
224

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

K-Means on the Graphics Processor: Design And Experimental Analysis

Mario Zechner
Know-Center

Inffeldgasse 21a
Graz, Austria

mzechner@know-center.at

Michael Granitzer
Graz Technical University

Inffeldgasse 21a
Graz, Austria

mgranitzer@tugraz.at

Abstract—Apart from algorithmic improvements many in-
tensive machine learning algorithms can gain performance by
parallelization. Programmable graphics processing units (GPU)
offer a highly data parallel architecture that is suitable for
many computational tasks in machine learning. We present an
optimized k-means implementation on the graphics processing
unit. NVIDIA’s Compute Unified Device Architecture (CUDA),
available from the G80 GPU family onwards, is used as the pro-
gramming environment. Emphasis is placed on optimizations
directly targeted at this architecture to best exploit the com-
putational capabilities available. Additionally drawbacks and
limitations of previous related work, e.g. maximum instance,
dimension and centroid count are addressed. The algorithm is
realized in a hybrid manner, parallelizing distance calculations
on the GPU while sequentially updating cluster centroids on
the CPU based on the results from the GPU calculations.
An empirical performance study on synthetic data is given,
demonstrating a maximum 14x speed increase to a fully SIMD
optimized CPU implementation. We present detailed empirical
data on the runtime behavior of the various stages of the
implementation, identify bottlenecks and investigate potential
discrepancies arising from different rounding modes on the
GPU and CPU based. We extend our previous work in [1]
by giving a more in depth description of CUDA as well as
including previously omitted experimental data.

Keywords-Parallelization, GPGPU, K-Means

I. INTRODUCTION

In the last decades the immense growth of data has
become a driving force to develop scalable data mining
methods. Machine learning algorithms have been adapted
to better cope with the mass of data being processed.
Various optimization techniques lead to improvements in
performance and scalability among which parallelization is
one valuable option.

One of the many data mining methods widely in use is
partitional clustering which is formally defined as ”the or-
ganization of a collection of patterns (usually represented as
a vector of measurements, or a point in a multidimensional
space) into clusters based on similarity” [2]. The application
of clustering is widespread among many different fields,
such as computer vision [3], computational biology [4, 5]
or text mining [6]. A non-optimal solution to the NP-hard
problem of partitional clustering was proposed by Lloyd in
[7]. The most well known variant is the k-means algorithm

in [8]. The popularity of k-means is explainable by its low
computational complexity and well understood mathematical
properties. However, k-means will only find non-optimal
local-minima, depending on the initial configuration of cen-
troids. This is also known as the seeding problem and was
addressed in various works. Recently a new strategy yielding
better clustering results was introduced in [9]. Still, the run-
time performance of k-means is a concern as data is growing
rapidly, especially when finding the correct parameter of k
can only be done by performing several runs with different
numbers of clusters and initial seedings.

With the appearance of programmable graphics hardware
in 2001, using the GPU as a low-cost highly parallel
streaming co-processor became a valuable option. Figure
(I) illustrates the performance of GPUs and CPUs as well
as differences in memory throughput over the years 2003
to 2008. This developement spawned scientific interest in
this new architecture and resulted in numerous publications
demonstrating the advantages of GPUs over CPUs when
used for data parallel tasks. Much attention was focused on
transferring common parallel processing primitives to the
GPU and creating frameworks to allow for more general
purpose programming [10, 11]. The most problematic aspect
of this undertaking was transforming the problems at hand
into a graphics processor pipeline friendly format, a task
needing knowledge about graphics programming. The reader
is referred to [12] where an in-depth discussion on mapping
computational concepts to the GPU can be found. This
entry barrier was recently lowered by the introduction of
NVIDIA’s CUDA [13] as well as ATI’s Close to Metal
Initiative [14]. Both were designed to enable direct ex-
ploitation of the hardware’s capabilities circumnavigating
the invocation of the graphics pipeline via an API such
as OpenGL or DirectX. In this work CUDA was chosen
due to its more favorable properties, namely the high-level
approach employed by its seamless integration with C and
the quality of its documentation.

In this paper a parallel implementation of k-means on
the GPU via CUDA is discussed. Section II discusses
the sequential and parallel variants of k-means leading to
Section III where related work is investigated. Section IV
gives an overview of CUDA’s properties and programming

225

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

Figure 1. Evolution of CPU and GPU performance over the last decade
[15]

model followed by Section V describing the concrete parallel
implementation of k-means on the GPU. A comparison of
the GPU implementation versus an optimized sequential
CPU implementation is given in Section VI. Finally, Section
VII concludes this paper.

II. K-MEANS CLUSTERING

In this section a definition of the k-means problem is given
as well as non-optimal sequential and parallel algorithmic
solutions. Additionally the computational complexity is dis-
cussed.

A. Problem Definition

The k-means problem can be defined as follows: a set
X of n data points xi ∈ Rd, i = 1, . . . , n as well as
the number of clusters k ∈ N+ < n is given. A cluster
Cj ⊂ X , j = 1, . . . , k with a centroid cj ∈ Rd is composed
of all points in X for which cj is the nearest centroid.
The distance from a data point to a centroid is determined
by some suitable metric. Figure (II-A) shows a simple toy
dataset with 3 gaussian clusters, some outliers and the 3

Figure 2. A simple two dimensional toy example with three gaussian
clusters.

cluster centroids. The optimal set C of k centroids can be
found by minimizing the following potential function:

φ =
n∑

i=1

min
cj∈C
D(xi, cj)2 (1)

D is a metric in Rd, usually the euclidean distance.
Solving Equation (1) even for two clusters was proven to be
NP-hard in [16]. However, a non-optimal solution for the k-
means problem exists and will be described in the following
subsection. For the rest of the discussion it is assumed that
the set of data points X is already available in-core, that is
loaded to memory.

