o can be reduced to symmetrically non-equivalent substruc-
molecular structures modeled as simple undirected graphgures. In the second step, geometric similarity is checked
[5]. Rigid substructures can be distinguished and used tofor all candidates resulting in a ranking. This ranking can
build indexes for fast search. be used for presenting the search results. Furthermore, the

At present, such a kind of searching at the level of concrete values of the similarity test provide information
substructures is not offered for inorganic crystallogiaph about the relationship between the structures.
databases. Whereas for organic compounds, search can be This paper is an extended version of [1]. It is organized
built upon a set of substructures of reasonable size this ap-as follows. We start with describing some methods for de-
proach is less meaningful for inorganic compounds. Here atermining coordination polyhedra as they are implemented
large variety of chemical elements and patterns can be ob4n our system. Then we review the graph representation
served. The symmetry is generally higher than in organic of clusters of polyhedra and the definition of topological
and many inorganic molecules leading to a rich diversity equivalence. We discuss some properties of the ordered
of geometric configurations. Local arrangements of atomsface representation of polyhedra and show how the embed-
play an important role for the description and understagdin ding of subgraphs in model graphs can be done quite effi-
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ciently in many cases. In the fourth section, the problem of may not have a distance to the central atom smaller than the
geometric similarity is discussed more generally. A mod- distance to the central atom of any atom of the set. 193
eling of polyhedral clusters as joint structures is devetbp - Search for a maximal gap (linear).
and some forms of similarity based upon this modeling are Circumscribing spheres are defined by specifying an upper
proposed. In Section 5, for one such form which is basedlimit e for the differences between the distances of neigh-
upon point sets the implementation in our system POLY- bouring atoms to the central atom. Atoms:’ belong to
SEARCH is described and some results are presented. We¢he same sphere if there is a sequemee a4, ....,a, = a’
conclude with remarks concerning the usage of the systemsuch that the distances@fanda;.; to the central atom are
and future work. less than or equal tefori = 1,...,n — 1. A gap between

two spheress, S’ with S’ circumscribingsS is the difference

2 Graph representation and topological between the minimal distance of an atonbirand the max-
equivalence of polyhedral clusters imal distance of an atom if. The gapA betweenS and
S’ is maximal if all gaps between spheres circumscribed by

and the gap betwees$f and the next sphere are smaller
hanA.
- Search for a maximal gap (volume).
W similar proceeding as in the linear case is applied. In-
stead of the differences of distances the differences of the
volumes of the spheres determined by the gaps are consid-
ered.

The linear gap method is often used in the literature

Inorganic crystal structures are often modeled using co- Al ,
ordination polyhedra as components [8]. The vertices of [11] and applleql n system§ su_ch as pearson’s Crystal Data
[12] for determining coordination polyhedra. Because of

these convex polyhedra represent the atoms which are con* roblems which may arise in determining the maximal aa
sidered as ligands of a fixed central atom. In case of smallP Y 9 gap,

sets of ligands and regular forms (e.g. tetrahedra in sili- Pearson’s Crystal Data also offers a maximal convex hull al-

cates) the determination of coordination polyhedra isaiath gonthm. The vo.Iume method Seems to be more approp_rlate
straightforward. If the number of ligands and their disanc in connection with the use of distances between atoms if no

to the central atom grows, polyhedra may become deformeaassumptlons can be made about the arrangement of ligands

and their determination is less obvious. A generally appli- aroundthe cent.rz.al atom in space. o

cable formal definition of coordination polyhedra in crys-  Further conditions for the search of coordination polyhe-
tal structures seems to be impossible. It is therefore ag-drain a given structure can be the kind of central atoms and
visable to apply different methods for determining coordi- the kind of ligands. If only homogeneous polyhedra are of
nation polyhedra and to have a closer look at the resu|t$|nte_rest, for example, a single kind of atoms can be allowed
if they show differences. The following methods seem to @S ligands.

be suitable into that regard and are offered by our system In many structures coordination polyhedra with a small
POLYSEARCH [9]: number of ligands (up to six) in near neighbourhood to the

- Search within a given maximal distance. central atom are quite regular and have the symmetries of
All atoms within the given distance are considered as lig- the corresponding ideal forms (tetrahedra, octahedrah Su

ands. It is checked whether they determine a convex poly-regularity can, however, often not be found if the number
hedron. of ligands and their distance to the central atom increases.

- Determination of the maximal convex hull. Then deformations are frequent and the problem of how to
A convex hull algorithm is used in order to determine the measure polyhedral distortion arises [13]. POLYSEARCH

coordination polyhedron (the gift wrapping algorithm [10] compares a polyhedron found by one of the methods pre-
is appropriate since the number of vertices of coordination sented above with the description of a set of ideal polyhe-

Graphs are often used to describe structural aspects o
chemical compounds. In this section we show how the
bonding between atoms in crystals can be represented b
special forms of labeled graphs.

2.1 Coordination polyhedra

polyhedra is small). dra. This comparison is done on the basis of the adjacency
- Determination of the maximal convex hull restricted by a matrices of the graphs representing the adjacency of the lig
given number of atoms. ands.

The convex hull algorithm stops when the given number of  For the representation of polyhedra and clusters of poly-
atoms is reached. hedra, a graph form has been introduced in [6]. It uses a
- Search for a polyhedron with a specified number n of lig- unique numbering of vertices and a description of faces by
ands. ordered sequences of numbers for coordination polyhedra.

