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Abstract—This paper is concerned with channel modeling
and capacity evaluation of the multilevel flash memory with m
levels. The m-level flash memory is modeled as an m-amplitude-
modulation channel with input-dependent additive Gaussian noise
whose standard deviation depends on the channel input. The
capacity as well as the optimal coding rate of an m-level flash
memory channel (m-LFMC) is given. If the channel output is
observed after a (finite) quantizer, then the channel is further
transformed into a discrete memoryless channel, which yields
an approximation of the capacity for the m-LFMC. Actually,
the determination of the capacity for the m-LFMC can be
transformed into a two-step optimization problem, which can
be numerically solved by an alternating iterative algorithm. This
algorithm delivers not only the optimal input/level distribution
but also the optimal values of levels. This algorithm also delivers
the optimized number of levels at any given voltage-to-deviation
ratio. Numerical results are presented to show the consistency
with well-known Smith’s results for the amplitude-limited AWGN
channel and the applicability of the modeling method, and to
reveal that a finite level quantization of the channel output for
the m-LFMC suffers from a negligible loss of information rate
compared to the capacity.

Keywords—Amplitude-modulation channel; channel capacity;
input-dependent additive Gaussian noise; multilevel flash memory;
optimal coding rate.

I. INTRODUCTION

As the demand for non-volatile data storage increases, flash
memories are gaining attention. The original flash memory
used only two levels to store one bit in one memory cell.
However, a modern mainstream flash memory is a multilevel
flash memory (MLFM), which stores more than one bit in
one memory cell to improve the storage density and reduce
the bit cost of flash memories. In our previous work [1],
we investigated the general MLFM with m-levels, where the
number m of levels can be any integer not less than two. In
practice, designers have presented some MLFMs, where the
number m of levels are powers of two, such as the first MLFM
product presented by Bauer et al. in [2], the 4-level MLFM
in [3] and the Intel StrataFlashTM memory in [4], all three
of which had four levels and stored two bits in one cell, the
8-level MLFMs in [5], [6] storing three bits in one cell, and
the 16-level MLFMs in [7], [8] storing four bits in one cell.

It is obvious that, as the number of levels increases,
the capability of the MLFM could be enhanced. However,
due to the complexity of the configuration (including the

programming/reading techniques and inter-cell interferences),
it is complicated to model precisely the MLFM channel.
Hence, research on the information-theoretic channel capacity
is sporadic, such as [9], [10]. In particular, in [9], the simple
upper and lower bounds in single letter formulas on the
capacity were presented and computed numerically when the
probability distribution of the channel inputs are assumed to be
known. In [10], the MLFM was quantized to different discrete
memoryless channels (DMCs) by introducing different reading
numbers of reference voltages. By optimizing the reference
voltages, the mutual information of DMC could be maximized,
and then the achievable rate of the MLFM could be obtained.

Although the capability is enhanced, the reliability of
the MLFM could be decreased because the margins between
adjacent levels (voltages) in a cell are reduced as the number of
levels increases and various interferences (for example, inter-
cell interference) could arise. To guarantee the reliability, two
approaches are usually investigated and applied in MLFMs.
One approach is the on-chip error correcting technique [11].
Up to date, various error correcting codes (ECCs) used in the
MLMC have been presented, such as the BCH codes [12],
Reed-Solomon codes [13], [14], LDPC codes [10], [15], trellis
coded modulation [12], [16], [17] and rank modulation [18],
[19]. Other approaches are signal processing methods, for
example, the data postcompensation method [9], the data pre-
distortion method [9], and the coupling canceller method [20],
which could tolerate the inter-cell interference in MLFMs.