B. Sequential K-Means

In [8] MacQueen describes an algorithm that locally im-
proves some clustering C by iteratively refining it. An initial
clustering C is created by choosing k random centroids from
the set of data points X . This is known as the seeding stage.
Next a labeling stage is executed where each data point
xi ∈ X is assigned to the cluster Cj for which D(xi, cj) is
minimal. Each centroid cj is then recalculated by the mean
of all data points xi ∈ Cj via cj = 1

|Cj |
∑

xi∈Cj
xi. The

labeling and centroid update stage are executed repeatedly
until C no longer changes. This procedure is known to
converge to a local minimum subject to the initial seeding
[17]. Algorithm 1 describes the procedure in algorithmic
terms.

The next subsection demonstrates how this sequential
algorithm can be transformed into a parallel implementation.

C. Parallel K-Means

In [18] Dhillon presents a parallel implementation of k-
means on distributed memory multiprocessors. The labeling
stage is identified as being inherently data parallel. The set
of data points X is split up equally among p processors,
each calculating the labels of all data points of their subset

226

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

Algorithm 1 Sequential K-Means Algorithm
cj ← random xi ∈ X , j = 1, . . . , k, s.t. cj 6= ci∀i 6= j
repeat
Cj ← ∅, j = 1, . . . , k
for all xi ∈ X do
j ← arg minD(cj , xi)
Cj ← Cj ∪ xi

end for
for all cj ∈ C do

cj ← 1
|Cj |

∑
xi∈Cj

xi

end for
until convergence

of X . In a reduction step the centroids are then updated ac-
cordingly. It has been shown that the relative speedup com-
pared to a sequential implementation of k-means increases
nearly linearly with the number of processors. Performance
penalties introduced by communication cost between the
processors in the reduction step can be neglected for large
n.

Algorithm 2 Parallel K-Means Algorithm
if threadId = 0 then

cj ← random xi ∈ X , j = 1, . . . , k, s.t. cj 6= ci∀i 6= j
end if
synchronize threads
repeat

for all xi ∈ XthreadId do
li ← arg minD(cj , xi)

end for
synchronize threads
if threadId=0 then

for all xi ∈ X do
cli ← cli + xi

mli ← mli + 1
end for
for all cj ∈ C do

cj ← 1
mj

cj

end for
if convergence then

signal threads to terminate
end if

end if
until convergence

Since the GPU is a shared memory multiprocessor archi-
tecture this section briefly outlines a parallel implementation
on such a machine. It only slightly diverges from the
approach proposed by Dhillon. Processors are now called
threads and a master-slave model is employed. Each thread is
assigned an identifier between 0 and t−1 where t denotes the
number of threads. Thread 0 is considered the master thread,

all other threads are slaves. Threads share some memory
within which the set of data points X , the set of current
centroids C as well as the clusters Cj reside. Each thread
additionally owns local memory for miscellaneous data. It
is further assumed that locking mechanisms for concurrent
memory access are available. Given this setup the sequential
algorithm can be mapped to this programming model as
follows.

The master thread initializes the centroids as it is done
in the sequential version of k-means. Next X is partitioned
into subsets Xi, i = 0, . . . t. This is merely an offset and
range calculation each thread executes giving those xi each
thread processes in the labeling stage. All threads execute
the labeling stage for their partition of X . The label of each
data point xi is stored in a component li of an n-dimensional
vector. This eliminates concurrent writes when updating
clusters and simplifies bookkeeping. After the labeling stage
the threads are synchronized to ensure that all data for the
centroid update stage is available. The centroid update stage
could then be executed by a reduction operation. However,
for the sake of simplicity it is assumed that the master
thread executes this stage sequentially. Instead of iterating
over all centroids the master thread iterates over all labels
partially calculating the new centroids. A k-dimensional
vector m is updated in each iteration where each component
mj holds the number of data points assigned to cluster
Cj . Next another loop over all centroids is performed
scaling each centroid cj by 1

mj
giving the final centroids.

Convergence is also determined by the master thread by
checking whether the last labeling stage introduced any
changes in the clustering. Slave threads are signaled to stop
execution by the master thread as soon as convergence is
achieved. Algorithm 2 describes the procedure executed by
each thread.

D. Computational Complexity

In this section the number of operations executed by k-
means in each iteration is investigated. This number is equal
for both implementations. It therefore serves as the basis for
comparing runtime behavior in section VI.

For the computational complexity analysis each floating
point operation is counted as one computational unit. Addi-
tions, multiplications and comparisons are considered to be
floating point operations. Also, the seeding stage is ignored
in this analysis.

The labeling stage consists of evaluating the distance
from each data point xi to each centroid cj. Given an
euclidean distance metric each distance calculation consists
of one subtraction, one multiplication and one addition per
dimension totaling in 3d operations. Additionally a square
root is calculated adding another operation per distance
calculation. Finding the centroid nearest to a data point xi

is an iterative process where in each iteration a comparison
between the last minimal distance and the current distance is

227

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

performed. This adds another operation to the total number
of operations per labeling step. There is a total of nk labeling
steps resulting in the total numbers of operations of

Olabeling = 3nkd+ 2nk = nk(3d+ 2) (2)

for the labeling stage in each iteration.
In each iteration of the centroid update stage the mean

for each cluster Cj is calculated consisting of adding |Cj | d-
dimensional vectors as well as dividing each component of
the resulting vector by |Cj |. In total n d-dimensional vectors
are added yielding nd operations plus kd operations for the
scaling of each centroid cj by 1

|Cj | . For the update stage
there are thus

Oupdate = nd+ kd = d(n+ k) (3)

operations executed per k-means iteration. The total num-
ber of operations per k-means iteration is given by

Oiteration = Olabeling +Oupdate = nk(3d+ 2) + d(n+ k)
(4)

From Equations (2) and (3) it can be observed that the
labeling stage is clearly the most costly stage per iteration.
If d � n and k � n the updating stage contributes
insignificantly to the total number of operations making the
labeling stage the dominant factor.