Sets of n atoms around the central atom are built and Depending on the purpose of their usage, these graphs can
checked for convexity. Atoms not contained in such a set be augmented by coordinates to get a complete description
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of the geometry of clusters or they can be reduced to pure P

topological information. Two views of coordination poly- (134) 194
hedra are distinguished in [6] using the well-known corre- 2 (52

spondence between convex polyhedra and three-connected ¢ %%:2:23

planar graphs (Theorem of Steinitz). ' G

Definition: The geometrical viewof a coordination poly- 6

hedronP is a vertex-labeled simple three-connected planar

graph(V U {c}, E, pos). The vertex se¥V U {c} represents Figure 1: Ordered face representation.

the ligands ofP and the central atom, respectively; the set

of edges is determined by the adjacency relationship of the

ligands of P and the functiomos : V U {c} — At x R3 as- of the rotation group of that ideal polyhedron which has the
signs to every element of the vertex set the element symbolsame topological view a8 and highest symmetry. This fol-

and the coordinates of the corresponding ator of lows from the definition of an ordered face representation,
Information on the symmetries of the polyhedron is not Which does not refer to the geometry of a polyhedron.

included in the definition since it may be derived frdfm Consider the topological view of a polyhedréh An

andpos. ordered face representation Bfinduces directions for the

In the first step of our similarity check we look for all €dges of the graph. For a digraph, rotations are automor-
clusters in a given set of model structures which are topo-Phisms that do not change the direction of edges. As a
logically equivalent to a given search cluster. For this consequence, a given ordered face representatidh isf
search, position data of atoms and the kind of atoms in- N0t changed as well by rotations. Consider the octahedron

volved are not needed. Hence the following view of poly- in Figure 1. Apply the rotation given by the permutation
hedra is suitable: (1563)(2)(4). For the resulting numbering of vertices we

Definition: The pure topological viewof a coordination get the same ordered face representation of the octahedron.

polyhedronP is a simple three-connected planar graph The rotation groups of the Platonic solids are v_veII
(V, E) with V representing the ligands &f and £ the ad- known. For arbitrary polyhedra they can be determined
jacency relationship of the ligands. using finding algorithms for geometric automorphism
Since there is no information on locations of atoms, the 9r0UPS [14].n-geometric automorphism groups of a graph
central atom must not be represented by a vertex. The topo@n be displayed as symmetries of a drawing of the graph
logical view of a polyhedron provides no information onits " 7 dimensions. Though the problem to determine whether
symmetry group. If symmetry properties are of interest, the & 9raph has a nontrivial geometric automorphism in two
symmetry group of the polyhedron or subgroups of it may dimensions is NP-complete [15], it has been demonstrated
be added. that using a group-theoretic method is very efficient in
When polyhedra are considered as elements of clusteréjr""ctice for finding all 2? and 3-geomet_ric automorphi_sm
of polyhedra some of their vertices become fixed as con-9roups ofagraph [.14]' Since the §et_ofd|ffer_enttopolog|cg
necting points. In case no geometric information shall be views of coordination polyhedra in inorganic structures is

used in order to refer to these vertices, some characterizaf'n'te' we can assume that the rotfsmon group is given for

tion at the topological level is necessary. The following-re every polyhedron under consideration.

resentation by faces has shown to be useful in that regard

[6]:

Definition: Let P be a coordination polyhedron. Aov- 2.2 Polyhedral clusters

dered face representatiof P can be obtained in the fol-

lowing way: Use elements dfl, ..., n} to number the lig- Two coordination polyhedra of a structure can be con-

ands{ly, ..., 1, } in aunique way. For every fagé the num- nected by sharing common ligands. Three different forms

bers of its vertices are arranged into a unique sequence asf connection are of interest: vertex-, edge-, and face-

follows: P is viewed from outside and the vertices foare sharing, which means that the polyhedra share one, two, or

collected clockwise starting with the smallest element. more common ligands, respectively. Connecting edges and
Figure 1 shows a regular octahedron and an ordered facdaces must be edges and faces of both polyhedra and partial

representation of it. For any polyhedron with the same topo- overlapping is not allowed. Itis also possible that moreitha

logical view the same ordered face representation can béwo polyhedra share a common vertex or edge.

obtained by using an appropriate numbering for its vertices ~ Figure 2 shows face-sharing octahedra in sodium chlo-

For a polyhedronP with n vertices there are! different ride and edge- as well as vertex-sharing octahedra and

ways to number these vertices; the number of different or- vertex-sharing tetrahedra in the silicate jadeite.

dered face representations, however%’is r is the order The ordered face representation allows to distinguish the
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their connections. The information added to the nodes and
edges as labels depends on the usage of the graphs. In ggs,

‘ approach we make use of topological as well as geometrical

\ information on polyhedra. So we add an ordered face repre-

[\ =

sentation for each polyhedron together with the geométrica

: > \ view as label to every node. The edges are labeled with
= one or more pairs of natural numbers identifying the poly-

hedra vertices involved in the corresponding connections.

——

The following definition is from [6].

