
Prioritized Redundancy of Data Storage in Wireless Sensor Networks

Cosmin Dini

University of Haute Alsace
34 rue du Grillenbreit 68008 Colmar – France

France
cosmin.dini@uha.fr

Pascal Lorenz

University of Haute Alsace
34 rue du Grillenbreit 68008 Colmar – France

France
lorenz@ieee.org

Abstract— Wireless Sensor Networks have evolved into
complex deployments, where their nodes can have a full
network protocol stack, database systems, etc. The main
rationed resource in such a deployment is energy. Having
power usage tightly managed ensures a long operational life
for the node in cases where replenishments (either via recharge
or battery change) are difficult or impossible. The basic
deployment of Wireless Sensor Networks consists of sensing
nodes as well as a relay node (i.e., sink), which collects sensory
data to be relayed via a reliable network. The sink node can
become unreachable due to malfunction, scheduled uptime or,
in the case of mobile sink nodes, due to being out of the sensor
nodes’ reach. In addition, the sensor nodes may decide against
relaying data for some period. In these cases, optimal use of
sensor node memory space also becomes critical. In this article,
we classify data types and establish a set of node level
approaches that can be taken to make the most of limited data
storage via a prioritized data reduction. Wireless Sensor
Networks often operate in locations with limited access while
relying on a restricted set of resources. This calls for careful
management of local assets such as energy and storage. Storage
is used to host data of various interest levels for subsequent
relay to a base station or for queries through the network. The
size of the data needs to be managed in view of data’s
relevance. While there is a debate for complete or partial data
extraction from sensors, having special data process functions
and operation primitives proven useful for sensor OSs. To deal
with robustness and reliability, data processing at the
network/sensor level satisfies some of the reliability
requirements, especially when communications are not
operational. There are situations were data reduction is an
alternative when storage is not longer available and data is
aging, especially when some sensor links are not properly
operational. Using predictions and optimized parameters to
prioritize data reduction is a solution. While approaching the
data reduction from the perspective of a single node is
important, there are benefits from looking at Wireless Sensor
Networks deployment as a whole. There is an opportunity to
relocate some data to less active nodes and spare it from a
reduction process. There are energy considerations to take into
account in evaluating the potential benefit from spending some
energy to relocate data. Three factors play a part in this: the
source node, the receiver node, and the data itself. The source
node needs to save enough energy to relay its data once the sink
node becomes available. The receiver node needs to have space
available, or at least have a lot of space occupied by low
importance data. The data itself needs to be self-enclosed as far
as parameters needed for importance computation. Another
aspect that becomes feasible in a multi node environment is

having redundant copies of data to protect against potential
node failures. These copies have their own particularities, a
notable one being that their importance function cannot depend
on other data. This paper presents a methodology that enables
the node to be useful by collecting data beyond the point where
its data storage size would otherwise allow. We build upon
primitive data reduction operations to construct a framework
that can be used for a sensible data age-out scheme. The
methodology enables various factors, both internal and
external to the sensor, to influence the data aging process and
the data reduction operations. Additionally, we define special
heuristics for data reduction using a set of data processing
primitives and special data parameters. We apply these
heuristics via a methodology that enables various factors, both
internal and external to the sensor, to influence the data aging
process and the data reduction operations.

Keywords - sensors; networks; storage; operations; data
management; data sensor storage; data priority; optimized
parameters; prediction models; prioritized redundancy.

I. INTRODUCTION

Wireless Sensor Networks (WSN) have appeared as a
special case of wireless networks specialized in data
gathering. They find a niche in industrial monitoring,
military sensing, locating assets, etc. [1]. An advantage
comes from the fact that such a deployment makes no
assumption about pre-existing infrastructure. Therefore, the
WSN nodes have to bring with them all the resources that
they expect to utilize during their lifetime: power, storage,
processing unit, antenna, etc. Figure 1 presents the classical
WSN deployment of sensor nodes ni, and a sink S. Each
sensor node n can wirelessly communicate with other sensor
nodes that are within reach, shown in dashed lines.

163

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Classical WSN deployment.

Much research has been devoted to optimizing the usage
of limited resources. In particular for WSNs, energy has been
a main focus. Very resourceful power sources have been
suggested, nuclear energy included. Both routing and
dissemination protocols have been approached from the
energy conservation standpoint. In addition, some proposals
target replenishing energy from sources such as sun, wind,
water flow, etc. [10].

Other resources related to WSN deployment have
received less attention compared to energy source and usage.
In this article, the focus is data storage, which just like
energy, is limited. Unlike energy, which once used is gone,
data storage space can be reclaimed by discarding existing
stored data. Another difference between energy and data
storage constraints is that one can propose ways of
harnessing energy to prolong the life of a wireless node, but
so far, there is no way of harnessing data storage space.

There are many examples outside of the WSN world
where storage space is a factor. Many cases are outside of the
technology world and include storage spaces, garages,
warehouses, disk drives, kitchen drawers, video surveillance
recording, etc. Unlike the WSN scenario, these cases allow
for direct human intervention: additional storage space,
although for a cost, can be achieved.

We consider a WSN node in cases where unloading the
data is not possible at all times. The sink node, or the next
hop routing node, may not be available at times. Referring to
Figure 1, if the sink S is not available, nodes n2, n3, and n4

cannot relay their data. Similarly, if n7 is unavailable, n6

cannot relay data as n7 is the only possible next hop for
routing. It is the responsibility of the node to use the storage
space in order to hold the most relevant data until this data
can be relayed at the expense of less relevant data. A set of
business logic instructions that are deployed with the node
provide the decision making. The same principles can apply
to sensor nodes that are deployed and later physically
retrieved for data extraction without ever having to
wirelessly transmit any data.

Specialized operating systems, such as TinyOS, provide
the primitive operation set for code execution. The data

storage approach that we propose also needs to be supported
by a set of primitive operations.

Unattended data collections in remote areas without ease
of access pose a challenge for traditional network
deployments. Usual assumptions no longer apply,
specifically: available space is an issue, power is no longer
reliably available, and tech support can not immediately
intervene to fix unexpected issues [13].

Wireless Sensor Networks (WSNs) have evolved to
answer to these constraints. In addition to having sensing
capabilities, WSNs also perform the essential functions of
traditional networks, such as routing. However, under the
constraints imposed by isolation of the deployment,
approaches to traditional algorithms need to be reconsidered
[14].

There are two approaches to data handling in WSNs. On
the first hand, a sensor network can be left to its bare
functions of data collection. All data is then forwarded to a
base station for data analysis. In such a case, there is little
computation requirement from the processing unit on the
sensor nodes. This can lead to large amounts of data
circulating through the network, leading to excessive use of
power, a critical resource in WSNs. A second approach is to
leave the collected data on the sensor nodes, while retrieving
specific needed data by running queries through the network.
This limits the data transfer to the exact results of the data
extraction. In this case, we deal with limitations caused by
the storage space on the nodes. There are some approaches to
alleviate somewhat the effects of a limited storage space, and
they usually involve some sort of load sharing [21].

Whatever the mechanism to make better use of storage
space, there is nothing that can produce more available
storage space. At some point, data needs to be aged out.
What data and how it is aged out has not been fully
addressed in existing literature. In [12], a set of primitive
operations to support a prioritized data reduction is
presented. In its description, the approach was limited to
presenting the simplest building blocks on a single node. The
data reduction basically presented in [12] is extended to
show how the primitives are used together in order to
manage the storage size aspect of a WSN node operational
state. Requirements posed by unattended data collections in
remote areas become very challenging for traditional
network deployments. The main problem is raised by the fact
that users might look for full collected data, while effective
business models take into consideration a small fraction of it.

Most of the WSNs (Wireless Sensor Networks) also
perform the essential functions for data processing; one of
the most important, in special cases of uncontrolled link
availability, is data reduction under several the constraints
driven by the nature of the data, the relevance of the data, the
data dependency, and the business model using such data. A
sensor on a node captures a time series representing the
evolution of a sensed physical variable over space and time.

n2

n7

n6

n1

n3

n4

n5

S

164

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Reducing the amount of data sent throughout the network is
a key target for long-term, unattended network sensors. A
second target, equally relevant, is defined by unattended
networks with unreliable links. In this case, gathered data
might rapidly aging and exceed the storage capability at a
given node. Data reduction mechanisms are used to partially
handle these cases [22] [23] [36].

Unnecessary communication as well as appropriate data
reduction techniques can be modeled in the case of physical
phenomena with a pre-defined, application-dependent
accuracy [36]. If an accepted error is bounded as [-e, +e],
with e in R+, only values exceeding the predicted one by +/-
e will be communicated. Similarly, if the errors of the
gathered values are within the bonded interval, data
reduction can be more simplified.

The difference between these two situations is the
following; for communication, in the absence of notification
from a given node, the receiving node assumes that the value
obtained form the prediction model is in the required error
bound. For unreliable links, despite if this assumption, the
gathering node must reduce the amount of collected data that
accumulates. In this paper, we present a series of heuristics
on predictions used to summarize collected data.

The rest of the article first deals with primitive operations
that are executed at node level independently of the rest of
the WSN. We then present the state of the art in collaborative
data storage as well as data reduction.. The next section
reviews the primitives introduced in [12]. We then extend the
single node model to present a complete framework. More
heuristics for prediction on data processing are presented for
multi-node complemented by prioritized data redundancy.

II. RELATED WORK

Current work in WSN associated storage management
revolves around energy efficiency in manipulating and
querying the data [3][4], improving the characteristics of
stored data [5] [6][7], and making use of adjacent nodes in
order to gain access to additional storage [8][9].

Siegmund et al. [5] propose FAME-DBMS to provide a
robust data storage solution. This system ensures reliability
and integrity of the data, and provides a customizable query
engine. It answers to the requirements related to data
retrieval more so than to storing data. In order to deal
specifically with encryption, Joao Girão et al. [6] present
edTinyPEDS, an encryption data storage engine.

The energy usage is still relevant when focusing on
storage and querying. Ahn and Krishnamachari [3] evaluated
the scalability of a WSN performance with respect to the
distributed nature of data.

Park and Elmasri [4] evaluated several storage schemes
in terms of where the data is stored, what types of routing
protocols are most appropriate, and finally the impact that
each storage approach has on energy usage.

Khan et al. [8] presented the problem of data persistence
in a congested WSN scenario. The main point is that
congested networks can drop packets, which in turn
translates to a waste of energy equivalent to the cost of
sending the dropped packets. The proposed approach
involves clustering where cluster nodes can act as temporary
buffers during congestion periods.