III. RELATED WORK

To the best of the authors’ knowledge, three different
implementations of k-means on the GPU exist. All three
implementations are similar to the parallel k-means imple-
mentation outlined in section II-C formulated as a graphics
programming problem. Tabel (I) gives an overview of the
various approaches.

In [19] Takizawa and Kobayashi try to overcome the
limitations imposed by the maximum texture size by splitting
the data set and distributing it to several systems each
housing a GPU. A solution to this problem via a multi-
pass mechanism was not considered. Also the limitation on
the maximum number of dimensions was not tackled. It is
also not stated whether the GPU implementation produces
the same results as the CPU implementation in terms of
precision.

Hall and Hart propose two theoretical options for solving
the problem of limited instance counts and dimensionality:
multi-pass labeling and a different data layout within the
texture [20]. None of the approaches have been implemented
though. In addition to the naive k-means implementation
the data is reordered to minimize the number of distance
calculations by only calculating the metrics to the nearest
centroids. This is achieved by finding those centroids by
traversing a previously constructed kd-tree. The authors
could not observe any problems caused by the non standard

compliant floating point arithmetic implementations on the
GPU, stating that the exact same clusterings have been
found.

The approach of Cao et. al. in [21] differs in that the
centroid indices are stored in an 8-bit stencil buffer instead
of the frame buffer limiting the number of total centroids to
256. Limitations in dimensionality and instance counts due
to maximum texture sizes are solved via a costly multi-pass
approach. No statements concerning precision of the GPU
version were made.

Summarizing the presented previous work the following
can be observed:
• All implementations suffer from architectural con-

straints such as maximum texture size limiting the
number of instances, dimensions and clusters. The
limitations can only be overcome by employing more
costly multi-pass approaches.

• Not all publications state the exact conditions the im-
plementations were tested under. A direct comparison
is not strictly possible. However, the given numbers
indicate congruent results yielding an average speedup
of a factor between 3 and 4.

• The GPU implementation’s performance increases as
the problem at hand grows bigger in dimensionality as
well as instance and centroid count.

• Only one paper mentioned potential impact of the
non standard-compliant floating point arithemtics im-
plemented on GPU’s. No effects have been observed.

Based on the previous work the main contributions of this
paper are as follows:

1) A parallel implementation of standard k-means on
NVIDIA’s G80 GPU generation using the non-
graphics oriented programming model of CUDA.

2) Removal of the limitations inherent to classical
graphics-based general purpose GPU programming
approaches for k-means, namely the number of in-
stances, dimensions and centroids enabling large scale
clustering problems to be tackled on the GPU.

3) Investigation of precision issues due to the non IEEE
single precision floating point compliance of modern
GPU’s.

4) Performance evaluation of the presented implementa-
tion in comparison to an aggressively optimized single
core CPU implementation, using SSE3 vectorization
as well as loop unrolling optimizations, showing high
speedups when compared to the average speedup of
previous GPU-based implementations.

5) Evaluation of on-chip memory throughput as well as
floating point operation performance.

IV. CUDA

With the advent of the unified shader model the separa-
tion of vertex and fragment shader processors in hardware

228

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

Takizawa and Kobayashi [19] Hall and Hart [20] Cao et. al. [21]
CPU Intel P4 3.2 Ghz AMD Athlon 2800+ Intel P4 3.4 Ghz

Compiler GNU C++ 3.3.5 ? Intel C++
Optimizations SSE2 ? SSE2, Hyper-Threading

GPU NVIDIA Geforce 6600 Ultra NVIDIA GeforceFX 5900 NVIDIA Geforce 6800 GT
Speedup 4 2-3 4

Table I
SUMMARY OF PREVIOUS GPU-BASED K-MEANS IMPLEMENTATIONS. THE COLUMN SPEEDUP GIVES THE RELATIVE SPEEDUP OF THE GPU VERSION

TO THE CPU VERSION BASED ON TOTAL RUNTIME

has vanished. Shader processors can now be configured to
perform both tasks depending on the requirements of the
application [22]. Starting from the G80 family of GPUs
NVIDIA supports this new shader model resulting in a
departure from previous GPU designs. The GPU is now
composed of so called multiprocessors that house a number
of streaming processors ideally suited for massively data-
parallel computations.

NVIDIA’s CUDA is build on top of this new architecture
eliminating the need to reformulate computations to the
graphics pipeline. The GPU is viewed as a set of multipro-
cessors executing concurrent threads in parallel. Threads are
grouped into thread blocks and execute the same instruction
on different data in parallel. One or more thread blocks
are directly mapped to a hardware multiprocessor where
time sharing governs the execution order. Within one block
threads can be synchronized at any execution point. A certain
execution order of threads within a block is not guaranteed.
Blocks are further grouped into a grid, communication and
synchronization among blocks is not possible; execution or-
der of blocks within a grid is undefined. Threads and blocks
can be organized in three and two dimensions respectively.
A thread is assigned an id depending on its position in the
block. A block is also given an id depending on its position
within a grid. Figure (IV shows a two dimensional grid of 2
by 3 thread blocks. Each thread block is composed of 3 by 4
threads. The thread and block id of a thread is accessible at
runtime allowing for specific memory access patterns based
on the chosen layouts. Each thread on the GPU executes the
same procedure known as a kernel [15].