Definition: Let P be a cluster of polyhedra with an ordered
Figure 2: Coordination polyhedra in sodium chloride and face representa‘[ion given for every po|yhedronpﬂyhe-
the silicate jadeite. dra grapHor P is a graphGp = (Np, Ep, \) with:

(1) Np represents the polyhedraf every node is labeled

lati . . f polvhedra in cl q . with the geometrical view and the ordered face representa-
relative orientation of polyhedra in clusters under certai - o¢he corresponding polyhedron.

conditions. Consider Figure 3 showing two pairs of square (2) Ep C Np x Np is the set of directed edges repre-

pyramids connected by an edge. There is no numberingsenting every connection between polyhedr&imn both
scheme for the pyramids such that the ordered face rePyirections

resentations and the labels of the connecting vertices be-(3) )\ : Ep — 29N is a labeling function determining for

come identical. In Figure 4 a) two tetrahedra of a chain every edge the pairs of vertex numbers involved in the con-
nection between the polyhedra represented by the edge.

Obviously, with every edge a unique inverse is deter-
mined. For simplicity we do not remove this redundancy.

The ordered face representation of a polyhedron depends
upon the chosen numbering scheme. Hence a polyhedra
graph is unique up to these schemes. Figure 5 shows an
example with edge- and vertex-sharing.

Figure 3: Non-equivalent pairs of pyramids.

of polyhedra are connected by a cube with connecting ver-
tices belonging to the same face of the cube (a so-called
trans-edge). In Figure 4 b) the connection is by vertices
of different faces of the cube. There is no possibility to
choose vertex numberings for the polyhedra such that the
corresponding polyhedra of the chains have the same face .
oriented representation and the connecting vertices have t 1 2
same number in both chains. This means that the face ori-
ented representation allows to distinguish both chains.

187.2)
124)| 35@8) | 1358 (7.1 | (1.23)
143) (1.2:4,3) .34
132 | 53@a) | 6678 | @7 | 142
@234) (34.6,5) (243
(2.76.4)

Figure 5: A cluster of polyhedra and its graph.
@

For labeled graphs to be isomorphic, all labels have to be
preserved by the mapping. For topological equivalence the
following definition is appropriate:

Definition: Let G = (Np,Ep,A) and G' =
(b) (Np:, Ep/, \') be two polyhedra graphs. Letanes be a
function which assigns the corresponding face representa-
Figure 4. Non-equivalent chains of polyhedra. tion to every polyhedron.
G andG’ aretopologically isomorphicwritten G = G, if
Clusters of polyhedra can be described by graphs withthe following holds:
nodes representing the polyhedra and edges representinget .S; denote the symmetric group of degriee
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There are a bijectionp : Np — Np/ and a mapping these differences are analysed in a second step and are not

m: Np — ;2 Si,n — m,, such that used for keeping structures out of the result. 196
An efficient method for determining topologically equi-
[Vn € Np : n,p(n) are isomorphin valent clusters of polyhedra in a given set of model struc-
Vn,n' € Np W(i,j) € N? : tures is described in [6]. It uses a special index precom-

puted for the model structures in order to avoid the well-
known complexity problems in connection with subgraph
g isomorphism. The method is applicable to crystal strusture
(p(n),o(n')) =€ € Ep A (m,(i), w0 (4)) € N (e)]A in g_en(_eral, i.e. to the search for fin_ite clusters in infini¢ b
V€ Np: f = (i1,....im) € planegn) < periodic structures, and has been implemented as a web ap-
plication [9]. In the following, we concentrate on the prob-

(n,n') =e € Ep A (i,j) € Xe)

r . . . .
(F7 = (nin)s - i ) 7 (i), - 7 (1)) lem how to determine the geometric similarity of the target

€ planegp(n))A substructure and substructures of the infinite model struc-

o (ik) = min{m, (i1), ..., T (im)})] tures; hence we only deal with finite clusters. For the mod-

eling of infinite periodic crystals in general see [6].

This definition makes use of the ordered face representa-
tion of polyhedra and therefore takes the relative oriémtat 3 The embedding problem
of polyhedra into account.
Two clusters of polyhedra artpologically equivalentf For the determination of equivalent substructures in
their polyhedra graphs are topologically isomorphic. model structures it is sufficient to find one mapping of the
The geometry of topologically equivalent clusters may polyhedra of the search structure to polyhedra of the sub-
differ strongly. Consider Figure 6 showing two rings of strycture such that the corresponding graphs are isomor-
square pyramids sharing opposite edges of their squargic. In order to check for geometric similarity, it is in
faces. In one of the rings the apices of the pyramids aregeneral not sufficient to consider a single mapping for two
directed to the outside and in the other ring they show to the graphs but all possible non-equivalent mappings have to be
inside. Since in both rings the number of pyramids is the taken into account. The equivalence of mappings can result

same, they are topologically equivalent. from symmetries in the model structures or from the exis-
tence of alternative permutations of the vertices of polyhe
dra.
/ 3.1 Possible mappings
S Consider the five-membered chain of tetrahedra shown
in Figure 7. There are two ways to map the chain C con-
sidered as a cluster onto itself: mapping tetrahedrém