Current work on WSN related storage has been limited to
data characteristics and management across several nodes.
The case of a standalone node has not yet been considered.

In the following, we present current approaches to deal
with a continuously accumulating amount of data. We cover
both aspects geared towards individual nodes and aspects
geared towards network wide approaches.

2.1 Data Reduction

In their work on managing data in storage-centric WSNs,
Diao et al. [20] touch on some of the issues surrounding the
management of growing data amounts. There exists a
common perception that, for historical data, every single bit
of collected data must be stored and maintained. A
distinction is made between “dumb data collection” sensor
networks, and those that support queries throughout an entire
WSN. There is clearly a serious potential for excessive data
accumulation in the case of the latter. The potential for data
aging to alleviate the problem is brought up, but no
framework is established on how aging can be done in a
sensible manner; vacuuming older data to secondary storage
is proposed as a potential solution, but it assumes a rather
reliable connection to a base station.

Khan et al. [15] address the point of data persistence
within a network in the case of congestion along
transmission paths. Similarities can be seen between this
case and the case of excessively accumulating data. The
proposed solution in the case of a data storage issue due to
congestion is additional buffering along the path to a sink
node. This cannot be a full answer to the problem of a
growing amount of collected data. Whatever the about of
storage on hand, there will always be applications and
processes demanding even more data space.

Tilak et al. [16] only briefly touch upon the data aging
aspect of storage, but concentrate more on the benefits of
collaborative or global approaches.

The approaches that we have seen so far lack
consideration for the exact data that is collected. The
tendency to treat data uniformly, or as a function of time
only, can leave out data of significant importance.

165

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A more functional solution to a single WSN node storage
size management is given in [12]. The underlying
assumptions are that we are dealing with a “dumb data
collection” sensor network. The deployment is therefore only
used to collect data and do the best it can, at each individual
node, to maintain the most relevant data until an opportunity
presents itself to relay all this data to a sink node. Data
reduction is performed according to pre-established business
case rules and several methods to achieve data reduction are
presented. On a case by case basis, some data reduction
approaches are preferable to others. We consider this to
address the problem, but added benefit can be found in
allowing nodes that experience a spike in data collection to
share some of the data with neighboring node(s).

2.2 Collaborative Storage

Several approaches have been proposed with regards to
collaborative storage. By having a wider view of the
deployment, such protocols can attempt to address aspects
such as alleviating situations where certain nodes produce
more data than others, deduplication of data that was
collected unknowingly by more than one sensor, and
ultimately, as a side effect of deduplication, less energy is
needed to relay the data to a base station.

In [17], Tilak et al. proposed a Cluster Based
Collaborative Storage (CBCS) as a specific solution to
collaborative storage. Several algorithm improvements in
WSNs have this common approach of clustering nodes,
electing cluster heads, and establishing an overall tree
structure through the network. CBCS does this in the context
of storage management. Nodes are grouped in clusters based
on geographical data. Cluster heads (CH) are elected, one per
cluster; they have the task of aggregating all data from the
cluster nodes. This improves power use efficiency as only
the CH needs to further relay the data towards the sink node.
Such an approach seems to place more emphasis on the
energy saving rather than dealing with large amounts of data.
Aggregating all the data from the cluster nodes on the CH
storage space cannot be beneficial when we are trying to
solve storage issues.

In Figure 2, a visual representation of clusters is shown.
Most clusters are created with geographical proximity in
mind in order to minimize energy expenditures on
communication. The designated or elected cluster heads,
shown circled, handle the communication with a sink node,
S, which is linked to a stable reliable network.

Figure 2. Clusters in a WSN.

In [18], Shenker et al. proposed a method, Data Centric
Storage (DCS), to store data as identified by its name.
Related data would in the end be stored either on the same or
on neighboring sensor nodes. This would facilitate
deduplication and also improve queries since data pertaining
to a query would reside in the same proximity, therefore
avoiding the need for queries to be run through large sections
of the network. This approach is useful for WSNs that are
designed to support searches, but does not apply to networks
where data analysis is done offsite.

Siegmund et al. [19 addressed the issue of data integrity.
Data redundancy is achieved in the network via the
implementation of a new abstraction layer in the WSN. This
layer can support the need for data redundancy. While
robustness is of importance, there is very limited work in
view of alleviating potential data overload in the network.

Collaborative storage presents challenges in terms of
locating data during queries through the network. It also adds
to the power requirements of the nodes. In the proposals
published so far, there is no consideration for collaborative
storage to mitigate memory limitations on some sensor
nodes. There is also no effort to give a semantic to the stored
data in order to assist with data age-out in the context of a
node who is only storing the data without having produced it.

In the following, we summarize a data processing model
introduced in [22] [23] and prediction approaches for data
reduction [24].

In the past, the database community pushed different
data-reduction operators, e.g., aggregation and reduction,
with no enough flexibility to handle extracting complete raw
sensor readings (i.e., using “SELECT *” queries).

There are two specific needs to perform in-network data
processing, i.e., (i) to significantly reduce communications
costs (energy), and (ii) to deal with link-down situations. In-
network aggregation was proposed in [26][27], while data
reduction via wavelets or distributed regression in [28][29].

S

166

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

All these techniques do not provide the desired data
granularity, as requested by network users.

Managing data in a storage-centric approach was studied
in different approaches, based on a reliable connection [32],
additional buffering [30], or collaborative framework [31].
Details on collaborative storage are provided in [23].

OS primitives acting on recurring and non-recurring data
collection have been proposed in [22]. Mainly, compression,
thinning, sparsing, grain coursing, and range representation
were used to deal with data aging in a pessimistic and
optimistic approach. As a note, data deduplication was not
considered in the above model. To optimize data reduction,
concepts of data units, data importance, and compensation
factors were introduced in [23]. Mainly, measurements are
partitioned into contiguous intervals; data importance relates
to the business semantics, while the compensation factor
underlines the importance in business computation of a given
data. The model considers that there is data that cannot be
reduced in any circumstance. A mechanism for data
dependency between different data units was presented in
[23]. Further division of the data units (leading to more
flexibility) was not considered at this point. Associated with
the new concepts, the following functions were introduced:
interval production function (only for recurring data), default
compensation function, data importance function, and data
reduction function. Solutions based on data redundancy
(leading to more robust deployments and measurements)
were not considered.

A data reduction specification use case considering data
dependency across data units was presented in [23].
Consequently, appropriate values for data importance can be
derived considering the constraints on the data importance
computation as pertaining to two categories: (i) internal
constraints and (ii) external constraints. External constraints
are caused by factors over which input data has no effect.
Such factors are data age and inherent interest in the data
depending on the exact purpose of the data collection.
Internal constraints represent inter- and intra-data
dependencies.

A prediction model for approximate data collection is
presented in [24]. The techniques are based on probabilistic
models (BBQ system, [33]). We apply the prediction models
to the framework proposed in [22][23] considering also the
approximation scheme providing data compression and
prediction [34] and predictive models from [35].

In this paper, we consider the PDR components
introduced in [23] (Figure 1) to derive appropriate data
reduction considering known correlations (spatial, temporal,
etc.) and prediction models.

Several approaches and protocols have been proposed
with regards to collaborative storage. By having a wider
view of the deployment, such protocols attempt to address
aspects such as alleviating situations, where certain nodes

produce more data than others, deduplication of data that was
collected unknowingly by more than one sensor, and
ultimately, as a side effect of deduplication, less energy is
needed to relay the data to a base station.

In [37], Tilak et al. proposed a Cluster Based
Collaborative Storage (CBCS) as a specific solution to
collaborative storage. Several algorithm improvements in
WSNs have this common approach of clustering nodes,
electing cluster heads, and establishing an overall tree
structure through the network. CBCS does this in the context
of storage management. Nodes are grouped in clusters, based
on geographical data. Cluster heads (CH) are elected, one per
cluster; they have the task of aggregating all data from the
cluster nodes. This improves power use efficiency as only
the CH needs to further relay the data towards the sink node.
Such an approach seems to place more emphasis on the
energy saving rather than dealing with large amounts of data.
Aggregating all the data from the cluster nodes on the CH
storage space cannot be beneficial when we are trying to
solve storage issues.

In Figure 2, a visual representation of clusters is shown.
Most clusters are created with geographical proximity in
mind in order to minimize energy expenditures on
communication. The designated or elected cluster heads,
shown circled, handle the communication with a sink node,
S, which is linked to a stable reliable network.

In [38], Shenker et al. proposed a method, Data Centric
Storage (DCS), to store data as identified by its name.
Related data would in the end be stored either on the same
node, or on neighboring sensor nodes. This would facilitate
deduplication and also improve queries since data pertaining
to a query would reside in the same proximity, therefore
avoiding the need for queries to be run through large sections
of the network. This approach is useful for WSNs that are
designed to support searches, but does not apply to networks
where data analysis is done offsite.

Siegmund et al. [39] address the issue of data integrity.
Data redundancy is achieved in the network via the
implementation of a new abstraction layer in the WSN. This
layer can support the need for data redundancy. While
robustness is of importance, there is very limited work in
view of alleviating potential data overload in the network.

Collaborative storage presents challenges in terms of
locating data during queries through the network. It also adds
to the power requirements of the nodes. In the proposals
published so far, there is no consideration for collaborative
storage to mitigate memory limitations on some sensor
nodes. There is also no effort to give a semantic to the stored
data in order to assist with data age-out in the context of a
node who is only storing the data without having produced it.

Having multiple nodes interact in an effort to better
manage storage space gives the opportunity for two
considerations: storage space sharing and redundancy. In this
chapter, we address these concepts from the perspective of
prioritized data reduction.

167

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2.3 Storage space sharing
2.3.1 Load sharing

Most research related to sharing across several nodes the
impact created by data refer to balancing out the data access
hot-spots. Occasionally, data queried in a network will be
accessed in a skewed manner resulting in a small set of
nodes receiving a disproportionate amount of queries and
hence taxing the energy storage of those specific nodes. In
order to deal with these cases, methods to replicate the data
are presented as well as methods to divide the data across
several nodes. In [40], the problem is approached from the
perspective of k-d tree mapped data. In such a mapping, data
storage is done independently of the node that produced the
data. When one node becomes overwhelmed with respect to
the amount of data that it needs to store, a tree rearrangement
is done in order to balance the data load.

A k-d tree covers a two dimensional surface by recursively
dividing the surface in two parts. At the point where we have
a single node inside a parcel, that parcel no longer undergoes
division and the node becomes the leaf of the path that
created the parcel.

Figure 3. Division of a WSN in a k-d tree.