Threads have access to various kinds of memory. Each
thread has very fast thread local registers and local memory
assigned to it. Within one block all threads have access to
block local shared memory that can be accessed as fast as
registers depending on the access patterns. Registers, local
memory and shared memory are limited resources. Portions
of device memory can be used as texture or constant memory
which benefit from on-chip caching. Constant memory is
optimized for read-only operations, texture memory for spe-
cific access patterns. Threads also have access to uncached
general purpose device memory or global memory [15].
Figure (IV) gives an overview of this architecture.

Various pitfalls exist that can degrade performance of the
GPU. Shared memory access by multiple threads in parallel

Figure 3. A grid of thread blocks. Each thread block is composed of a
number of threads. Blocks and threads are indexed [15]

can produce so called bank conflicts serializing execution
of those threads and therefore reducing parallelism. Second,
when accessing global memory addresses have to be a
multiple of 4, 8 or 16, otherwise an access might be
compiled to multiple instructions and therefore accesses.
Also, addresses accessed simultaneously by multiple threads
in global memory should be arranged so that memory access
can be coalesced into a single continuous aligned memory
access. This is often referred to as memory coalescing.
Another factor is so called occupancy. Occupancy defines
how many blocks and therefore threads are actually running
in parallel. As shared memory and registers are limited
resources the GPU can only run a specific number of blocks
in parallel. It is therefore mandatory to optimize the usage of
shared memory and registers to allow to run as many blocks
and threads in parallel as possible [15].

The CUDA SDK gives the developer easy to use tools
that fully integrate with various C++ compilers. Code for
the GPU is written in a subset of C with some extensions

229

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

Figure 4. Hardware view of the CUDA architecture showing interdepen-
dancies and various forms of memory [15]

and can coexist with CPU (host) code in the same source
file. The host code is responsible for setting up the layout
of blocks and threads as well as uploading data to the GPU.
Kernel execution is performed asynchronously, primitives to
synchronize between CPU and GPU code are available. De-
bugging of device code is possible but only in an emulation
environment that runs the kernel on the CPU in heavyweight
threads which does not simulate all peculiarities of the GPU.
Below a simple example for substracting two vectors is
given:

g l o b a l void sub (f l o a t ∗ a ,
f l o a t ∗ b ,
f l o a t ∗ o u t)

{
i n t i = t h r e a d I d x . x ;
o u t [i] = a [i] − b [i] ;

}

i n t main ()
{

/ / i n i t i a l i z e cuda
. . .

/ / a l l o c a t e and f i l l memory
. . .

/ / e x e c u t e t h e k e r n e l
sub<<<1, d>>>(a , b , c) ;

/ / f e t c h t h e r e s u l t from t h e gpu
. .

}

A CUDA program most often follows this sequence of
steps. First the data on which the computations should be
caried out is fetched from a source, e.g. a file on disk and
loaded into RAM. Next the CUDA API is used to allocate
memory on the GPU and the data is transfered to this newly
allocated space. The API returns pointers that can be used
as arguments for a kernel invocation later on. At kernel
invocation time the number of thread blocks and blocks
within a thread is specified and any arguments are passed in.
In the above example each thread in the block will calculate
the difference of one dimension of the two vectors and place
the result in the corresponding element in array out. The
index is derived from the threads id given by threadIdx.x.
After the kernel has finished the result, for which memory
on the GPU was also allocated previously, is transfered back
to RAM. Of course this simple example leaves out a lot
of features and capabilities offered by the API and special
purpose language extensions. For an excellent introduction
to CUDA the reader is refered to [23].

The integration with C is seamless, functions marked
with the global modifier will be compiled by the NVIDIA
nvcc compiler, yielding binary code executable by the GPU.
Kernel invocations will also be replaced with code that
loads the binary code to the GPU and invokes some driver
functions to execute it.

V. PARALLEL K-MEANS VIA CUDA

This section describes the CUDA based implementation
of the algorithm outlined in section II-C. In the first sub
section the overall program flow is described. The next
subsection presents the labeling stage on the GPU followed
by section V-C outlining the data layout used and CUDA
specific optimizations employed to further speed up the
implementation.

A. Program Flow

The CPU takes the role of the master thread as described
in section II-C. As a first step it prepares the data points and
uploads them to the GPU. As the data points do not change
over the course of the algorithm they are only transfered
once. The CPU then enters the iterative process of labeling
the data points as well as updating the centroids. Each
iteration starts by uploading the current centroids to the
GPU. Next the GPU performs the labeling as described in
section V-B. The results from the labeling stage, namely
the membership of each data point to a cluster in form of
an index, are transfered back to the CPU. Finally the CPU
calculates the new centroid of each cluster based on these
labels and performs a convergence check. Convergence is
achieved in case no label has changed compared to the last
iteration. Optionally a thresholded difference check of the

230

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

overall movement of the centroids can be performed to avoid
iterating infinitely for some special cluster configurations.

B. Labeling Stage

The goal of the labeling stage is to calculate the nearest
centroid for each data point and store the index of this
centroid for further processing by the centroid update stage
on the CPU. Therefore each thread has to calculate which
data points it should process, label it with the index of the
closest centroid and repeat this for any of its remaining data
points. The task for each thread is thus divided into two
parts: calculate and iterate over all data points belong to the
thread according to a partitioning schema and performing
the actual labeling for the current data point. The following
paragraphs will thus first discuss the partitioning schema
and the first part of this task followed by a description of
the actual labeling step.