itself or - as indicated by C' - to tetrahedrg# — ), for
i = 0,..,4. Obviously, the second mapping does not fit to
the geometry of the chain indicated in the figure.
Consider the starlike clustét of tetrahedra shown in Fig-
ure 7. It can be mapped to the clustrin three different
Despite of this diversity of possible geometric realiza- ways. Only by using the mapping— i’,7 = 0, ..., 3, the
tions, the definition is practically useful since it does not clusterS can be moved exactly afY.
exclude clusters from the set of candidates in the search The number of possible mappings can be exponential in
for similar substructures when they differ with respect to the size of the given cluster. Consider the cycle in Figure 8
the embedding in space or the form of their polyhedra but a). Let it represent a cycle of identical polyhedra with a sin
are identical with respect to the type of the polyhedra and gle kind of connection. Assume a fixed embedding of the
their connections. Small deviations in the angles of con- cycle into the graph shown in Figure 8 b) to be given. There
nected polyhedra may sum up to quite large differences inexist seven further mappings which differ from the chosen
the overall geometry, but it is difficult to provide a limitfo  mapping only with respect to the alternatives provided by
differences being allowed. Furthermore, differences & th the three 4-membered cycles. It is easy to see that in gen-
relative positioning of two neighbouring polyhedra in oth- eral for such a cycle with x n nodes there arg” possible
erwise strongly similar clusters would lead to great differ mappings constructable in this way when the model struc-
ences when using methods like root mean square. Hencéure has the same form as the structure in Figure 8 b) with

Figure 6: Topologically equivalent clusters.
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Figure 7: The embedding problem.

Figure 8: Exponential complexity.

6 x n nodes. Figure 8 c) demonstrates that this situation oc-
curs in real crystal structures like the silicate leifite.efédn
exist 315 non-translationally equivalent 15-memberegsin
of corner-sharing tetrahedra in this crystal (for a defmiti
of rings in such crystal structures see [16]).

The number of mappings to consider can often be re-
stricted by taking the symmetries of the target structui@ in

?ccoun:]. Ilt IS s;Jfﬂment Eo. cr|1|oose a s||ngtle rs plreS(tantatn'/etWO polyhedra in ordered face representation. d.dte an
tﬁr t?[ac (t:atss (: symlmle _rfl.(t:a t}/] equiva e4r11 3‘% S rui:c;mes : isomorphism betweef and P’ ande = (i, j) an edge of
€ target structure. n leinte there are Ierent ®@aSS — p Then there is exactly one permutatiorof the vertices

of 15-membered rings. Furthermore, when looking for em- of P’ such that the following holdsér(¢(i)), 7(6(j))) =

beddings given a representative of such a class only embed(i j) andP and P’ have the same ordered face repregenta-
dings have to be considered which are not symmetrically .’

. . S tion.

equivalent Con5|defr. again F|gure 8.Inthe symmetry 9roUp tpe uniqueness of the permutatioriollows from the fol-
(space-group) of leifite there is a threefold rotation axis i lowing observation: and¢(e) shall have the same num-
the center of the substructure shown in Figure 8 c¢). Let Apers: hencer(6(i)) := i andn(6(j)) := j. There are
concrete mapping of a 15-membered ring into the shown exac'tly two faced; and F, of P which are incident with

substructure be given. Then four additional mappings using . \without loss of generality it can be assumed thatkc-
the same tetrahedra of the substructure have to be consid-

d instead of fourt i " ld b i curs in the representation @ in the orderi, j and in the
Elr: Instead ot fourteen it no symmetry would be applica- representation of’ in the orderj,i. For every sequence

1,7 there is exactly one representation of a face in the or-
dered faced representation of a polyhedron. This means that
3.2 Uniqueness criteria the number of every vertek in ¢(F;) has to be mapped
by 7 to the number ofs~!(h) in order to get the same se-

To check two clusters for topological equivalence it is quence of vertex numbers as it occurs in the representation
necessary to find for every polyhedron in one of the cor- of F;. The same holds fop(Fz). So is uniquely de-
responding polyhedra graphs a suitable permutation of thetermined for the vertices af(F1) and¢(F>). Since there
vertices such that both graphs become identical (up to theare now further edges @’ determined, the permutation
geometric information). Though the number of permuta- is uniquely fixed for all vertices of’. The vertices of an
tions for a polyhedron to consider can be restricted by tak- edge being involved in a connection of a cluster of polyhe-
ing the rotation group into account, the resulting set céin st dra must be numbered identically to the corresponding edge
be quite large. Therefore, all possibilities to restrics thet in a topologically equivalent cluster. Hence in case of edge
further should be applied. The following properties of a or face-sharing the ordered face representation guasantee
convex polyhedrot® and an ordered face representation of that the vertex numbering in one of the corresponding poly-

it are helpful into that regard:
- Every edge ofP belongs to exactly two faces.
- Every face ofP has at least three edges.
- The representation of faces implies that every edge shows
up as a paifi, j) in one face and ag, 7) in the other face.
We get as an immediate consequence: Petnd P’ be
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hedra graphs determines uniquely the vertex numbering infourfold rotations which are automorphisms.
the other graph. A similar situation is given when two poly- Coordination polyhedra may have distortions which cangg
hedra are linked by the two vertices of an edg# another be used to restrict the set of geometrically reasonable per-
polyhedronP. The permutation of the polyhedrdti in the mutations when only a single vertex is fixed by a connec-
isomorphic graph is determined uniquely since the verticestion. This is a consequence of missing symmetries (the
of e and the corresponding edge in the isomorphic graphtopological view of polyhedra could be augmented by sym-
have to be identical. metry information such that it is not only sufficient to have
Example:Consider the two chains of tetrahedra in Figure identical face representation but the symmetry groups must
9 a). They are topologically equivalent. A permutation  fulfill conditions as well).
of P’ of a topological isomorphism for the two chains must  For a given cluster there can exist many isomorphic sub-
map2 to 3 and4 to 1. The edger = (3,1) of P takenin  graphs in the same model graph. Hence the problem arises
the given order determines the fade2, 3) of P. The face  which ones to present in the result of a query. Clusters with
in P" with (2, 4) occuring in this order in its representation jsomorphic polyhedra graphs can have quite different ge-
is (2,4,1). We therefore get (1) = 2 and(3) = 4. ometries. We need a method to rank results which is fast

to compute and which nonetheless is suited to measure the

N A B R A N differences in the geometries of clusters since the number
P of qualifying model structures can be very large as well.
4 33 P 1 3 3 4 T
2 42
) p '