Another facet of load sharing is found in [41], where the
authors address the problem of congestion at nodes on highly
used paths. Not only are these nodes’ energy supplies
overtaxed, but the limited storage space that they have may

not be enough to transiently hold all the packets. The
proposal is to group the sensor nodes into small clusters,
ideally a highly redundant deployment. When high traffic
volume is sensed, the cluster head node starts to divert traffic
to neighboring nodes. Because the nodes are in the vicinity,
the congestion is localized to the specific area without
spreading to other nodes. For critical data, the head node can
make the decision to replicate the data several times so as to
assure its continuity even in the event of a node failure. One
drawback is a potential added delay caused by the added
store and forward operations within a cluster.

2.3.2 Storage sharing

In this section, we cover the aspects of sharing the storage
space that exists within an entire wireless sensor network.
This is already done as part of geolocated data having as aim
to facilitate queries. In our case, we assume a network that
does not support in-network queries, but relays all data to the
sink for offsite processing. Data produced by a node stays on
that node until delivered to the sink. However, in the interest
of balancing out space needs, we consider the possibility to
forward certain data to other nodes as opposed to applying
prioritized data reductions.

Until storage sharing, it was rather straight forward to
perform a round of data reduction, i.e., select the data unit
with the lowest importance and apply the reduction function.
This could be done iteratively to bring the memory usage
below a certain expected threshold. With an option to
package and send data as a method of storage size recovery,
several decision factors appear. How much data to send?
How to select the most appropriate data to send? How to
select the best node to send the data to? There are no definite
answers in situations where external inputs dictate how much
or how little data needs to be stored. There are however
preferred ways to handle storage space sharing.

III. FRAMEWORK AND MECHANISMS FOR ONE NODE

3.1 Components of a WSN node

In this section, we describe the conceptualized
components performing the tasks - known as well as newly
proposed - associated with a WSN node.

A C B

D E

F H G I

A

B

C

D

E

F

G

H

I

168

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. WSN node building blocks.

There are several physical sensors s on a WSN node,
each specialized in sensing a specific parameter:
temperature, pressure, etc. Each of these physical sensors has
registers (R), which are updated to reflect a currently
observed parameter vale. The Storage Engine (SE) has the
appropriate business logic knowledge to determine at which
point to trigger the transfer of data from the registers into the
data storage. Prioritized Data Reduction (PDR) is achieved
via a controller and an engine. The PDR controller performs
periodic checks on the data storage and it can also accept
traps from the data storage. When business knowledge
dictates, the PDR controller instructs the PDR engine to
perform specific data reduction operations.

We first focus on the operations executed inside the PDR
engine. For that matter, we first characterize how the SE
operates.

3.2 A model for data classification

Triggers or conditions are used to control data collection.
These conditions trigger the SE to perform transfer
operations from R into the data storage.

3.2.1 Conditions

We break down the conditions into two categories: value-
based and sequence-based. Value-based conditions are
evaluated as a whole and can immediately evaluate to TRUE
or FALSE:

if ((temperature > α) && (humidity > β))

Sequence-based conditions are evaluated in sequence.
We must establish a chain of TRUE evaluations in order for
the entire condition to be considered TRUE. If one element
in the sequence evaluates to FALSE, we pause there until the
next round of evaluations:

sequence {
s1: (temperature < 0C)
s2: (temperature > 0C)
s3: (temperature > 10C)
s4: (temperature > 20C)
s5: (temperature > 25C)

}

Sequences are useful in establishing trends. Even though
one sequence item may temporarily be FALSE, once we
arrive to s5 and it evaluates to TRUE, the sequence is said to
evaluate to TRUE.

3.2.2 Data Collection

Data collections can be classified in two categories,
based on the periodicity of the collection: there are
samplings at defined intervals (recurring), or single shot
samples (non-recurring).

3.2.2.1 Recurring Data Collection

Recurring data collections involve taking specific
measurements at defined time intervals. One example of this
type of data collection is temperature. We can specify such
intervals at microseconds to hours and even less frequent.
The sampling rate would depend on the exact use for the data
collected and according to the business model. Not all
recurring data sampling is enabled by default and
continuously done throughout the live of the sensor. There
are conditions that can trigger starting or stopping a series of
such data collections.

As an example, we assume we are monitoring
temperature on the side of a volcano in order to detect
abnormally high values. We assume that baseline values are
available. Under normal conditions, a few degrees difference
warmer than prevailing temperatures may be acceptable, but
once the temperature crosses a certain value (hinting of some
sort of activity), it becomes interesting to start taking
measurements of several factors: sound, land vibrations, gas
composition, etc. When the ambient temperature returns to a
specific value, it may not be of interest to sample a wide
variety of parameters.

Recurring data sampling can be defined by a start
condition, a stop condition, a sampled parameter, and a
recurrence window.

start: (temperature > (baseline + Δ))
stop: (temperature <= baseline)
sample parameter: sound
recurrence: 1ms

s
s
0
s
0
s
0

R
0
R
0
R
0

Storage Engine

data
storage

PDR
Engine

PDR controller

169

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Once a collection has started, a second instance of the
same collection cannot start even though the start condition
evaluates as TRUE.

It serves no purpose to sample data any faster than the
sensory devices can update registers holding the sensed data.

As a special case, the primitive values TRUE and FALSE
can be used as a start condition and a stop condition
respectively, and hence a continuous sampling is achieved.

We label as a recurring data instance (RDI) a recording
of the entire set of data points from the collection start to
collection stop, or to current time if the collection has not
stopped.

Defining an RDI

RDI: (Tstart, Tend, param, recurrence, resolution, compression),
where:
Tstart: start time
Tend: stop time
param: the parameter being collected
recurrence: how often the collection is done
resolution: how precise the stored value is
compression: boolean stating if the RDI has been compressed
e.g., RDI(2009/12/06 16:43:23, ongoing, temperature, 60 seconds,
0.01C, FALSE)

3.2.2.2 Non-Recurring Data Collection

Non-recurring data collection happens when a specific
condition is met. It leads to a single value being stored every
time the condition evaluated to true. Such conditions must be
written as a sequence so as to avoid constant firing of the
rule and hence leading to a constant parameter sampling.

sample condition:
sequence {

light < 50lx
light > 10000lx

}
sample parameter: temperature

What the example above means is that we are sampling
the temperature of a location after the sun has come up and is
providing a specific light intensity. The reason we require a
value increase from under 50lx to over 10000lx is to
establish a trend.

If we simply state the above as :

sample condition: (light > 10000lx}
sample parameter: temperature

then we would have continuous temperature sampling
once the light goes over 10000lx.

We label as a non recurring data instance (NRDI) a non-
recurring stored data recording.

Defining an NRDI

NRDI: (T, param, resolution, compression), where:
T: recording time
param: the parameter being collected
resolution: how precise the stored value is
compression: boolean stating if the NRDI has been compressed
e.g., NRDI(2009/12/06 16:43:23, temperature, 0.01C, FALSE)

3.3 Primitives for space optimization

In this section, we introduce primitives which are
invoked inside the PDR Engine once the PDR Controller has
identified data to be subjected to reduction.

3.3.1 Compression

Lossless data compression algorithms are widely
available and used [11]. On a normal basis, compression and
decompression cause little impact. On a sensor node,
compressing certain portions of the data will yield available
data space with no information loss. The loss is from a
flexibility perspective. Once compressed, the data becomes a
blob which should be treated as an atomic entity. The WSN
node looses the capacity to discard partial data.

Such an approach is recommended for very critical data,
and hence very important, that can never be discarded.
Otherwise, it should be used for non-recurring data instances,
or for portions of recurring data collections that can be
dropped one whole section at a time. A parameterized
compression is used to specify which span of a data instance
should be compressed:

Compress[(a, b)](RDI) signals that only the data from
time interval a to b is compressed, while the rest remains as
initial.

The non-parameterized compression affects the entire
RDI.

Usage on non-recurring data:

Compress(NRDI(2007/11/24 13:21:37, humidity, 0.01%, FALSE))
= NRDI(2007/11/24 13:21:37, humidity, 0.01%, TRUE)

170

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Usage on portions of recurring data by first dividing the data
instance several data instances:

Compress[(2008/11/11 12:00:00, 2008/11/12 12:00:00)](RDI:
(2008/11/10 12:00:00, 2008/11/13 12:00:00, temperature, 3600
seconds, 0.01C, FALSE)) = RDI: (2008/11/10 12:00:00,
2008/11/11 12:00:00, temperature, 3600 seconds, 0.01C, FALSE) +
Compress(RDI: (2008/11/11 12:00:00, 2008/11/12 12:00:00,
temperature, 3600 seconds, 0.01C, FALSE)) + RDI: (2008/11/12
12:00:00, 2008/11/13 12:00:00, temperature, 3600 seconds, 0.01C,
FALSE)

At this point, the second data instance can undergo compression and
becomes:

RDI: (2008/11/11 12:00:00, 2008/11/12 12:00:00, temperature,
3600 seconds, 0.01C, TRUE)

while the first and third data instance retain all original data.

3.3.2 Thinning

For a non-recurring data instance, thinning involves
simply discarding the collected data. For recurring data,
thinning involves discarding a contiguous amount of data
that corresponds to a time span of low importance in the case
of recurring data instances. This can be used when the
collection has a cyclic pattern and a long sampling period
gives little additional insight when compared to a somewhat
shorter period, or a period with gaps.

To better clarify, we can resort again to the temperature
sampling example. Let’s assume that we are sampling
temperature every minute. This has been going on for five
months. Depending on the business case, it may be
acceptable, without any significant impact to data
significance, to either discard data pertaining to the third
operational month, or to discard data pertaining to the third
quarter of each operational month. Figure 5 shows the
impact of thinning on a data sample.

Figure 5. Impact of thinning on data top) initial data bottom)
resulting data after thinning.

Thin[(a, b)](RDI) signals that the data collected between
time a and time b are dropped from the data instance.

Usage of thinning on recurring data:

Thin[(2008/11/12 12:00:00, 2008/11/13 12:00:00)]
(RDI(2008/11/10 12:00:00, 2008/11/17 12:00:00, temperature, 6
hours, 1C, FALSE)) = RDI(2008/11/10 12:00:00, 2008/11/12
6:00:00, temperature, 6 hours, 1C, FALSE) + RDI(2008/11/13
12:00:00, 2008/11/17 12:00:00, temperature, 6 hours, 1C, FALSE)

3.3.3 Sparsing

Sparsing can only be used recurring data collections. If
the global pattern of fluctuation in the measurement is an
important factor, then it is important not to lose entire spans
of information. In such cases, the recurrence window can be
widened by means of dropping values at regular intervals.
The resolution suffers, but the overall pattern is conserved.