To address the information-theoretic issues of the MLFM,
we first need to solve a key problem, i.e., channel modeling.
The simplest model is a constrained communication system,
namely, an amplitude-limited input-independent additive white
Gaussian noise (AWGN) channel, whose channel capacity and
properties were investigated in [21], [22]. In [21], [22], Smith
proved that the capacity of the amplitude-limited AWGN chan-
nel is achieved by a unique discrete random variable taking
values on a finite alphabet. Based on the current techniques
and configuration, there exist two universal phenomena for
the MLFM. One is that the device degrades with age and the
degradation varies from cell to cell as mentioned in [4], [23].
The other is the inter-cell interference as mentioned in [24].
In this paper, building upon our previous work [1], we are
interested in only the former, while the latter was discussed
in [9], [25]. The contribution of this work is two-fold. First,
in Section II, we model the MLFM with m levels, also called
m-level flash memory channel (m-LFMC) as an m-amplitude-
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modulation (m-AM) channel with input-dependent additive
Gaussian noise (ID-AGN) whose standard deviation depends
on the channel input (i.e., the voltage value of the level).
The m-AM with ID-AGN channel can also be regarded as
a constrained communication system [26], [27]. Second, we
give the channel capacity and present a numerical method to
evaluate it. Consequently, the optimal coding rate is obtained
to guide the ECC code design.

Structure: The remainder of this paper is organized as
follows. First, the m-LFMC is modeled as an m-AM channel
with ID-AGN, as shown in Section II-A. Using channel output
quantization, the channel can be considered as a discrete
memoryless channel, as shown in Section II-B. Second, the
channel capacities of the m-LFMC and the quantized channel
are introduced in Sections III-A and III-B, respectively. The
quantized capacity is an approximation of the capacity for
the m-LFMC. Furthermore, the coding rate is defined in
Section III-C. To evaluate the capacity, an alternating iterative
algorithm is presented in Section IV, which delivers not only
the optimal distribution of the channel input but also the
optimal values of the channel input levels. Section V provides
numerical results and discussions on the (quantized) capacities
and optimal coding rates. We conclude this work in Section VI.

II. CHANNEL MODEL

For an MLFM with m levels, each level has an intended
threshold voltage [2]. By applying this voltage to the floating
gate of a memory cell (transistor), the charge is maintained
and then the data is stored in the cell. Affected by the
configuration (including the programming/reading techniques)
of the flash memory and device aging, the threshold voltage
shift may vary from cell to cell. Hence, each level corresponds
to a threshold voltage range [2]. In this paper, we focus on
only the variation caused by device aging. For mathematical
modeling, the variation of the threshold voltage is usually
approximated by a Gaussian distribution and characterized by
its probability density function (pdf). The following example
illustrates the models of threshold voltage distributions for a
4-LFMC.

Example 1 (Threshold Voltage Distributions of a 4-LFMC):
Consider a 4-LFMC. Let the intended voltages of the four
levels be x0 = 0, x1 = 3.25, x2 = 4.55 and x3 = 6.5.
Note that, throughout this paper, the voltage is measured
in the unit of volt, which is omitted if no confusion arises.
By default, the threshold voltage distribution model of the
manufactured 4-LFMC is shown in Figure 1, where the noise
at each level has the same variance and the pdf of the output
for each level is depicted. As documented in [4], [23], the
number of electrons of a cell decreases with time and some
cells become defective as time elapses, which means that the
cell has a long but finite lifetime and the degradation varies
from cell to cell. Consequentially, the performance of the
4-LFMC gets gradually worse as the device ages. Suppose
that, after three years, the threshold voltage distribution model
of the 4-LFMC is shown in Figure 2, where every level
experiences more noise than in Figure 1 and the first level
x0 is the most noisy level while the other three levels have
almost the same noise. Again, suppose that, after five years,
the threshold voltage distribution model of the 4-LFMC is
shown in Figure 3, where every level has even more noise
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Figure 1. A threshold voltage distribution model for a 4-LFMC, in which
the noise at each level has the same variance σ(x) = 1
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Figure 2. A threshold voltage distribution model for a 4-LFMC, in which the
first level x0 is the most noisy level while the other three levels have roughly
the same noise.

than in Figure 2, while the first level x0 and the last level x3

are respectively the most noisy levels. This behavior can be
easily modeled by a function σ(x), which depends on the age
of the device. As shown in Figures 2 and 3, the dash-dot-dot
curve

[√
2πσ(x)

]−1
is (approximately) the envelope of the

peaks of the level-output-pdfs. In Figure 1, the curve σ(x) is
assumed to be a constant, i.e., σ(x) = 1

2
√

2π
.