4 Geometric similarity of embeddings

@ Geometric similarity of three-dimensional structures has

Bt been defined in various different forms depending on the
underlying applications. For the comparison of clusters of

: ; 2 polyhedra we need a definition of similarity which takes

a4 117 3 into account that coordination polyhedra represent strong

,7" """"" 8 s 6 bonds and that connections between polyhedra are given by

’ the sharing of common atoms.

]
N
<0

o
o
N
2]

(b)
Figure 9: Connections fixing a permutation. 4.1 The problem

For the uniqueness of the permutation of a polyhedron  For molecular structures, operations such as rotations,
P’ it is even sufficient when the vertices &finvolved in translations, and scaling as well as the editing of molecule
the connection are vertices of the same fAcdhe vertices  including the deletion or insertion of atoms are sometimes
of the corresponding facE’ in P’ are uniquely determined  applied to check for a possible matching [17]. Other ap-
by the representation af' since no pair of vertices of a proaches look for maximal subgraphs allowing distances of
face which are not the endpoints of an edge can both beatoms to vary in fixed ranges [5] or identify backbone struc-
vertices of a further face. Otherwise, the second face wouldtures in order to find rigid motions for solving the matching
intersectF'. Hence there is a single entry with both vertices problem for substructures [18].
in the representation d?. For an example, see Figure 9 b). For inorganic structures “the use of the term 'similar’, in
Verticesl and3 of P occur together only in facd, 2, 3, 4). the definition of configurational and crystal chemical iso-
From the connections follows that the verticeand7 of typism, arises from the inherent difficulty in defining a pri-
P’ have to becomé and3, respectively. This implies the ori limits on the similarity of geometrical configurations
change ofl to 2 and of3 to 4. or physical/chemical characteristics” [19]. This mearst th

In case the permutation of a polyhedron cannot be fixed flexibility has to be taken into account like for organic stru
by its neighbourhood, a representative of each class of periures.
mutations resulting in the same ordered face representatio ~ Since for inorganic structures the notion of coordination
has to be considered. Take a single polyhedron, an octahepolyhedra is fundamental [8], it should be possible to define
dron, for example, in its regular form. There &teossible and analyze similarity at the level of polyhedral networks.
ways to label its vertices with different numbers. There are A single coordination polyhedron characterizes the bagdin
however, much less ordered face representations of an ocstructure for a distinguished central atom and neighbgurin
tahedron, namelg0. This results from the properties of atoms. Mostly, these local bonds are strong compared to
its symmetry groupn3m. It contains three perpendicular other bonds. The form of a polyhedron depends upon the
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kind of the central atom, the number and kind of its lig-
ands, and other atoms in the vicinity. In a typical silicate,
for example, four oxygen atoms with strong bonds to a sil-
icon atom form a regular tetrahedron. Sodium and chlo-
rine atoms are forming regular octahedra in sodium chloride
whereas the octahedra formed by lithium and oxygen atoms
in some silicates are quite irregular.

Distortions of polyhedra from the perfect form can be
measured [13], [20], [21], but it is also argued that no
unique index can be defined for measuring the size of the
distortion since measures are never completely model-free
[22], [13]. Therefore, when comparing substructures of in- ric transformations. We first repeat some definitions of [23]
organic compounds at the level of coordination polyhedra, a(for an introduction into projective geometry see [24], for
distinction between the placement of polyhedra in the struc example).
ture and the shape of polyhedra seems to be appropriateSince we are only interested in embeddings into the Eu-
The placement of a polyhedron can be described by the coclidean space it is sufficient to consider projective spaces
ordinates of its central atom. A difference in the coord#sat over the real numbers.
of the central atoms of two corresponding polyhedraimplies  Letn € N. Forz,y € R"*!\ {0} define the equivalence
that the coordinates of the ligands are different as well or relation
that there are differences in the shape of the two polyhedra.