Looking at the same example as in 3.2, instead of
dropping a full data set corresponding to day 3, we are going
to double the sampling interval for days 2 and 3.

171

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Impact of data sparsing top) on the left with initial
data bottom) on the right after sparsing is applied.

The syntax for sparsing is Sparse[(a,b,r,s)](RDI), which
means that for the time interval between a and b, r entries
are removed out of every s entries.

Usage of sparsing on recurring data:

Thin[(2008/11/12 12:00:00, 2008/11/14 12:00:00, 1, 2)]
(RDI(2008/11/10 12:00:00, 2008/11/17 12:00:00, temperature, 6
hours, 1C, FALSE)) = RDI(2008/11/10 12:00:00, 2008/11/12
6:00:00, temperature, 6 hours, 1C, FALSE) + RDI(2008/11/12
12:00:00, 2008/11/14 6:00:00, temperature, 12 hours, 1C, FALSE)
+ RDI(2008/11/14 12:00:00, 2008/11/17 12:00:00, temperature, 6
hours, 1C, FALSE)

3.3.4 Grain coarsing

Data collections can be with very high precision, or can
be with lower precision. For example, captured images can
be anywhere from black and white to 24 bit images. To a
lesser extent, this can be applied to numeric data which
contains more precision in an 8 byte floating point
representation versus a 2 byte integer representation.

Grain coarsing can be applied to both non-recurring and
recurring data. Just like thinning and sparsing, we can opt to
apply grain coarsing only to a specific interval of an RDI.

Because precision or resolution depends on the nature of
the data, we give the example of an image whose resolution
is measured in dpi. To specify a 50% decrease in DPI, the
exact call would be GrainCoarse[(50%)](NRDI).

Usage of grain coarsing on an image:

GrainCoarse[(50%)](NRDI(2007/03/23 17:32:45, image, 300dpi,
FALSE)) = NRDI(2007/03/23 17:32:45, image, 150dpi, FALSE)

3.3.5 Range representation

In some cases we would like to eliminate most of the
collected data for a specific parameter over a certain time
range, yet still keep some hint of where values were for that
range. In such an instance, we can keep for example the
minimum value, the maximum value, the average, as well as
the number of values used to compute the average and how
far apart in time those values were. Note that the minimum
and maximum values are not necessarily correct, but they are
the largest and smallest value as far as available data
samples.

A case where this can be misleading is for example a
recurring data sampling that has undergone extensive
sampling. In that case, it is plausible that many of the brief
spikes and dips in values are lost.

The range primitive applied to an RDI produce a tuple:
Range(RDI) = Tuple(Tstart, Tend, Min, Max, Average). A data
span that is represented as a tuple can be considered for
further space optimization in the same manner as an NRDI.

3.6 Usage of primitives

The proposed space optimization methods are primitives.
They are not the last word on a specific data collection. It
should be noted that the same data can be subjected multiple
times to data reduction, and each time a different mechanism
can be deemed appropriate. While data morphs, its
importance changes as well.

We take the example of a single sensor node that is
deployed in a dangerous climate area. The node is to collect
several parameters over a long period of time. At the end, the
node is either removed or a sink node is placed in proximity
for a brief period in order to retrieve collected data.

The parameters that are to be surveyed are: temperature,
barometric pressure, light, humidity, vibrations, and CO2
concentration. There are several recurring data collections as
well as triggered single time collections.

We grade data importance from 0 to 1 as a continuous
value. The value of 1 is reserved for critical data that under
no circumstance should be reduced in size.

Critical data involves a full day’s unaltered temperature
and barometric pressure sampling every second on the first
operational day, and every 10 minutes thereafter with
importance 0.5. Except for the first day, recurring recordings
of these two parameters are subject to 50% sparsing while at
the same time their importance increases by half the interval
between current importance and 1.

Whenever a vibration amounting to 2nd degree on the
Richter scale, all parameters are collected for one hour at 5
second intervals and bear importance 1. This collection is
followed by 24 hours of collections every minute with
importance 0.8. This collection can be subjected to range
representation based on 10 minute intervals, which data now
becomes of importance 1.

172

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

With this data set and requirements, the simulation is
allowed to proceed both with data reduction and no data
reduction. Here is what is found in each case:

3. 6.1 No data reduction

Under an approach of no data reduction, the storage
space was used up in about 12 operational days. The
following were found in the data storage:

 First day of temperature reading every second
 First day of barometric pressure reading every

second
 Eleven days of temperature readings every 10

minutes
 Eleven days of barometric pressure readings every

10 minutes
 Data collections related to three vibration shocks:

all parameters collected for one hour at 5 second
intervals, and 24 hours every minute

3.6.2 With data reduction supported by proposed
primitives

While allowing for the data reduction, here is what was
found on the machine after 15 operational days:

 First day of temperature reading every second
compressed

 First day of barometric pressure reading every
second compressed

 Fourteen days of temperature readings every 10
minutes out of which the first six had been sparsed
(i.e. are now every 20 minutes)

 Fourteen days of temperature readings every 10
minutes out of which the first six had been sparsed
(i.e. are now every 20 minutes)

 Data collections related to five vibration shocks,
two of which have been subjection to range
representation

With all of the above in storage, there are still items that
can be removed to make space for incoming data.

3.6.3 Comparison for freeing the space

Clearly the data reduction presents opportunity for
storing more relevant data in the long run. There are some
drawbacks regarding the resolution and recurrence of
collected data, but the emphasis is placed on high importance
data.

Now that we have proposed procedures for data
reduction, the question is when such data reduction should
be performed. There are competing constraints to consider:

 We do not want to run the data reduction process
too often

 We do not want to get overenthusiastic with data
reduction as the sink may soon be available for
integral data transmission

The problems faced here are similar to garbage
collections in processes such as JVM. The added complexity
is that, as opposed to JVM garbage collector which collects
true disposable garbage, the process we intend to run
recovers space in exchange for some loss of lower
importance data or loss of flexibility.

An assumption is made that while the storage recovery
process is under way, the sensing devices have enough
buffer space to store sensed data until the main processor is
ready to take the data to the main storage unit.

3.6.3.1 The Pessimistic Approach

The main idea of a pessimistic approach in running a data
reduction process is that the space available must always be
able to accommodate the biggest possible data influx spike
which cannot be dropped based on its importance. This rule
can only be broken if the existing stored data has an
importance level which makes it final and not subject to
reduction.

Let’s denote the total storage space with T, the occupied
space by O, and the biggest possible influx spike by S. It
follows that (T – O) >= S. Technically we can get away with
T – O = S. However, we risk fluctuating values of O which
leads to a repeated invocation of data reduction algorithm.
The free space target depends highly on business logic and
should be a value higher than S.

3.6.3.2 The Optimistic Approach

The optimistic approach keeps all data until it is time to
store higher importance data. At that point, storage space
will be made available by running a storage space recovery
process while the incoming data is still in the sensing device
buffers. For this approach, the assumption is made that data
reduction is a quick process both in identifying the data
subject to reduction, as well as the reduction process. In
certain cases this may be true, and hence there is no need to
have available space sitting unused just in case there is
incoming data that needs to be stored.

IV. EXTENDING THE SINGLE NODE FUNCTIONALITY

In this section, we take as a starting point the Prioritized
Data Reduction (PDR) presented in Section III and expand it
to include a complete characterization of the data reduction
mechanisms. The overall model of the sensor network under
consideration is “dumb data collection”: collection is done
by the nodes, processing is done offsite. At this point, data
deduplication is not addressed as part of PDR; it is left as
future work.

173

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In Section III data importance was introduced as a
continuous value assigned to collected data instances used in
the data reduction process. The lowest value is 0 and the
highest value is 1. In order to assign this value to collected
data, the data needs to be divided in manageable pieces. Each
such piece, called a data unit, has two associated values:
data importance and compensation factor.

4.1 Data Units

Data collections can be both recurring and non recurring.
The non recurring collections generate data that is stand
alone and considered atomic. It makes sense to consider a
non recurring data record as a single data unit.

Recurring data collections have several values over a
potentially long period of time. Such a data needs to be
divided in intervals that can be treated as a whole during the
process of data reduction. We propose that such intervals be
devised as contiguous time intervals. There is no need for the
intervals to be of equal length. What the data units do is
provide a contained set of data on which we can apply the
primitives enumerated in Section III.

For the sake of simplicity, we also assume that once a
data unit has been delimited within a recurring data
collection, it is no longer subject to further division or
merger with other data units. There may be flexibility gains
from allowing such operations, but this is left as future work.

The lifecycle of a data unit starts with a data collection,
which can potentially go through several rounds of data
reduction, and ultimately possibly dropped, assuming a long
period of sink node unavailability. If at some point, the sink
node is available, data is simply unloaded and space freed.

To assist in selecting what data unit to target for data
reduction, each data unit is reflected by a data importance,
denoted I. Once a data reduction is performed, this needs to
be reflected in future importance computations. For this
purpose, each data unit is assigned a compensation factor, K.

4.2 Data Importance

Data importance, denoted as I, is a value that numerically
reflects the relevance of a data unit for the business case. The
raw value of I is primarily used to rank data units in view of
data reduction, but the exact magnitude of the difference
does not necessarily carry a meaning.

START
WHILE ‘storage availability level’ is below a ‘threshold’

FIND ‘data unit ‘ with ‘lowest importance’
APPLY ‘data reduction’ to that data unit
ADJUST the compensation factor
RECOMPUTE ‘importance’ for any dependent data unit

Reduction algorithm 1. High level PDRE process for data reduction.

Figure 3 shows an abstraction of the process that happens
within the PDRE when the controller triggers a data
reduction operation. The reduction can occur in one or more
iterations. In the first step, the data unit with the lowest
importance is found and the corresponding reduction method
is applied. As a consequence, the compensation factor is
adjusted. All other data units whose importance factor
depends on the reduced data need to have their importance
level recomputed.

4.3 Compensation Factor

The compensation factor, K, is an importance modifier
that reflects the data reductions that have already been
performed on the specific data unit. The compensation
factor, is defined as a percentage value between -100% and
+100% and it is used in the following manner:

I = if K < 0, (1+K)*I’
if K > 0, I’ + K*(Imax-I)

where I is the data importance for a data unit, I’ is the
resulting data importance post data reduction, and Imax is the
maximum possible value for data importance. In our
example, we assume that data importance is continuous
between 0 and 1; 1 is reserved for data that cannot be
reduced under any circumstance.