As discussed in section IV the GPU slightly differs
from the architecture assumed in section II-C. Threads are
additionally grouped into blocks that share local memory.
Instead of assigning each thread a chunk of data points,
each block of threads is responsible for one or more chunks.
One such chunk contains t data points where t is the
number of threads per block. As the amount of threads per
block as well as blocks is limited by various factors, such
as used registers, each block processes not only one but
several chunks depending on the total amount of data points.
Denoting the amount of data points by n then

nchunks = dn/te (5)

gives the number of chunks to be processed. Note that
the last chunk does not have to be fully filled as n does not
have to be a multiple of t. This chunks have to be partitioned
among the number of blocks b. Two situations can arise:

1) nchunks mod b = 0, no block is idle
2) nchunks mod b 6= 0, b− nchunks blocks are idle
Therefore each block processes at least bnchunks/bc

chunks. The first nchunks mod b blocks process the remain-
ing chunks. For each chunk one thread within a block labels
exactly one data point. For chunks that have less data points
than there are threads within a block some threads will be
idle and not process a data point. Based on the partitioning
schema described each thread processes at most nchunks

data points. For each data point a thread therefore has to
calculate the index of the data point based on it’s block
and thread id. This is done iteratively in a loop. The thread
starts by calculating the index of its data point of the first
chunk to be processed by the thread’s block expressed by
block.id+ thread.id. In each iteration the next data point’s
index is calculating by adding tb to the last data points index.
In case the calculated index is bigger than n− 1 the thread
has processed all it’s data points. No thread can terminate
before the other threads within the same block so any thread

that is done processing all its data points has to wait for the
other threads to finish processing their remaining data points.
Therefore each thread iterates dn/tbe times and simply does
not execute the labeling code in case its current data point
index is bigger than n−1. To minimize the number of idling
threads it is therefore mandatory to adjust the number of
blocks to the number of data points minimizing n mod tb.

The actual labeling stage is again composed of two
distinct parts. A thread has to calculate the distance of its
current data point to each centroid. In the implementation
presented here all threads within a block calculate the
distance to the same centroid at any one time. This allows
loading the current centroid to the block’s local shared
memory accessible by all threads within the block. For each
centroid the threads within the block therefore each load a
component of the current centroid to shared memory. Each
thread then calculates the distance from their data point
to the centroid in shared memory fetching the data point’s
components from global memory in a coalesced manner. See
section V-C on the data layout used for coalescing reads
and writes. Loading the complete centroid to memory limits
the amount of dimensions as shared memory is restricted to
some value, on the hardware used it’s 16 kilobytes. Given
that components are encoded as 32-bit floating point values
this roughly equals a maximum dimension count of 4000.
To allow for unlimited dimensions the process of loading
and calculating the distance from a data point to a centroid
is done in portions. In each iteration t components of the
centroid are loaded to shared memory. For each component
the partial euclidean distance is calculated. Depending on
d not all threads have to take part in loading the current
components to memory, so some threads might idle. When
all threads have evaluated the nearest centroid the resulting
label, being the index of the centroid a data point is nearest
to, is written back to global memory. The labels for each
data point are stored in an additional vector component.

After all blocks have finished processing their chunks the
CPU is taking over control again, downloading the labels
calculated for constructing the new centroids and checking
for convergence. The next section describes the data layout
as well as other optimizations.

C. Data Layouts & Optimizations

A GPU-based implementation of an algorithm that is
memory bound, as is the case with k-means, can yield very
poor performance when the GPU’s specifics are not taken
into account. For memory throughput these specifics depend
on the memory type used for storing and accessing data
on the GPU as described in section IV. For the k-means
implementation presented in this paper global memory was
chosen as the storage area for the data points and centroids.
As data points are only read during the labeling stage on
the GPU, storage in constant or texture memory might have
increased memory throughput to some degree. However,

231

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

texture and constant memory restrict the maximum amount
of data and therefore processable data points and centroids,
a drawback earlier GPU-based k-means implementations
suffered from as described in section III. Global memory
on the other hand allows gather and scatter operations and
permits to use almost all of the memory available on the
GPU. For global memory coalescing reads and writes are
mandatory to achieve the best memory throughput. All
vectors are assumed to be of dimensionality d and stored
in dense form.

As described in the last section centroids are loaded from
global memory to shared memory in portions, each portion
being made up of at most t components. As t threads read
in subsequent components at once the centroids are stored
as rows in a matrix, achieving memory coalescing.

Data points are stored differently due to the order in
which components are accessed. Here, each thread accesses
one component of its current data point simultaneously to
the other threads. Therefore data points are stored column
wise again providing memory coalescing. Additionally a
component is added as the first component of each vector
where each threads writes the label of the closes centroid to
for further processing by the CPU. This layout also allows
downloading this labels in a bulk operation.

For both centroids and data points special CUDA API
methods where used that allocate memory at address being
a multiple of 4 yielding the best performance.

As the implementation of k-means using an euclidean dis-
tance metric is clearly memory bound further optimizations
have been made by increasing occupancy. This was achieved
by decreasing the amount of registers each thread uses.
Specifically counter variables for the outer loops are stored
in shared memory. This optimization increased performance
by around 25%. The program executed by each thread uses
10 registers. The optimal number of threads is therefore
128 according to the NVIDIA CUDA Occupancy Calculator
included in the CUDA SDK.