The reference coordinate axes of two structures cannot =~y tiff thereis a € R with x = \y.
pe assumed to be identical. Hence rotations ar}d'transla--rhe set of equivalence classes
tions are normally necessary to check for geometric isomor-
phism. The most restrictive definition of geometric similar PR" := (R""\ {0})/ ~
ity requires a bijection to exist between the two given point
sets such that the coordinates of a point and its image in theS calledthe projective space of dimensieroverR; the el-
other set are allowed to differ only in the range of a given €ments of’R™ are calledorojective points
small tolerance. This tolerance is necessary in connection-€tz € PR" with 2 = (xo,...,x,). Thenz and Az de-
with experimental data. A weakened form of this defini- Scribe the same projective point for all# 0. The equiv-
tion assumes polyhedra to be rigid bodies according to the@lence class of is usually denoted agro : -+ : z,) and
fact that they model strong bonds. It considers vertex- and (%o : -+ : ») are calledhomogeneous coordinatesthe
edge-sharing connections of polyhedra in clusters as-'ball POINtz.
and-sockets’ and "hinges’. Whereas a face-sharing allowsForz € R? with z = (z1, 72, z3) itis convenient to use the
no flexibility, a vertex-sharing and an edge-sharing of two PoInt ‘
polyhedra allow the central atoms to move on the surface of = (x,1) := (w1, 29,23, 1) € PR®
asphere and on circles, respectively, depending on the overas representative of its equivalence class.
all flexibility of the cluster. For two clusters it should be |t ¢ : M — R is a mapping of an arbitrary st into
possible to apply appropriate motions such that the result-R3, theng shall denote the continuation gfon the home-
ing clusters are geometrically similar according to the- def geneous coordinates of the images, i.e.
inition above. A distinction can be made whether motions _
with intermediate interpenetrating polyhedra are allosed @(m) = p(m)
not.

Figure 10: Identification by hinge motion.

Figure 10 shows an example where two structures be_forall m € M.
9 P For the description of all lines &2 properties and notions

come identical |f an appropriate hmge_mouon is applied. It of the Grassman-Cayley algebra are used. A general multi-
should be mentioned that these two rings of tetrahedra are_,. .. ; s . ]

: . - plication on the points dPR™ is defined as follows:
normally considered as strictly distinct clusters.

Let a,b € PR® with a = (a1,a2,a3,a4) andb =

. (b1, b2, b3, by). Consider the matrix
4.2 Polyhedral clusters as joint structures

Db:(al a2 ag Cl4>
For the mathematical modeling of geometric embed- ’ bi b2 by ba
dings of polyhedra graphs the algebra presented in [23] iSTpe guter producis defined as

well suited. It uses projective geometry as underlying the- ‘ ‘

ory and allows to deal elegantly with motions and geomet- v : PR? x PR® — RS,
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aVb:= (dia,doq,dsq, dos,ds1, d12), o for every connection by facés;, P;) € E; we have
whered;; denotes the x 2-minor obtained from théth and e 200

jth column ofD, 4.
The6-tupela V b is called2-extensoof the pointsa andb;

it is also written in the fornub. S is ajoint motionof the configuration induced byos. S

The set of all sucls-tupels for pairs of points is denoted by IS calledtrivial if S = D for someD < A2 o _

L2. G is calledflexibleif it admits a non-trivial joint motiors.
Leta,b € R? anda, b be the equivalent projective points. Since the geometrical views of the polyhedra of a poly-
Then the following holds: hedra graph determine a configuration of the graph, it is
ab=aVvb=(a—baxb). possible to define the congruency of two polyhedra graphs
(a — b, a x b) are called thePliicker coordinatesf a andb. in analogy to general graphs. Based on this definition,

Not all elements ofR® correspond to pairs of points but conditions for the_possibility to_transform the graphs into
every such 6-tuple representsarewin R3. This results ~ €ach other by motions can be given.
from the fact that every element &© can be obtained as o
sum of two 2-extensors. The set of all 6-tuples or screws is Definition: Let Gy = (N1, E1, A1) andGy = (N2, Ez, A2)
usually denoted by2. be two polyhedra graphs with functiopss; andposs as-
Consider the polyhedra graghy = (Np, Ep, ) for signing the coordinates to the vertices of the polyhedra of
a polyhedral clusteP together with the geometrical views G1 andGa, respectively. _ o
of the polyhedra. The edgésy of the graph can be parti- G, unql G4 arecongruenif there exists a topological iso-
tioned according to their corresponding type (vertex, edge Morphismy : G1 — G- and aR*-isometryT” such that
or face):
Ep = E,UE.UE;. T'oposy = poss o .

Define the following mapping Let SE(3) denote the set of proper rigid motions &F.

H:E — L2 LetM : A2 — SFE(3) be a mapping assigning the ho-
mogeneous representation to every screw. If a mafion
e = (B, Pj) v pos(Le,) V pos(Le,) =: L j, of G, exists such thaf!; after applying the (homogeneous

where{L.,,L.,} = Vp, N Vp. for every edgeP;, P;) € representation) of the motidhandG, are congruent with
E.; Vp,, Vp, denote the sets of vertices of the polyhedra r€Spect tosy andposy, i.e., if there exists a-isometry
P, P; € P, respectively. T such that for alh; € Ny

Since for every edgéP;, P;) € E. we have
(T o M(S;) o post)(n;) = (posz o ¢)(ni)
Lij =—Ljs,
. ] . ’ .j holds, thenS is called ageometric transformatioof G,
it follows thatH is a hinge motion [25]. into G and G, is calledgeometrically transformable into
We are now ready to define when a polyhedral cluster ¢, py joint motions
is flexible and when two given polyhedra graphs can be  Thjs definition fixes when two polyhedra graphs can be

considered as geometrically transformable into each othefransformed into each other geometrically. The underly-
o only joint motions can be applied.
Definition: Let G = (Np, Ep, ) be a polyhedra graph Consider a set of topologically isomorphic polyhedra

with geometrical views given for all polyhedra. Let graphs. Assume that corresponding polyhedra in the graphs
S: Np — A2, P, S, are congruent. The guestion ar.ises Wheth.er for any pair
of graphs (71, G») in the set,G; is geometrically trans-
be a mapping such that the following holds: formable intoG4 by joint motions. Look again at the rings