To illustrate the application of the compensation factor,
let’s take an example where a data unit’s importance value is
evaluated to 0.75 before the compensation factor is applied.

 for a compensation factor K = 40%

I = 0.75 + 0.40(1 – 0.75) = 0.85

 for a compensation factor K = -40%

I = (1 + (-0.40)) * 0.75 = 0.45

4.4 Available Input

Determining data importance is in the hands of the
business model. In this section, we identify input factors that
can be used to establish the importance of a data unit.

 age/collection time

The data collection time is a relevant factor. Whether in a
linear manner, exponential decay, or in some irregular
manner, the collection time is relevant. For example, one
may be interested to correlate rush hour to atmospheric CO2

levels over a month’s period. In such a case, the time

174

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

dependency is rather irregular: the data collected just before,
during, and just after rush hour are more important than data
collected on a week-end.

 self values

The very collected values can affect the importance of a
data unit. For example, for any parameter that is collected,
any value outside of an expected interval may need further
investigation. Hence, additional importance can be assigned
to data units containing such values.

 other data units of same instance

In cases where a parameter’s cyclic aberrant values are
suspected, the values of a data unit affect the importance of
data in other data units of the same data instance.

 other data instances

Similar to the case above, if correlation is to be made
between multiple parameters, then special values of interest
in a data unit of one parameter add importance to data units
taken around the same time for other parameters measured.

4.5 Summarizing the components of RDI and NRDI

In order to make the jump from a single node model to a
multiple node deployment, we have identified additional
functions to better characterize data handling. In this section,
we will review the components added to the model described
in [12].

 interval production function (for RDI only)

For a recurring data instance, this function is used to
produce data units. This function can be rather simple, such
as grouping every fixed number of measurements in data
units, or it can be more complex resulting in the creation of
data units covering variable time spans.

 default compensation factor

The compensation factor is used to reflect already
performed data reduction. A default value needs to be
specified.

 data importance function

A data importance function which computes the
importance of a data unit, taking into account some or all of
the factors listed in section A.

 data reduction operation function

A data reduction function which, given a data unit
outputs a smaller sized data unit based on its internal use of

reduction primitives. It also changes the compensation factor
so as to reflect upon future data importance computations.

4.6 A single node use case

Given the above extensions to the single node model, we
now consider an example and get into details as far as the
specifications for data collection. The approach to data
collection reflects human perception with respect to
quantifying and formulating data importance. In order to
validate such approaches, a preliminary step is to simulate
the setup intended for deployment.

4.6.1 Car traffic and CO2 concentration use case

The main objective of the deployment in the example is
to observe data that can be used to correlate car traffic
volume with atmospheric CO2 concentration. There is a
broad pattern that is expected, with more CO2 production
during rush hours where there is more traffic. There are also
temporary spikes in the detected levels when a large vehicle
passes, such as a large truck. These spikes need to be
accounted for.

The deployment consists of many sensors installed in a
very large geographical area, but all in proximity of a street.
Some of the sensors may be able to reach other for
communication, but communication is very costly given the
distance. The collection happens using a mobile base on a
vehicle with. The frequency of data collection is not
predetermined.

The sensors that are deployed have four sensory devices
in addition to an internal clock: a gauge for CO2

concentration, a sensor across the street to detect traffic
levels, as well as to detect the presence of an oversized
vehicle, a gauge for wind speed, and one for wind direction.
The sensor is also able to take a panoramic photo and store
the picture.

4.6.2 Data Collection Requirements

 Every 10 seconds, the CO2 concentration is recorded
continuously (data instance A)

 Matching the above, wind speed and direction is
recorded continuously (data instance B and C)

 When a large car passes, the CO2 concentration is
recorded for 5 minutes at 1 second intervals (data
instance D)

 Matching the above, wind speed and direction is
recorded continuously (data instance E and F)

 If an unexpected spike in CO2 is detected, a panoramic
image is recorded (data instance G)

 The number of cars passing is recoded for every 10
second intervals (data instance H)

175

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4.6.3 Data Reduction Specification

Each of the above data collections need to have specific
interval production functions to generate data units, default
compensation factor, data importance functions, and data
reduction functions.

 data instances A, B, and C

The division in data units is done according to the time of
day. The regions of higher interest (i.e. rush) are divided in
smaller data units. That way, any data reduction algorithm
applied to a data unit affects a smaller data interval.

Table1. Data unit size for data instances A,B, and C

time label data unit size
9pm – 4am night 10 minutes
4am – 6am pre rush 2 minutes
6am – 9am rush 30 seconds
9am – 11am post rush 2 minutes
11am – 2pm day 5 minutes
2pm – 4pm pre rush 2 minutes
4pm – 7pm rush 30 seconds
7pm – 9pm post rush 2 minutes

For the purpose of defining compensation factor, the
reduction function, and the data reduction function, we
divide the collected data into four sections. The first three
sections span 7 days each, and the fourth section covers the
remaining time interval. The days being labeled from 0
(most recent), here are additional parameters for the data
units:

Table 1. Data handling parameters for instances A, B, and C

span K data reduction data importance
day 0 – day 6 50% 25% trimming set to 0.95
day 7 – day 13 25% 50% trimming set to 0.85
day 14 – day 20 0% 75% trimming set to 0.65
day 21 - end -25% 75% trimming set to 0.5

The use of K and the data reduction trimming primitive
have been covered above. For the data importance, whenever
a data unit moves from one span to another, its importance is
set to a fixed value (as noted in the table). Only subsequent
data reduction operations will affect this (via the
compensation factor).

 data instances D, E, and F

In this case, we select a constant data unit interval for the
entire span of the data collection. The data collection is
rather shot, so the entire 5 minutes will be treated as a data
unit.

For the remaining parameters of a data instance, we
divide such instances into the 10 most recent, following 100
most recent, following 1000 most recent, and as a fourth, the
remaining instances.

Table 2. Data handling parameters for instances D, E, and F

span K data reduction data importance
10 most recent 20% 50% sparsing set to 0.9
next 100 20% 50% sparsing set to 0.75
next 1000 20% 50% sparsing set to 0.50
after1000 -20% 50% sparsing set to 0.50

The same approach as above is used in the case of data
importance.

 data instance G

This data instance is non-recurring. A recording of this
data is a data unit. Similar to the case above, we divide the
instances in the 5 most recent, the following 10 captures, and
the rest of the captures:

Table 3. Data handling parameters for instance G

span K data reduction data importance
5 most recent 50% 20% resolution reduction 1
next 10 50% 20% resolution reduction 0.8
after1000 50% 20% resolution reduction 0.7

 data instance H

In this instance, we are dealing again with continuous
data collection. In this case, counting the vehicles, we divide
the collection in even data units. Just like in the first
example, the data units are placed in several time spans:
three spans are 30 days long, and the fourth span contains the
remaining days. The data units are 5 minutes long.

Table 4. Data handling parameters for instance H

span K data reduction data importance
day 0 – day 29 25% 50% grain coarsing set to 0.80
day 30 – day 59 15% 50% grain coarsing set to 0.70
day 60 – day 89 -15% 50% grain coarsing set to 0.50
day 90 - end -50% 50% grain coarsing set to 0.40

4.6.4 Use Case Conclusions

The use case described is quite simple, yet it does the job
of properly collecting the data. The model used needs the
validation of intense simulation in order to validate the
nature of the data it produces in various circumstances.

4.7 Data dependency

In the example so far, there was no dependency between
the different data collections with regards to data values from
a concurrent data collection. In this section, we expand on
data instance A from the previous section in relation to data
instance B. As a reminder, data collection A is the CO2

concentration sensed, while B is wind speed.

176

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As a business case decision, we decide that certain
atmospheric disturbances in the area of the sensor affect the
relevance of the CO2 concentration measurements. We are
going to look at two aspects to determine dependency: (i)
increase in wind speed and (ii) average wind speed within a
data unit. We decide that wind acceleration beyond a fixed
value a affects the importance of CO2 measurements, while
an average wind speed beyond a certain level s affects the
importance of CO2 measurements for four data units.

Figure 7. Data dependency across data units.

In Figure 7, several data units, labeled from a to f, are
shown with corresponding reading of CO2 concentration and
wind speed. Data units b and c on the wind speed graph are
of interest as they affect the importance of CO2 readings. In
data unit b, the wind acceleration causes an effect on the
corresponding concentration reading. In data unit c, the
average wind speed affects the data importance of four data
units for concentration reading.

On a more specific note, here is a proposal for to
compute the data importance mapped to a data unit of CO2

concentration reading. We denote by CO du ti - tj the CO2

concentration data unit between time ti and time tj, while WS
du ti - tj refers to the wind speed data collection.

var tempI

if age(du ti - ti+1) < 7 days
tempI ::= 0.95

else if age(du ti - ti+1) < 13 days
tempI ::= 0.85

else if age (du ti - ti+1) < 20 days
tempI ::= 0.65

else
tempI ::= 0.50

if acceleration(WS du ti - ti+1) > a
tempI ::= tempI * 50%

if average(WS du ti - ti+1) > s
tempI ::= tempI * 10%

if average(WS du ti-1 - ti) > s
tempI ::= tempI * 20%

if average(WS du ti-2 - ti-1) > s
tempI ::= tempI * 50%

if average(WS du ti-3 - ti-2) > s
tempI ::= tempI * 80%

I(COdu ti - ti+1) :: = tempI

Figure 8. Computing data importance with dependency.

At this point, we can generalize the constraints on the
data importance computation as pertaining to two categories:
(i) internal constraints and (ii) external constraints.

External constraints are caused by factors over which
input data has no effect. Such factors are data age and
inherent interest in the data depending on the exact purpose
of the data collection.

Internal constraints represent inter- and intra-data
dependencies. In the case presented above, increased wind
renders CO2 concentration less relevant and less usable; there
can be events which affect the importance of data at any
point along the timeline.

4.8 General implementation architecture

In this section, we present the general building blocks of
the data collection process, as well as the prioritized data
reduction process. While these processes act on the same
data, they run in parallel as uncoupled processes.

Figure 9 presents the control steps for the data collection.
Figure 10 presents the steps involved in the data reduction
process. The black arrows denote sequence of steps. The red
arrows denote control.

Figure 9. Storage management as per instance specifications.

In Figure 9, we have the physical sensors which make
actual measurements. They have associated registers where
the data readings are placed. This happens whether data is
being collected or not. At this point, depending on the
running condition of the recurring data instances, the

sensing
device

registers

data
unit

buffer

storage

NRDI

condition

parameter

resolution

default K

data importance function

data reduction function

RDI

start condition

stop condition

parameter

recurrence

resolution

interval production

default K

data importance function

data reduction function

CO2 %

wind
speed

data units

a b c d e f

time

time

177

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

recurrence interval, and the resolution, the data is captured
into a buffer. Enough data is accumulated to construct a full
data unit. When complete, the data unit has its importance
calculated and is placed into the storage. In case we are
following an optimistic approach to data reduction, as
described in [12], then we compute the data importance of
the data unit in the buffer in order to compare with stored
data. In case the data unit in the buffer is the one with lowest
importance, then it will be the one to be reduced.