As descibed in section V-B partial or entire thread blocks
can be idle depending on the ratio between the number of
blocks and threads within a block to the number of data
points. To reduce the effect of idle blocks on performance
the block count is adapted to the number of data points to
be processed, minimizing nchunks mod b.

The next section discusses experiments and their results
for the k-means implementation presented in this section.

VI. EXPERIMENTS & RESULTS

Experimental results were obtained on artificial data sets.
As the performance is not dependent on the actual data
distribution the synthetic data sets were composed of ran-
domly placed data points. To observe the influence of the
number of data points on the performance data sets with
500, 5000, 50,000 and 500,000 instances were created. For

each instance count 3 data sets were created with 2, 20 and
200 dimensions.

The sequential k-means implementation and the centroid
update phase for the gpu-base k-means was coded in C using
the Visual C++ 2005 compiler as well as the Intel C++
compiler 10.1. For both compilers full optimizations were
enabled, favoring speed over size as well as using processor
specific extensions like SSE3. In the case of the Intel
C++ compiler all vector related operations such as distance
measurements, additions and scaling were vectorized using
SSE3. The CUDA portions of the code were compiled using
the CUDA Toolkit 2.0.

We evaluated our implementation on two systems. The
first one which we will refer to as System 1 was composed
of an Intel Core 2 Duo E8400 CPU, 4 GB RAM running
Windows XP Professional with Service Pack 3. The GPU
was an NVIDIA GeForce 9600 GT hosting 512 MB of
RAM, the driver used was the NVIDIA driver for Windows
XP with CUDA support version 178.08. The second system,
refered to as System 2 was made of an Intel Core 2 Quad
Q9550, 4 GB RAM running Windows 7 RC build 7100
and the NVIDIA driver for Windows 7 with CUDA support
version 190.39. We first discuss the findings on System 1
and then briefly analyse the results from System 2.

Figures 5 and 6 present the speedups gained by using the
GPU relative to the CPU implementation on System 1. While
full optimizations were turned on for the Visual C++ version
the GPU-based implementation outperformed it by a factor
of 4 to 43 for all but the smallest data set. A clear increase
in performance can be observed the higher the number of
instances dimensions and clusters. Due to the poor results of
Visual C++ we omit further measurements and concentrate
on the results produced by the Intel C++ version.

For the fully optimized Intel C++ version the speedups are
obviously smaller as this version makes use of the SIMD
instruction-set of the CPU. A speedup by a factor of 1.5
to 14 can be observed for all but the smallest data set
on System 1. Interestingly this version performs better for
lower dimensionality for high instance counts. This is due
to the fact that as the centroid update time decreases due
to optimization the transfer time starts to play a bigger role.
Nevertheless there is still a considerable speedup observable.

The diagrams in figure 7 also explain why the GPU-based
implementation does not match the CPU implementation for
very small data sets. From the plot it can be seen that for
500 data points nearly all the time is spent on the GPU. This
time span also includes the calling overhead for invoking
the GPU labeling stage. This invocation time actually takes
longer than labeling the data items.

The GPU-based implementation is clearly memory bound
as there are more memory accesses than floating point oper-
ations. Figure 8 shows the throughput achieved by the GPU
for various dataset sizes. A peak throughput of 44GB/s could
be achieved for the largest problem with 500000 instances

232

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

2 4 8 16 32 64 128
0

5

10

15

20

25

30

35

40

50.000 Points

2
20
200

Clusters

S
pe

ed
up

2 4 8 16 32 64 128
0

5

10

15

20

25

30

35

40

45

500.000 Points

2
20
200

Clusters

S
pe

ed
up

2 4 8 16 32 64 128
0

5

10

15

20

25

5000 Points

2
20
200

Clusters
S

pe
ed

up
2 4 8 16 32 64 128

0

0,5

1

1,5

2

2,5

500 Points

2
20
200

Clusters

S
pe

ed
up

Figure 5. Speedup measured against the Visual C++ compiler for various
instance counts and dimensions on System 1

with 200 dimensions and 128 clusters. For the used hardware
the peak performance is given as 57.6 GB/s. Therefore
we are highly confident that the implementation is nearly
optimal. For very small datasets the throughput is not even
one percent of the reachable peak performance. Interestingly,
for the dataset with 500 instances, 200 dimensions and 128
clusters a sharp deviation from an otherwise log like curve
can be observed. This indicates a sweetspot at which the
graphics card is able to benefit from the data size.

Due to being memory bound the GFLOP counts do of
course not reach the hardwares peak values. Figure 9 shows
the approximate GFLOP/s achieved by our implementation.
As with memory transfers the performance gets better the
more data is thrown at the hardware. Also, the spike in
the small dataset that was found in the memory throughput
analysis can also be found here for the same reason as stated
above: given a certain dataset size the graphics card is better
able to benefit from its inherent parallel nature.

We repeated the measurements for System 2. Figures 10
through 13 present the results from System 2. The relative
performance compared to the CPU version does not increase
immensely. However, one has to take into account the the
CPU used on System 2 is also better than the one used for
relative measurements on System 1. The trend is very similar
to the one observed on System 1. We achieve near peak
memory throughput but can not exploit the computational
capabilities fully. Additionally the performance decreases a

2 4 8 16 32 64 128
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

500 Points

2
20
200

Clusters

S
pe

ed
up

2 4 8 16 32 64 128
0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5000 Points

2
20
200

Clusters

S
pe

ed
up

2 4 8 16 32 64 128
0

1

2

3

4

5

6

7

8

9

50.000 Points

2
20
200

Clusters

S
pe

ed
up

2 4 8 16 32 64 128
0

2

4

6

8

10

12

14

500.000 Points

2
20
200

Clusters

S
pe

ed
up

Figure 6. Speedup measured against Intel C++ compiler for various
instance counts and dimensions on System 1