of polyhedrain Figure 6. Applying hinge motions and mov-
ing the pyramids through one another allows to transform
one ring into the other. However, if we add two handles to
Sipos(L) = S;pos(L), each of the rings with edge-sharing pyramids and with con-
nections to the ring at opposite pyramids again by sharing
o for every connection by edgé¢#’, P;) € E. there ex- edges (a kind of 'crown’ is built), the resulting clusterg ar
ists a scalap; ; € R, such that topologically equivalent but no geometric transformai®n
possible. The reason for the missing of a transformation is
Si —S;j = AijLij, that the pyramids of the handles as well as those of the ring

e for every connection by vertice®;, P;) € E, with
Vp, NVp, = {L} we have
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have to be moved through one another in orderto changethéet ¢ : P — P’, P, — P/, be an isomorphism and let
direction of their apices. Applying such a motion to one of Cp = {¢1,...,¢,} andCp: = {c},...,c,} be the sets of 301
the handles results in a squeezing of the other handle sinceoordinates of the central atomsBfandP’, respectively
each handle and the ring can only be moved perpendiculafreferring to a common Cartesian coordinate system), i.e.
to their hinges. This follows from the fact that the complete ¢; = posp(P;) andc, = posp/(F)), fori = 1,...,n.
structure has only connections by edges. Herepos is the function from polyhedra to the coordinates

Two non-flexible topologically isomorphic clusters of their central atoms derived from the geometrical views of
which are not geometrically transformable into one another the polyhedra.
can be constructed as follows: Take a cube and place a pyrag induces a mapping
mid on each of its faces; remove the cube from the clus-
ter. The resulting configuration of edge-sharing pyramids Y : Cp — Cpr,
is topologically equivalent to the cluster which we obtain
when the apices of the pyramides are all pushed in. Since posp(cp) = ¢i > ¢ = pospr(co(p))

the two clusters are not flexible, no geometric transforma- that sends the coordinates of the central atom of every poly-
tion is possible. hedron of P to the coordinates of the central atom of its

The notion of geometric transformation can be weakenedimage under.
in order to get a definition of similarity which takes into The setsCp» andCp are now considered as rigid sub-
account that in crystal structures we do not deal with ideal gets ofR3, which shall be moved such that the best possible
polyhedra. One idea is to restrict thes-functions in the  yatching results. This means that a motiore SE(3) is
definition of a geometric transformation to vertices inealv  |50ked for solving the following least-squares problem:
in connections and to allow differences in the coordinates
of corresponding vertices up to some fixed limit. A second U := Z ||(posp: o p)(P) — (T o posp)(P)||3 = min.
possibility is to restrict these functions to the centrahas PeNp
of the polyhedra with the same relaxation with respect to
the coincidence of coordinates.

When two structures are geometrically similar to one an-
other according to one of these definitions they can be fur- n
ther analysed for the similarity of corresponding polyhe- U:= Z ||c; — T(c;)||3 = min.
dra. Symmetries can be checked, for example, the kinds i=1
of atoms can be compared, or measures of distortions carAn optimal rigid Euclidean motioA’ moves the centroid
be used. In the following, we concentrate on the first step. of C'» to the centroid ofCp. [26]. By placing centroids
Furthermore, we do not consider non-trivial joint motions into the origin of the common coordinate system, the least-
to change the geometry of structures. We rather use the roosquares problem reduces to the determination of a rotation
mean square method to measure the 'distance’ of two struc-I" solving the equation above f@r» and Cp: relative to
tures with respect to the positions of the central atoms of their centroids.

With the notations from above we get the following equiva-
lent formulation:

their polyhedra. For measuring the similarity of two structur®sand P’
the root mean square
5 Implementation and results
P VT
o

The problem of minimization of distances for two sets
of points in three-dimensional space is sometimes calledis taken. The similarity increases with decreasinyVhat
'problem of absolute orientation’. Two well-known meth- we have to keep in mind is that polyhedra distortions and ro-
ods for solving this problem have been investigated: the tations allowed by their connections may lead to differesnce
algorithm of B.K.P. Horn [26], a closed-form solution of in the shape of otherwise similar clusters.
the problem using unit quaternions to represent rotations, For our problem it is sufficient to consider quaternions
and the algorithm of W.A. Dollase [27] using infinitesimal as unit vectors oR*. Each unit quaternion uniquely rep-
rotations. We have given preference to the algorithm of resents a rotation in three-dimensional space. Furthermor
Horn since it avoids the potentiation of humeric instabili- scaling of point sets is not wanted since motions shall be
ties, which may arise in connection with orthonormalizatio rigid. Therefore, we assume the scaling factor in the algo-

in the algorithm of Dollase. rithm of Horn to bel.
LetGp = (Np, Ep, )\73) andGp = (Np/,Ep/, )\73/) Algorithm
be two finite polyhedra graphs witNp = {Py,..., P,} Input : Two finite topologically isomorphic clusters of poly-