Figure 10. Data reduction based on data instance specifications.

Figure 10 only shows a single sensing unit and a single
data instance. In deployments, there can be several sensing
units for different parameters, and several data instances that
are collected. There can be different instances collecting
from the same sensor, but with different specifications, such
as resolution for example.

In Figure 10, the flow of data reduction processing is
presented. The PDR Controller continuously monitors the
amount of data in the storage. If the levels cross a given
threshold, then data importance ranking is consulted to
identify the least important data. This data unit maps to a
specific data instance which carries a data reduction function
as well as an importance computation function. After a
reduction, the data unit is written back to memory.

V. DATA HANDLING

5.1 Multi-prong consideraitons
5.1.1 Energy considerations

When encountering limited data storage space, a node has
two options, (i) to reduce the size of the data by applying
some primitives, or (ii) to relocate some data. In this section,
we consider the factors that affect the decision.

Negotiations to find an appropriate host for data require
energy. As the packets involved in negotiations don’t contain
data, they are fairly short so they don’t consume much

energy. The energy cost needed for the transfer of the data
depends directly on the size of the data transferred. The node
needs to save enough energy to eventually transfer the entire
contents of the data to the sink node once the sink node
becomes available.

Energy is wasted if a portion of data is relocated only to be
transferred to the sink shortly after. In the case of unreliable
sinks or sinkless deployments, expected access to sink is
hard to compute. It can be done with statistical data, but
reliability can vary. If the sink operates on a predefined
schedule, it is feasible for this to be taken into consideration.
A similar case to a predefined uptime schedule is a mobile
sink. With some uncertainty, the sink will travel along a
route with high probability of being in specific areas at
certain times.

5.1.2 Data considerations
There are characteristics that make data appropriate

for relocation. The size is one factor, as we want to have a
sizable impact as a result of investing energy in the
negotiation part. Other factors relate to the dependency
between data units.

The importance calculation function should depend
on self values or on time only. In that way, we can preserve
the importance calculation function after the data has been
moved. In some cases, the importance of a data unit depends
on other data units of the same collection. It is conceivable
that all the data units with importance interdependence
relations be subject to a data transfer as a whole.

The reverse is also true, i.e., the data units to be
transferred are used in computing the importance level of
other data units. Bundling everything in the data to be
relocated is an acceptable solution.

A special case is the situation where yet uncollected
data can affect the importance of data units already collected
and tagged for relocation. Such data is best not moved as this
would imply changed to the importance calculation function.

The parameter K was introduced in Chapter 4 as a
compensation factor to affect the importance value for data
units that have undergone data reductions. A positive K will
increase the importance of post reduction data, while a
negative K will decrease it. The data that is considered for a
move needs to have a positive K so as to make it through
potential data reductions it will undergo on the receiver node.

5.1.3 Receiver node considerations
The conditions of the receiver node affect how the

received data will be handled on that node. The potential
recipient of the data needs to have a good situation of its
storage space as well as a good outlook for future situations.
The recipient also needs to have a good amount of energy
left so as not to compromise the long term survival of the
data being sent.

PDR Controller data importance
ranking

data unit
(I, K)

data unit
(I’, K’)

data importance recalculation for
dependent data units

RDI or
NRDI

data
importance

function

data
reduction
function

178

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The number of active collections and the amount of
data they produce is an important factor. If there are many
collections going on, the space on the receiving node is
quickly filled up. Even if these collections produce low
importance data units, a large number of ongoing collections
generate lots of data reductions and data relocations. We
want to avoid causing such events.

Inactive collections are collections whose start
condition is not met. Some of these are predictable as to
when collection actually starts, such as collections that only
depend on time to be activated. Others depend on data values
detected by sensors. Having a large number of inactive
collections makes a node less desirable to act as a data
recipient. These collections can start unexpectedly and
produce data that competes for space with the relocated data.

Finally, the general importance profile of the stored
data units are a factor in deciding if a node is a good
recipient of relocated data. If most data on the receiver node
is low importance, then the node is a good recipient of data.
However, the nature of the importance functions on that
node is to be taken into consideration. An event could trigger
a recomputation that changes the data importance to higher
values.

5.2 Sending vs. Reducing: the decision
The decision to favor data reduction vs. data

relocation is subject to network’s owner decisions. In this
section, we provide a parameterized approach to handle this
task. We specify three functions as follows:

 SF(i) specifies the fitness of a node i to act as a data
source

 RF(i) denotes the fitness of a node i to act as a data
receiver

 DF({du}) denotes the fitness of a set of data units for a
data transfer operation

We also specify a threshold value t such that:
if (a*SF(n) + b*RF(m))*DF({du}) > t, then node n

should initiate a data transfer of the {du} set of data units to
node m, where a and b are parameters to give more or less
weigh to each of the functions

SF(i) is defined as a function of the source node’s ability
and opportunistic interest to spend energy on data movement
related operations: negotiations and actual data movement.
We define as LD(i) the percent of data stored on node i
having an importance that is low and decreasing, that is, an
importance smaller than a fixed value, decreasing in time,
and a negative K. The K does not have to be negative for a
fixed number of initial reductions, but it needs to be negative
for remainders of the reductions or the reductions are quickly
reaching a point where data is entirely dropped. Let e be the
minimum residual energy required for a node n to send its
data contents and E the current amount of energy in storage.
The value of SF(i) directly related to available energy and to

the lack of low and decreasing importance data units. We
define SF(i) as follows:

SF(i) = k*(1-LD(i)) + j*(E/e) (1)

where k and j are parameters to adjust the weights of the two
factors.

RF(i) is defined as a function to quantify the potential
receiver’s node fitness to act as a receiver. With respect to
energy, RF(i) behaves just like SF(i). With respect to the
stored data profile, it behaves in an opposite manner. In
addition to these two aspects, RF(i) needs to account for the
effect of active collections as well as inactive data
collections.

RF(i) = k*S*LD(i) + j*(E/e) - k*(Da + p*Di) (2)

where Da is the storage debit of active collections and the Di
is the potential storage debit of inactive collections. The
constant p is used to decrease the impact of inactive
collections.

DF(i) reflects on the fitness of data to be subjected to
transfer. As a limiting factor, we have established that the
bundle of data units must be self enclosed as far as
importance calculation dependency. We propose the
following formula for evaluating a data unit’s fitness for
transfer:

DF(i) = I*(trend(K) - k*|M - s|) (3)

where M is the ideal data transfer size, s is the size of the
current data slated for transfer, k is an adjustment parameter,
and trend(K) is a function that evaluates the value trend of K
in time and as potentially affected by reductions within the
transferred data. The entire result relates to the overall
importance I of the data bundle considered for transfer.

With these formulas, we have captured the essence of the
decision making process of data transfer vs. data reduction.
The approach is heavily parameterized as weighing different
factors varies from one business case to another (Figure 11).

179

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Data reduction via move or prioritized
reduction.

We can assume that process to evaluate the source
not for fitness to participate in a data send is straight
forward: the value of the SF(i) is computed. Finding a
recipient and finding appropriate data to send are more
complex as they involve selecting from a pool of
possibilities.

Finding data to transfer is a complex process. There can be
a large number of data units, and therefore, considering all
possibilities can be a lengthy process. We propose a heuristic
on how to approach data targeting for relocation with the
understanding that an exhaustive process may offer a better
solution but at a higher cost. Data units that are targeted for
transfer are incrementally added to the set of data for transfer
as we seek to fulfill the requirements for self-enclosure for
importance function evaluation. We stop as we reach a data
size in the vicinity of M. In certain cases, we reach a dead
end and can no longer have hope to find appropriate data to
move.

The set of data units to be moved is incrementally
increased in steps as follows:
 high importance and positive K data units on which no

other data units’ importance depends
o data units’ importance dependence limited to

self values
o data units’ importance dependence limited to

self values and time
 high importance data units with positive K whose

importance depends only on other data units already

collected (i.e., future data units collected have no
impact on the importance of this data)

 recursively add the data units on which the above units
depend for importance calculation

 as we reach a value close to M, we stop adding data
units to the set of data targeted for a data transfer

We realize that recursively adding data units may be
getting out of hand. If the minimum amount of self
dependent data units amount to a very large amount of data,
we can safely give up the idea of a transfer and opt for a data
reduction.

The simplest approach to finding a recipient for data is to
query the status of all reachable nodes, evaluate their RF(i)
function and select the best option. Depending on the
deployment, querying the immediate neighbors only may be
artificially limiting the amount of potential recipient
candidates for data relocation. Attempting to go the extra
distance via additional hops requires the cooperation of other
nodes along the path. These nodes need to commit energy
reserves towards the data relocation process. Given that we
have already selected the data that will be moved, there is a
clear expectation as to what amount of energy would be
required from the transient nodes during the data move.

Finding an appropriate receiver for the data follows the
following steps:
 decide how many hops away we want the data to

potentially go
 broadcast a message to the effect of finding a host,

including the number of hops; if more than immediate
neighbors are considered, include the data size to be able
to obtain commitment along the transfer route

 reachable nodes reply with their current RF(i)
computation

 select the best RF(i), compute (a*SF(n) +
b*RF(m))*DF({du}) (see section 5.2.6) and if result is
satisfactory, proceed with the transfer

 if the computation yields an unsatisfactory result, then
data reduction is undertaken instead of transfer

5.2.1 Validation and calibration of heuristics

In the above section, we have proposed a series of
heuristics to quantize the fitness of nodes to act as receiver or
sender, as well as the fitness of data to be transferred. The
proposed formulas are parameterized so they can be tweaked
to several circumstances. In this section, we are going to
evaluate the trends that the formulas generate under different
circumstances depending on the statistical distribution of
importance and compensation factor of stored data units

We recall that the formula to decide the fitness of a node
to act as a sender is:

PDR
Contr
oller

importance
ranking

move vs.
reduce

reduce

data
unit

(I, K)

data
unit
(I’,
K’)

importance
recalculation
for dependent

data units

move

find
data

find
recipie

evaluat
e self

succes
s?

perform
transfer

180

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SF(i) = k*(1-LD(i)) + j*(E/e)

By its definition, the fitness function depends on the raw
amount (not ratio) of high importance data and level of
energy required to relay the entire data load towards the base
station. We consider the scenario of different statistical
distributions of data importance on a node, and in each case,
we vary the amount of energy available. We consider the
cutoff for LD(i) to be at the importance level of 0.5. Hence,
in the graphs below, the blue bars represent (1-LD(i)).