2 4 8 16 32 64 128
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500 Points, 200 Dimensions

Transfer
Centroid Update
Labeling

Clusters

Ti
m

e

2 4 8 16 32 64 128
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50.000 Points, 200 Dimensions

Transfer
Centroid Update
Labeling

Clusters

Ti
m

e

2 4 8 16 32 64 128
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500.000 Points, 200 Dimensions

Transfer
Centroid Update
Labeling

Clusters

Ti
m

e

2 4 8 16 32 64 128
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5000 Points, 200 Dimensions

Transfer
Centroid Update
Labeling

Clusters

Ti
m

e

Figure 7. Percentage of time used for the different stages on the GPU on
System 1

233

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

2 4 8 16 32 64 128
0,0

1,0

2,0

3,0

4,0

5,0

6,0

500 Points

2
20
200

Clusters

G
B

/S

2 4 8 16 32 64 128
0,0

5,0

10,0

15,0

20,0

25,0

5000 Points

2
20
200

Clusters

G
B

/S

2 4 8 16 32 64 128
0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

50.000 Points

2
20
200

Clusters

G
B

/S

2 4 8 16 32 64 128
0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

50,0

500.000 Points

2
20
200

Clusters

G
B

/s

Figure 8. Memory throughput for various instance counts and dimensions
in Gigabytes on System 1

2 4 8 16 32 64 128
0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

500 Points

2
20
200

Clusters

G
Fl

op
/S

2 4 8 16 32 64 128
0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

5000 Points

2
20
200

Clusters

G
FL

op
/S

2 4 8 16 32 64 128
0,0

5,0

10,0

15,0

20,0

25,0

30,0

50.000 Points

2
20
200

Clusters

G
Fl

op
/S

2 4 8 16 32 64 128
0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

500.000 Points

2
20
200

Clusters

G
Fl

op
/s

Figure 9. GFLOP/s reached for various instance counts and dimensions
on System 1

2 4 8 16 32 64 128
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

500 Points

2
20
200

Clusters

S
pe

ed
up

2 4 8 16 32 64 128
0

0,5

1

1,5

2

2,5

3

3,5

5000 Points

2
20
200

Clusters

S
pe

ed
up

2 4 8 16 32 64 128
0

1

2

3

4

5

6

7

8

9

10

50.000 Points

2
20
200

Clusters
S

pe
ed

up

2 4 8 16 32 64 128
0

5

10

15

20

25

500.000 Points

2
20
200

Clusters

S
pe

ed
up

Figure 10. Speedup measured against Intel C++ compiler for various
instance counts and dimensions on System 2

little as the number of clusters and dimensions increases for
the largest dataset. We do not have an explanation for this
behaviour and will investigate this in future work. However,
from the timing chart it is clear the the GPU is doing a lot
less work in total compared to the work it did in System
1. Transfertimes play a much bigger role overall and the
centroid update stage also takes up a bigger amount of time.
It seems therefore advisable to keep the GPU saturated with
more data in order to increase its overall contribution to
performance.

For some test runs slight variations in the resulting cen-
troids were observed. These variations are due to the use of
combined multiplication and addition operations (MADD)
that introduce rounding errors. Quantifying these errors was
out of the scope of this work, especially as no information
from the vendor on the matter was available.

VII. CONCLUSION & FUTURE WORK

Exploiting the GPU for the labeling stage of k-means
proved to be beneficial especially for large data sets and
high cluster counts. The presented implementation is only
limited in the available memory on the GPU and therefore
scales well. However, some drawbacks are still present.
Many real-life data sets like document collections operate
in very high dimensional spaces where document vectors
are sparse. The implementation of linear algebra operations
on sparse data on the GPU has yet to be solved optimally.
Necessary access patterns such as memory coalescing make

234

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

2 4 8 16 32 64 128
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500 Points, 200 Dimensions

Transfer
Centroid Update
Labeling

Clusters

Ti
m

e

2 4 8 16 32 64 128
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50.000 Points, 200 Dimensions

Transfer
Centroid Update
Labeling

Clusters

Ti
m

e

2 4 8 16 32 64 128
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5000 Points, 200 Dimensions

Transfer
Centroid Update
Labeling

Clusters

Ti
m

e

2 4 8 16 32 64 128
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

500.000 Points, 200 Dimensions

Transfer
Centroid Update
Labeling

Clusters

Ti
m

e

Figure 11. Percentage of time used for the different stages on the GPU
on System 1

2 4 8 16 32 64 128
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

9,0

10,0

500 Points

2
20
200

Clusters

G
Fl

op
/s

2 4 8 16 32 64 128
0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

5000 Points

2
20
200

Clusters

G
Fl

op
/s

2 4 8 16 32 64 128
0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

50.000 Points

2
20
200

Clusters

G
Fl

op
/s

2 4 8 16 32 64 128
0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

500.000 Points

2
20
200

Clusters

G
Fl

op
/s

Figure 12. Memory throughput for various instance counts and dimensions
in Gigabytes on System 1

2 4 8 16 32 64 128
0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

500 Points

2
20
200

Clusters

G
Fl

op
/s

2 4 8 16 32 64 128
0,0

5,0

10,0

15,0

20,0

25,0

30,0

5000 Points

2
20
200

Clusters

G
Fl

op
/s

2 4 8 16 32 64 128
0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

50.000 Points

2
20
200

Clusters
G

Fl
op

/s

2 4 8 16 32 64 128
0,0

20,0

40,0

60,0

80,0

100,0

120,0

500.000 Points

2
20
200

Clusters

G
Fl

op
/s

Figure 13. GFLOP/s reached for various instance counts and dimensions
on System 1

this a very hard undertaking. Also, the implementation
presented is memory bound meaning that not all of the GPUs
computational power is harvested. Finally, due to rounding
errors the results might not equal the results obtained by
a pure CPU implementation. However, our experimental
experience showed that the error is negligible.