Models similar to Figures 2 and 3 for the 4-LFMC were
introduced in [4], [12], [15]. In particular, in [4], [12], the
model of the 2 bits/cell (i.e., 4-level) NOR flash memory
showed that the first level x0 had the highest noise variance and
the last level x3 had the second highest noise variance while
the two middle levels had almost the same noise variances.
In [15], the model of a 4-level NAND flash memory showed
that, when no inter-cell interference occurred, the first level
x0 had the highest Gaussian noise and the other three levels
had almost the same noises characterized by bounded Gaussian
variables.
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Figure 3. A threshold voltage distribution model for a 4-LFMC, in which
the first level x0 and the last level x3 are respectively the most noisy levels
while the two middle levels x1 and x2 have roughly the same noise.

A. The ID-AGN m-AM Channel Model

In this paper, an m-LFMC is modeled as an m-AM channel
with ID-AGN. Specifically, it is characterized as follows.

1) Let X , Y and W denote the channel input, the chan-
nel output and the channel noise random variables,
respectively. They have the relation:

Y = X +W. (1)

2) The channel input X takes values from a finite alpha-
bet X (m) ∆

= {x0, x1, · · · , xm−1} under the constraint

a ≤ x0 < x1 < x2 < · · · < xm−2 < xm−1 ≤ b, (2)

where a and b are the respective lowest and highest
possible threshold voltages, and their difference is
denoted by Vm

∆
= b − a. The finite alphabet X (m)

is called an m-AM signal set. Denote the collec-
tion of all such m-AM signal sets as X (m), i.e.,
X (m) ∈ X (m). In the following context, we also
use the vector notation x to denote the m levels, i.e.,
x = (x1, x2, · · · , xm−1).

3) The probability mass function (pmf) of X over
X (m) is denoted by p = (p0, p1, · · ·, pm−1) with
pi=Pr(X=xi).

4) The noise W is an ID-AGN whose standard deviation
depends on the realization of the channel input.
That is, the noise W has mean zero and variance
depending on the channel input x ∈ X (m), i.e.,
W ∼ N

(
0, σ2(x)

)
. In this paper, the function σ(x)

is assumed to be continuous and differentiable.

Therefore, the channel transition pdf, i.e., the channel law, is

fY |X,σ(·)(y|x) =
1√

2πσ(x)
exp

{
− (y−x)2

2σ2(x)

}
. (3)

And the pdf of the channel output Y can be obtained as

fY,σ(·) (y) =

m−1∑
i=0

pi fY |X,σ(·) (y|xi) . (4)

Recall Example 1 of 4-AM channels with ID-AGN. At the
time of manufacturing, the noise standard deviations for all
levels are considered to be constant; see Figure 1. As the device
ages, the noise standard deviations for different levels increase
in different extents; see Figures 2 and 3. That is, the noise
standard deviations for an aged device are level-dependent.

B. Quantized Channel Model

In practice, the channel output is often obtained by quan-
tizing the real-valued channel output voltage Y . In this way,
a discrete memoryless channel (DMC) of the m-LFMC is
obtained when the channel inputs are known and fixed. Let
Q(·) be a quantizer of real values and Ŷ be the quantized
channel output, i.e., Ŷ = Q(Y ). We assume that, using the
quantizer Q(·), the set R is partitioned into a sequence of n
intervals as