Figure 12. Data distribution scenarios for validation of
SF(i).

The image above shows the scenarios considered with
respect to the distribution of importance values. We have
considered skewed, bell curve, and bimodal.

The initial proposal was that the amount of energy
available would have a linear impact on the value of SF(i).
This works well at points where the available energy levels E
are within a few orders of magnitude of e, the energy needed
for a full data transfer. At higher orders of magnitude (i.e
orders of thousands, and above), the linear growth of j*(E/e)
poses a problem as it identified a node as a “good node to
send data” mostly based on its energy levels. If the nodes
deployed fall in such a class, then the problem can be
alleviated by using a logarithm to attenuate de higher orders
of magnitude:

SF(i) = k*(1-LD(i)) + j’*log(E/e) (1’)

Experiments with different LD(i) values only changes the
balance between defining good source nodes via SF(i) and
balanced by the ability to find receiver nodes via RF(i)
defined in equation 2.

Along the same lines, simulations were run to further
analyze the proposed formula for RF(i). We notice an
important difference between SF(i) and RF(i): the formula
for SF(i) depends on a percentage of storage while the RF(i)
formula depends on the value of raw storage. The idea is that
we don’t want to put at a disadvantage nodes that, as per a
deployment decision, have less storage space than others.

Analysis of RF(i) brings up a matter similar to SF(i) in
that excessive energy levels can drive up the value of the
function and artificially flag it as a good receiver node. In
reality, this excess of energy may hide data space availability
issues on the receiver node. it was found that in reality, aside
from using a logarithm to attenuate the energy effect, a
product rather than a sum gives a better assessment for a
node’s ability to receive data. Therefore, RF(i) as presented
in equation 2 can be refined as:

RF(i) = j*log(E/e) (k*S*LD(i) - l*(Da + p*Di)) (2’)

The evaluation of data fitness for transfer was defined in
equation 3 as

DF(i) = I*(trend(K) - k*|M - s|)

Statistical evaluation on this formula with a linear relation
between the trend of the compensation factor (trend(K)) and
the deviation of the data size from an ideal size (|M-m|) is a
good approximation. Since there are already strict conditions
on assembling a set of data units for relocation, it would be
counterproductive to discount the selected data set in case
there are variations from the ideal size. Hence, we opt for a
linear dependence on size deviations.

181

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Additional simulations were conducted on the formula
assembling the three heuristic items:

(a*SF(n) + b*RF(m))*DF({du})

We need both a pair of nodes to participate in the data
transfer and a data set. If either of these items scores low
with our evaluation, we want to prevent the data relocation.
Hence, a product is appropriate.

For the purposes of the simulations in this section, we
have compared trends in values. Specific parameter values
can be assigned for very specific deployment scenarios,
which must be validated on a case by case basis via
simulation.

5.2.2 Relaxing data dependency for transfer

In the approach described above, we have restricted the
data movement to data units whose importance function can
be evaluated even after the move. This restricts the set of
data units that can be targeted for relocation. While not going
into the details of a full solution, we present in this section
two approaches that can be used to mitigate the relocation of
data units

A first approach is to simply replace the importance
function for the relocated units with a version that does not
depend on other data units. This basically changes the
business case approach and may not be feasible while
retaining a reasonable amount of intended resolution.

A more refined approach is to use expected values to
replace the parameters inside of the importance function. It is
less than desirable and requires some statistical approach in
deciding what the expected values are. In the end, this
approach may not yield a good compromise either because
we may be interested in situations where unexpected values
are encountered.

5.3 Redundancy

Up to this point, we have not addressed the issue of data
redundancy. Having multiple copies of data in a wireless
sensor network is important to balance the high incidence of
node failure. In the framework presented in this thesis,
having multiple copies of the same data runs counter to idea
that we seek to make maximum use of a limited storage
space.

5.3.1 Implementing redundancy
The implementation of redundancy is done at the

specification of the data instanc. The additional parameters
that we include relate to the number of that we want to store

for that specific data instance. Hence, the data instance
definition becomes:

Definition of an RDI with redundancy

RDI: (Tstart, Tend, param, recurrence, resolution,
compression, copies), where:

Tstart: start time
Tend: stop time

param: the parameter being collected
recurrence: how often the collection is done
resolution: how precise the stored value is

compression: boolean stating if the RDI has been
compressed

copies: integer stating on how many nodes the data needs to
be stored

e.g., RDI(2009/12/06 16:43:23, ongoing, temperature, 60
seconds, 0.01C, FALSE, 4)

Figure 13. RDI definition with redundancy.

Defining an NRDI with redundancy

NRDI: (T, param, resolution, compression, copies), where:
T: recording time

param: the parameter being collected
resolution: how precise the stored value is

compression: boolean stating if the NRDI has been
compressed

copies: integer stating on how many nodes the data needs to
be stored

e.g., NRDI(2009/12/06 16:43:23, temperature, 0.01C,
FALSE, 3)

Figure 14. NRDI with redundancy.

As data is collected one data unit at a time, these data units
are stored locally (master copy) and copies are also stored on
as many nodes as specified. These redundant nodes are not
tied to one specific recurring data instance for example. The
node collecting the data can select any other node to store the
copies on. The process can be batched as node to node
negotiations can be very costly for a small data segment at a
time.

5.3.2 Importance calculation
We have seen how each data instance has a function that

can be used to compute the relative importance of each data
unit produced. When we deal with several copies of the same
data unit, we need to specify a different importance value for
each of the copies. Redundant copies have less importance
than master copies. For this reason, in addition to the factors
listed in section 4.8.4, we propose an importance decay
function which is applied to the importance calculation of

182

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

redundant copies. For example, if we have a linear decay, the
adjusted value of a data unit importance would be:

D(I(du)) = (1/r) * I(du), (4)

where r is the redundancy level

As nodes collect data and go through data reductions,
some of the redundant copies of specific data units may be
dropped. This is normal as nodes prioritize data units as a
function of importance. However, depending on the
environments in which the redundant copies end up, higher
level redundancy copies may disappear before lower level
ones. In that case, we need to attach a message trigger to
update the redundancy level of the copied of the dropped
data unit. A limited flood mechanism can be used as it is not
expected for data units to migrate very long distance from
the point of origin.

Since redundant copies are targeted for transfer, the
function used in calculating the redundant copies importance
level must be computable on the receiving node. That
restricts the computation function in a way similar to the
restrictions imposed by load sharing. In consequence, if the
data importance calculation function depends on other stored
data, then redundant copies need to carry a completely new
function, as opposed to a function simply affected by a decay
function.

5.3.3 Load sharing under redundancy
The objective of redundancy is to protect the data from

eventual sensor node failures. We therefore have several
copies stored in the network. As a result of using load
sharing to mitigate storage issues, we may at some point
attempt to store more than one copy of a data unit on the
same node. This should be prevented as it defeats the
purpose of redundancy.

VI. CONCLUSION AND FUTURE WORK

In general, there are no specific solutions other than
stating that one needs a systematic approach to data aging.
Current strategies do not address the problem from the
perspective of sink node unavailability, but rather from the
perspective of an intelligent WSN, which gives the
possibility of executing queries through the entire network.

In this article, primitives were proposed in order to deal
with increasing amounts of data stored by a sensor node. The
scope is to have the basic mechanisms to gracefully discard
lower importance data, or lose some flexibility and data
resolution, for the benefit of higher importance data. The
results presented in the example are encouraging. With a
more complex business case, the algorithms can get more
complex, but the overall objective remains the same.

The internal operation of a sensor node consumes little
energy compared to the requirements for transmission.
Hence, the energy issue has been disregarded with respect to
operations taking place without transmission.

Data importance becomes a factor of the entire network.
While the entire sensor network works together towards the
data gathering task, there is competition amongst individual
nodes for access to the storage available in the sensor
network.

When going from the single node focus to the multiple
node scenario, the positioning of the nodes is a factor. The
distance matters for transmission power. If the nodes are
placed at predetermined positions, the preferred
communication links and energy requirements can be pre
computed. If the placement of nodes is non-deterministic,
self-organization algorithms are needed to guide
communication paths for access to other nodes’ storage.

We presented a methodology for prioritizing data
processing in WSNs. In sensor networks with intermittent
connections to a sink node, managing the limited storage size
becomes a relevant task.

In our case, the constant availability of the sink node is
not a given, which reflects the reality in which sensor
networks often operate. We have proposed that the data be
divided into manageable data units. These data units are
evaluated and ranked in terms of importance. When it is time
to reduce the data load, the lowest importance data units are
subjected to a specified data reduction function.

An example was shown with the use case of a very large
area CO2 monitoring WSN serviced by a travelling data sink
node. Several data were collected: CO2 concentration, car
traffic, wind speed and direction. A complete solution was
proposed using only external constraints on the importance
of the data. One of the data collections was further
considered with respect to internal data constraints.

The expansion of the model to several node systems was
studied. While some nodes may experience spikes in data
production, other nodes may simply just collect low
relevance monitoring data. We considered this case for
collaborative storage and proposed solutions for data
handling. The context in which importance evaluations and
reduction functions operate so far is specific to the node that
has produced the data. When we consider sharing other
nodes’ storage space, data that is being housed on a different
node needs to be sent with proper instructions for handling.
Internal dependencies can no longer be enforced; they need
to be rephrased or simply dropped.

As a final step to having a robust solution, redundancy
was addressed addressed. We have assumed smooth
operation of the nodes with no equipment loss or
malfunctions. This can very well be the case in a remote
area. The degree to which redundancy is required and how

183

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

importance of redundant copies is computed need further
exploration.

The decisions taken by the node while handling data
make no assumption regarding scheduled, probabilistic, or
statistical availability of the sink node. This additional
information can affect the manner in which data reduction is
applied, as well as the storage occupancy level at which data
reduction processes are triggered.

Overall, the proposed solution and framework for a
single node case are now robust enough to provide flexibility
for future extensions. Data reduction in unattended sensor
networks with intermittent or non reliable connections is an
important computation when considering data storage and
data aging.

We proposed an optimization function using prediction to
map the use of data reduction primitives, optimization
parameters (K, I) and dependency constraints (contextual or
bounding). The model considers a probability that a variation
of a variable is correlated with a variation of another
variable. A variant of average values can also be considered.
A simple use case had shown the nature of dependencies and
computation challenges for two correlated readings.