Future work will involve experimenting with other k-
means variations such as spherical or kernel k-means that
promise to increase the computational load and therefore bet-
ter suit the GPU paradigm. Also, an efficient implementation
of the centroid update stage on the GPU will be investigated.

REFERENCES

[1] Mario Zechner and Michael Granitzer. Accelerating k-
means on the graphics processor via cuda. Intensive
Applications and Services, International Conference
on, 0:7–15, 2009.

[2] A. K. Jain, M. N. Murty, and P. J. Flynn. Data
clustering: a review. ACM Comput. Surv., 31(3):264–
323, September 1999.

[3] Jian Yi, Yuxin Peng, and Jianguo Xiao. Color-based
clustering for text detection and extraction in image. In
MULTIMEDIA ’07: Proceedings of the 15th interna-
tional conference on Multimedia, pages 847–850, New
York, NY, USA, 2007. ACM.

[4] Dannie Durand and David Sankoff. Tests for gene
clustering. In RECOMB ’02: Proceedings of the sixth

235

International Journal on Advances in Systems and Measurements, vol 2 no 2&3, year 2009, http://www.iariajournals.org/systems_and_measurements/

annual international conference on Computational bi-
ology, pages 144–154, New York, NY, USA, 2002.
ACM.

[5] Adil M. Bagirov and Karim Mardaneh. Modified
global k-means algorithm for clustering in gene expres-
sion data sets. In WISB ’06: Proceedings of the 2006
workshop on Intelligent systems for bioinformatics,
pages 23–28, Darlinghurst, Australia, Australia, 2006.
Australian Computer Society, Inc.

[6] Shi Zhong. Efficient streaming text clustering. Neural
Netw., 18(5-6):790–798, 2005.

[7] Stuart P. Lloyd. Least squares quantization in pcm.
IEEE Transactions on Information Theory, 28(2):129–
136, 1982.

[8] J. B. MacQueen. Some methods for classification and
analysis of multivariate observations. In L. M. Le
Cam and J. Neyman, editors, Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probability,
volume 1, pages 281–297. University of California
Press, 1967.

[9] David Arthur and Sergei Vassilvitskii. k-means++: the
advantages of careful seeding. In Nikhil Bansal, Kirk
Pruhs, and Clifford Stein, editors, SODA, pages 1027–
1035. SIAM, 2007.

[10] Jens Krüger and Rüdiger Westermann. Linear algebra
operators for gpu implementation of numerical algo-
rithms. In SIGGRAPH ’03: ACM SIGGRAPH 2003
Papers, pages 908–916, New York, NY, USA, 2003.
ACM.

[11] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman,
Kayvon Fatahalian, Mike Houston, and Pat Hanrahan.
Brook for gpus: stream computing on graphics hard-
ware. In SIGGRAPH ’04: ACM SIGGRAPH 2004
Papers, pages 777–786, New York, NY, USA, 2004.
ACM.

[12] Mark Harris. Mapping computational concepts to gpus.
In SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses,
page 50, New York, NY, USA, 2005. ACM.

[13] Nvidia cuda site, 2007. http://www.nvidia.com/object/
cuda home.html.

[14] Ati close to metal guide, 2007. http:
//ati.amd.com/companyinfo/researcher/documents/
ATI CTM Guide.pdf.

[15] NVIDIA. NVIDIA CUDA Programming Guide 2.0.
2008. http://developer.download.nvidia.com/compute/
cuda/2 0/docs/NVIDIA CUDA Programming
Guide 2.0.pdf.

[16] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and
V. Vinay. Clustering large graphs via the singular value
decomposition. Mach. Learn., 56(1-3):9–33.

[17] Leon Bottou and Yoshua Bengio. Convergence prop-
erties of the K-means algorithms. In G. Tesauro,
D. Touretzky, and T. Leen, editors, Advances in Neural
Information Processing Systems, volume 7, pages 585–

592. The MIT Press, 1995.
[18] Inderjit S. Dhillon and Dharmendra S. Modha. A data-

clustering algorithm on distributed memory multipro-
cessors. In Large-Scale Parallel Data Mining, Lecture
Notes in Artificial Intelligence, pages 245–260, 2000.

[19] Hiroyuki Takizawa and Hiroaki Kobayashi. Hierarchi-
cal parallel processing of large scale data clustering on
a pc cluster with gpu co-processing. J. Supercomput.,
36(3):219–234, 2006.

[20] Jesse D. Hall and John C. Hart. Gpu acceleration of
iterative clustering. Manuscript accompanying poster
at GP2: The ACM Workshop on General Purpose
Computing on Graphics Processors, and SIGGRAPH
2004 poster (2004).

[21] Feng Cao, Anthony K. H. Tung, and Aoying Zhou.
Scalable clustering using graphics processors. In
WAIM, pages 372–384, 2006.

[22] David Luebke and Greg Humphreys. How gpus work.
Computer, 40(2):96–100, 2007.

[23] John Nickolls, Ian Buck, Michael Garland, and Kevin
Skadron. Scalable parallel programming with cuda. In
SIGGRAPH ’08: ACM SIGGRAPH 2008 classes, pages
1–14, New York, NY, USA, 2008. ACM.