andNp = {P/,...,P.}. hedraC, andC, with sets of polyhedrd P, ..., P,} and
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{P],..., P}, respectively, and a topological isomorphism
¢ such thatP, = p(P;), fori =1, ..., n.
Output: Root mean square of the deviation@f andC,
after an optimal distance minimizing movement of the cen-
tral atoms according t@ in a common coordinate system.
/Il Initialization
Transform the coordinates of all atoms@f andC; into
Cartesian coordinates; generate the seis = {c1, ..., ¢, }
andAcq, = {d, ..., c,,} of coordinates of the central atom
of Cy andCy, resp.
CentralizeA¢, andAc,:
¢i= 22 s
= % D i Ch
fori=1,...,ndo
c; = ¢; — C,
ci=c — ¢
end
/I Sol ution of the bal ancing problem
Compute with the algorithm of Horn the rotation matfy,
which movesA, optimally onAc,.
/I Conput ation of the result and paraneter
/l extraction (rotation angle ©,.s and axis
Il (Lres, Mres, Nres) € R?)
U= Y0 s — Ry(ea)l13:
VU. ‘
n

c/

€=

CompUte@)Tem lres; Mresy, Nres giVEnRTES = Rq. |

The implementation of the algorithm in C++ has beer—‘rf'—-i
integrated into our system POLYSEARCH [6]. A graphical =~

interface of POLYSEARCH allows to mark a substructure
of a chosen crystal for search. Topologically equivalehbtsu
structures in a set of model structures are determined bas
upon a representation of the crystals by periodic graph
When building the result, the number of substructures c
the same crystal structure being geometrically equivatent
each other is reduced by exploiting the symmetries of the

structure. The information on the subgraphs correspond-

1ents/

Search structure
in aminoffite

Epididymite:
RMS 0.162449

Merrihueité:ﬁ
RMS 0.711812

Paracelsian:
RMS 0.485688

Figure 11: Search structure and three similar substrugture

6 Conclusions

ing to the remaining substructures is used to determine the

ranking, which can be done fast (cp. [28]). The execution
time of the search for equivalent substructures mainly de-
pends on the selectivity of the search structure relatitiedo
given set of model structures [6]. The extension of our web
application [9] by an appropriate graphical interface foe t
representation of the geometric similarity of substruesur

is in progress.

In this paper, the main focus has been to show how ge-
ometric similarity of clusters of coordination polyhedemnc
be defined and computed by an appropriate algorithm. The
integration of the algorithm into our system for the retakev
of isomorphic substructures in large sets of model strestur
allows to search for geometrically similar substructures i
large inorganic crystal structure databases. The search ca

Figure 11 shows screenshots of a search structure in thdoe combined with other information about the target struc-

silicate aminoffite and three substructures of the resuh wi
their root mean square values (RMS). In this example, the
structures consist of tetrahedra with nearly identicalngeo
etry. The different RMS values mainly result from the dif-
ferences in the orientation of the tetrahedra in the claster

ture such as publication data, symmetries, or the assighmen
to a special class.

A further application can be seen in the field of structure
prediction. In recent years, the enumeration of hypothétic
inorganic structures has attracted much attention [29], [3
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Geometric embeddings are computed for graphs which are[13] E. Makovicky and T. Bali¢c-ZunitNew measure of distortion
generated in an enumeration process. It is very helpful to ~ for coordination polyhedraActa Cryst. B54, pp. 766-773, (3
analyse these hypothetical structures with respect t@ thei 1998
similarity with real structures. [14] D. Abelson, S.-H. Hong, and D.E. Taylgadeometric auto-
As mentioned above, our system only checks for the sim- ~ morphism groups of graph®iscr. Appl. Mathematics 155,
ilarity of point sets built from the coordinates of central Pp. 221,1'2226' 2007 o _
atoms. In the future, we intend to implement methods for [15] A. Lubiw. Some NP-complete problems similar to graph iso-
taking all information about polyhedra into account and to ___MerPhism SIAM J. Comput. 10(1), pp. 11-21, 1981
provide information about motions, which can be applied to [16] K GfoetZke a.nd H‘] K.Ie'rp.rope.rt'es a’?d .eﬂ'c'em algo-
get a better matching of two topologically isomorphic struc ::terlvrccl,ifse\;e;?,l\]n;:@r o;tgﬂﬁlzlggﬁg: fzng Inflnlztfsriggg Glfl991
tures. A further idea is to apply methods developed in the j y ' PP- '

. . . [17] X. Wang and J.T.L. Wangdrast similarity search in three-
field of maximal subgraph search in order to be able to com- dimensional structure databasek Chem. Inf. Comput. Sci.

pare structures without referring to a target substructure 40, pp. 442-451, 2000

Recently, a graphical interface has been implemented inj1g) | p. Chew, D. Huttenlocher, K. Kedem, and J. Kleinberg.
POLYSEARCH offering operations for constructing poly- Fast detection of common geometric substructure in pretein
hedral clusters artificially. A collection of different lds Proc. 3rd ACM RECOMB, pp. 104-112, 1999

of polyhedra as often found in crystal structures is avé#lab [19] J. Lima-de-Faria et aNomenclature of inorganic structure
and methods for constructing clusters and modifying them types Acta Cryst. A46, pp. 1-11, 1990

by applying joint motions have been realized. For the gener-[20] T.B. Balic-Zunic and E. MakovickyDetermination of the
ated clusters, embeddings into polyhedral networks of real  centroid or 'the best centre’ of a coordination polyhedyon

crystal structures can be determined and ranked. Acta Cryst. B52, pp. 78-81, 1996
[21] E. Lalik. Shannon information as a measure of distortion in
coordination polyhedraAppl. Cryst. 38, pp. 152-157, 2005
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