We have presented a proposal for prioritized data reduction
in the light of a multi-node deployment. In such a case, it
becomes feasible that a node facing storage space shortages
look first at offloading some data to neighboring nodes. We
have proposed a mechanism by which a node can quickly
assess the situation and decide between the option of local
data reduction or a date transfer.

The opportunity for redundancy was also evaluated.
As wireless sensor networks are often deployed in unreliable
and dangerous areas, node failure is high. Data redundancy
reduces the possibility of critical data loss caused by node
failures. We presented a mechanism to evaluate the
importance level of data units that are redundant copies
rather than master copies of the collected data.

Accurate evaluation of the model requires extensive
simulations, where combinations of the primitives and data
parameters are combined with various type of constraints.
We estimate that finding some correlation patterns will favor
the use of average values, leading to a reasonable
computation effort.

REFERENCES

[1] Edgar H. Callaway, Jr. “Wireless Sensor Networks: Architectures and
Protocols” , CRC Press, LLC, 2004

[2] Feng Zhao, Leonidas Guibas “Wireless Sensor Networks: an
Information Processing Approach” 1st edition, Morgan Kaufmann,
2004

[3] Joon Ahn, Bhaskar Krishnamachari “Fundamental scaling laws for
energy-efficient storage and querying in wireless sensor networks”
The Seventh ACM International Symposium on Mobile Ad Hoc

Networking and Computing, May 22-25, 2006, Florence, Italy,
MobiHoc 2006:334-343

[4] Kyungseo Park, Ramez Elmasri “Query Classification and Storage
Evaluation in Wireless Sensor Networks” 22nd International
Conference on Data Engineering, April 3, 2006, Atlanta, GA, USA,
ICDE Workshops 2006:35

[5] Norbert Siegmund, Marko Rosenmüller, Guido Moritz, Gunter Saake,
and Dirk Timmermann. “Towards Robust Data Storage in Wireless
Sensor Networks” Proceedings of Workshop on Database
Architectures for the Internet of Things (DAIT). Birmingham,
England, July 2009

[6] Joao Girão, Dirk Westhoff, Einar Mykletun, Toshinori Araki:
“TinyPEDS: Tiny persistent encrypted data storage in asynchronous
wireless sensor networks” Ad Hoc Networks (ADHOC) 5(7):1073-
1089 (2007)

[7] E. Mykletun, J. Girao and D. Westhoff “Public Key Based
Cryptoschemes for Data Concealment in Wireless Sensor Networks,”
IEEE International Conference on Communications, 2006, Istanbul,
Turkey

[8] Majid I. Khan, Wilfried N. Gansterer, Günter Haring “In-Network
Storage Model for Data Persistence under Congestion in Wireless
Sensor Network”. First International Conference on Complex,
Intelligent and Software Intensive Systems, April 2007, Vienna,
Austria, CISIS 2007:221-228

[9] Yongxuan Lai, Hong Chen, Yufeng Wang “Dynamic balanced
storage in wireless sensor networks” 4th International Workshop on
Data Management for Sensor Networks, September 2007, Vienna,
Austria, DMSN 2007:7-12

[10] Davide Brunelli, Luca Benini, Clemens Moser, Lothar Thiele “An
Efficient Solar Energy Harvester for Wireless Sensor Nodes” Design,
Automation, and Test in Europe, March 2008, Munich, Germany,
DATE 2008:104-109

[11] P. Ratanaworabhan, Jian Ke, M. Burtscher “Fast lossless
compression of scientific floating-point data”
Data Compression Conference, Salt Lake City, USA, DCC 2006.
Proceedings 28-30 March 2006 Page(s):133 - 142 Digital Object
Identifier 10.1109/DCC.2006.

[12] C. Dini and P. Lorenz, “Primitive Operations for Prioritized Data
Reduction in Wireless Sensor Network Nodes”, Proceedings of the
2009 Fourth International Conference on Systems and Networks
Communications, September 2009, Porto, Portugal, ICSNC 2009, pp.
274-280

[13] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring”, International
Workshop on Wireless Sensor Networks and Applications, September
28, 2002, Atlanta, Georgia, WSNA’02, pp. 88-97

[14] E. H. Callaway, Jr. “Wireless Sensor Networks: Architectures and
Protocols” , CRC Press, LLC, 2004

[15] M. I. Khan, W. N. Gansterer, and G. Haring, “In-Network Storage
Model for Data Persistence under Congestion in Wireless Sensor
Network:, First International Conferenece on Complex, Intelligent
and Software Intensive Systems, April, 2007, Viena, Austria,
CISIS’07, pp. 221-228

[16] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “Collaborative
storage management in sensor networks”, International Journal of Ad
Hoc and Ubiquitous Computing, Volume 1, Issue 1/2 (November
2005), pp.47-58

[17] S. Tilak, W. Heinzelman, and N. Abu-Ghazaleh, “Storage
Management Issues for Sensor Networks”, Poser at International
Conference on Network Protocols (ICNP '03), Atlant, Georgia,
November 2003

[18] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D. Estrin,
“Data-centric storage in sensornets”, ACM SIGCOMM Computer
Communication Review, Volume 33 , Issue 1 (January 2003), p. 137
- 142

[19] N. Siegmund, M. Rosenmuller, G. Moritz, G. Saake, and D.
Timmermann, “Towards Robust Data Storage in Wireless Sensor
Networks”, IETE Tech Rev [serial online] 2009 [cited 2010
Jan];26:335-40.
Available: http://tr.ietejournals.org/text.asp?2009/26/5/335/55280

184

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[20] Y. Diao, D. Ganesan, G. Mathur, and P. Shenoy, “Rethinking Data
Management for Storage-centric Sensor Networks”, Proceedings of
the Third Biennial Conference on Innovative Data Systems Research
(CIDR), Asilomar CA, January 7 - 10, 2007.

[21] S. Tilak, N. Abu-Ghazaleh, and W. B. Heinzelman, “Storage
management in sensor networks”. Mobile, Wireless and Sensor
Networks: Technology, Applications and Future Directions,
IEEE/Wiley. pp. 257-281.

[22] C. Dini and P. Lorenz, “Primitive Operations for Prioritized Data
Reduction in Wireless Sensor Network Nodes”, Proceedings of the
2009 Fourth International Conference on Systems and Networks
Communications, September 2009, Porto, Portugal, ICSNC
2009, pp. 274-280

[23] C. Dini and P. Lorenz, “Prioritizing Data Processing in
Wireless Sensor Networks”, Proceedings of the 2010 Sixth
International Confenrce on Networks and Services, March
2010, Cancun, Mexico, ICNS 2010, pp. 23-31

[24] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong,
“Approximate Data Collection in Sensor Networks
usingProbabilistic Models”, Proceedigns of the 22nd
International Conference on Data Engineering. ICDE 2006,
Atlanta, USA
http://www.cs.umd.edu/~amol/papers/icde06.pdf [Retrieved:
August 20, 2010]

[25] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring”, International
Workshop on Wireless Sensor Networks and Applications, September
28, 2002, Atlanta, Georgia, WSNA’02, pp. 88-97

[26] C. Guestrin, P. Bodik, T.R., P. Mark, ans S. Madden, “Distributed
regression: an efficient framework for modleing sensor network
data”, IPSN, 2004

[27] S.Madden, M.J. Franklin, J.M. Hellerstein, and W. Hoing, ”Tag: a
tiny aggregation service for ad hoc sensor networks” , SIGOP Oper.
Syst. Rev. 36(SI):131-146, 2009

[28] S. Nath, P.B. Gibbons, S. seshan, and Z.R. Anderson, “Synopsis
diffusion for robust aggregation in sensor networks”, Proceedings of
the 2nd ACM Conference on embedded Networked Sensor Systems,
SenSys 2004, Baltimore, MD, USA, 2004

[29] J. Hellerstein and W. Wang, “Optimization of in-network data
reduction”, DMSN, 2002

[30] M. I. Khan, W. N. Gansterer, and G. Haring, “In-Network Storage
Model for Data Persistence under Congestion in Wireless Sensor
Network:, First International Conferenece on Complex, Intelligent

and Software Intensive Systems, April, 2007, Viena, Austria,
CISIS’07, pp. 221-228

[31] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “Collaborative
storage management in sensor networks”, International Journal of Ad
Hoc and Ubiquitous Computing, Volume 1, Issue 1/2 (November
2005), pp. 47-58

[32] Y. Diao, D. Ganesan, G. Mathur, and P. Shenoy, “Rethinking Data
Management for Storage-centric Sensor Networks”, Proceedings of
the Third Biennial Conference on Innovative Data Systems Research
(CIDR), Asilomar CA, January 7 - 10, 2007.

[33] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong,
“Model-driven data acqusition in sensor networks”, VLDB, 2004

[34] I. lazaridis and S. Mehtotra, “Capturign sensor-generated time series
with quality guarantees”, ICDE, 2003

[35] S.M. Graham Cormode, M. Garofalakis, and R. Rastogi, “Holistic
aggregates in a network world: Distributed tracking of approximate
quantiles, SIGMOD, 2005

[36] Y.-Ae¨ . Le Borgne, et al., “Adaptive model selection for
time series prediction in wireless sensor networks”, Signal
Process. (2007), doi:10.1016/j.sigpro.2007.05.015

[37] S. Tilak, W. Heinzelman, and N. Abu-Ghazaleh, “Storage
Management Issues for Sensor Networks”, Poster at
International Conference on Network Protocols, ICNP 2003,
Atlanta, Georgia, 2003

[38] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D.
Estrin, “Data-centric storage in sensornets”, ACM
SIGCOMM Computer Communication Review, vol. 33, issue
1, January 2003, pp.137-142

[39] N. Siegmund, M. Rosenmuller, G. Moritz, G. Saake, and D.
Timmermann, “Towards Robust Data Storage in Wireless
Sensor Networks”, IETE Tech Rev, 2009, vol. 26, issue 5,
pp.335-40. Available:
http://tr.ietejournals.org/text.asp?2009/26/5/335/55280
[accessed August 2010]

[40] M. Aly, N. Morsillo, and K. Pruhs “Zone sharing: a hot-spots
decomposition scheme for data-centric storage in sensor
networks” Second International Workshop on Data
Management for Sensor Networks, DMSN 2005, Trondheim,
Norway, pp.21-26

[41] Y. Lai, H. Chen and Y. Wang “Dynamic balanced storage in
wireless sensor networks” 4th International Workshop on
Data Management for Sensor Networks, DMSN 2007,
Vienna, Austria, DMSN, pp.7-12

185

International Journal on Advances in Systems and Measurements, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