(r0, r1], (r1, r2], · · · , (rn−2, rn−1], (rn−1, rn), (5)

where r0 and rn may be finite or infinite. Each interval
(rj , rj+1) is represented by a representation point yj . Then
the finite alphabet of quantized channel outputs is Y =
{y0, y1, · · · , yn−1}. The quantized DMC is characterized by
the channel law (the channel transition probability) as

pσ(·)(yj |xi) =
∫ rj+1

rj

fY |X,σ(·)(y|xi) dy. (6)

Consequently, the pmf of the quantized channel output Ŷ can
be obtained as

pσ(·)(yj) =

m−1∑
i=0

pi pσ(·)(yj |xi) . (7)

III. CHANNEL CAPACITIES AND OPTIMUM CODING
RATES

From the previous section, i.e., Section II-A, we know that
the m-LFMC is modeled as an m-AM channel with ID-AGN,
parameterized by the m-AM signal set X (m), the pmf p =
(p0, p1, · · · , pm−1) and the standard deviation function σ(x).
Therefore, to express the information-theoretic essentials of the
m-LFMC, we introduce a new notation different slightly from
the conventional one by inserting the subscript

(
X (m), σ(·)

)
into the mutual information expression, i.e.,

IX (m),σ(·)(X;Y )

∆
=

m−1∑
i=0

∫ ∞
−∞
pi fY |X,σ(·)(y|xi) log

(
fY |X,σ(·)(y|xi)
fY,σ(·)(y)

)
dy. (8)

Similarly, the mutual information of the DMC is given as

IX (m),σ(·)(X; Ŷ )
∆
=

m−1∑
i=0

n−1∑
j=0

pi pσ(·)(yj |xi) log
(
pσ(·)(yj |xi)
pσ(·)(yj)

)
.

(9)

A. The Channel Capacity of the m-LFMC

Definition 1: The capacity of the m-LFMC with standard
deviation function σ(·) is defined as

Cm,σ(·)
∆
= max

X (m),{p}
IX (m),σ(·)(X;Y ), (10)
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where the maximum is taken over all possible m-AM signal
sets X (m) = {x0, x1, · · · , xm−1} ∈X (m) satisfying

a ≤ x0 < x1 < · · · < xm−2 < xm−1 ≤ b (11)

and all possible pmfs p = (p0, p1, · · · , pm−1) satisfying

pi ≥ 0, and

m−1∑
i=0

pi = 1. (12)

Remark 1. Recall Smith’s result that the capacity of the
amplitude-limited AWGN channel is achieved by a unique
discrete random variable taking values on a finite alphabet [21],
[22]. The main two differences between the m-AM channel
with ID-AGN and the amplitude-limited AWGN channel are:
the noise in the former is input-dependent, while in the latter it
is independent of inputs; and the number of inputs is fixed to
be m in the former, while in the latter the optimal (capacity-
achieving) number of inputs is obtained by optimization.

Remark 2. Comparing with Ungerboeck’s results of av-
erage energy limited AWGN channel with amplitude modula-
tion [28], there are three main differences. First, the m-AM
channel with ID-AGN for an m-LFMC is not average energy
limited but amplitude limited (in the interval [a, b]). Second,
the m-AM signal set is not fixed but can be optimized in the
evaluation of its capacity. Third, the input distribution is not
uniform but can be optimized too.

One of the main objectives in capacity research is numeri-
cal evaluation. To this end, a comprehensive understanding is
necessary and can provide a methodology of evaluation. The
following proposition gives an insight into the capacity Cm,σ(·)
of the m-LFMC.

Proposition 1: When x is given, the mutual information
IX (m),σ(·)(X;Y ) is concave with respect to (w.r.t.) p; when p is
given, the mutual information IX (m),σ(·)(X;Y ) is continuous
and differentiable w.r.t. x.

Proof sketch: The mutual information is expressed as

IX (m),σ(·)(X;Y )

= hX (m),σ(·)(Y )−
m−1∑
i=0

pi log σ(xi)−
1

2
log(2πe) (13)

since the noise is input-dependent. When x is given, due to
the linearity of

∑
pi log σ(xi), we can prove that the mutual

information is concave w.r.t. p by using the same method
as in [29]. When p is given, the composition of elementary
functions in (8) is continuous and differentiable w.r.t. x because
σ(x) is assumed to be continuous and differentiable.

B. Quantized Capacity

Denote by Q the collection of all possible quantizers,
i.e., Q ∆

= {Q(·)}. Then an approximation of the channel
capacity (10) is obtained as follows.

Definition 2: The quantized capacity of the m-LFMC with
standard deviation function σ(·) is defined as

Ĉm,σ(·)
∆
= max

X (m),{p},Q
IX (m),σ(·)(X; Ŷ ), (14)

where IX (m),σ(·)(X; Ŷ ) is defined in (9), which is the mutual
information between the channel input and the quantized
channel output Ŷ using the quantizer Q(·). The maximum
in (14) is taken over all possible m-AM signal sets X (m) =
{x0, x1, · · · , xm−1} ∈ X (m) satisfying (11), all possible
pmfs p = (p0, p1, · · · , pm−1) satisfying (12) and all possible
quantizers Q(·) ∈ Q.

If the channel input values x0, x1, . . . , xm−1 are known and
the quantizer Q(·) is determined, then the quantized capacity
in (14) is the capacity of a DMC (see the channel law in (6))

Ĉm,σ(·)
∆
= max
{p}

IX (m),σ(·)(X; Ŷ ). (15)

This capacity can be computed by the well-known Blahut-
Arimoto algorithm [30], [31]. Through such capacities, the
determination of quantization will be further discussed in
Section V-C.

C. Equivalent Binary Code Rate of a Capacity-Achieving
Code

As mentioned in the Introduction, ECCs are widely em-
ployed in MLFM products. So it is necessary to know the
desired coding rate before we design a proper code. The
capacity (10) provides an insight into how to pick the code
rate of an equivalent binary code that achieves the capacity.
Any binary code of a rate greater than the capacity achieving
rate can not be used to guarantee the reliability of the MLFM
channel; whereas, a binary code of the capacity-achieving rate
can be constructed to achieve the capacity of the MLFM
channel.

Definition 3: The code rate of an equivalent binary
capacity-achieving code for the m-LFMC with standard de-
viation function σ(·) is defined as

Rm
∆
=
Cm,σ(·)

log2m
. (16)

When the number of levels m is known (and fixed), then
the code rate Rm serves as the upper limit of possible binary
code rates that can guarantee reliable reception. If the number
of levels m is undetermined, we have a chance to vary m,
and thereby find a more appropriate code rate Rm that serves
our design purposes. For instance, if R3 > R4 and C3,σ(·) ≈
C4,σ(·), we may want to use a binary code of the higher coding
rate R3, and thereby save on hardware complexity by using
only m = 3 channel input levels as well as save on code
complexity because binary codes of higher rates require fewer
redundant bits. More discussion on this topic is provided in
Section V-B.

IV. EVALUATION OF A LOWER BOUND ON CAPACITY

To evaluate the capacity (10) of the m-LFMC, we turn to
a two-step optimization problem

Cm,σ(·) = sup
x∈[a,b]m

sup
p∈[0,1]m

IX (m),σ(·)(X;Y )

subject to


a ≤ x0 < x1 < · · · < xm−1 ≤ b
pi ≥ 0, i ∈ {0, 1, · · · ,m− 1}
m−1∑
i=0

pi = 1

. (17)
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To solve the two-step optimization problem (17), we turn to
two sub-problems.

Sub-problem I.

C(x) = max
p∈[0,1]m

IX (m),σ(·)(X;Y )

subject to


pi ≥ 0, i ∈ {0, 1, · · · ,m− 1}
m−1∑
i=0

pi = 1

. (18)

When x is given, Sub-problem I is a conventional capacity
problem for memoryless channel with finite inputs. Due to
the concavity of the mutual information w.r.t. p shown in
Proposition 1, the well-known algorithm, Blahut-Arimoto al-
gorithm (BAA) [30]–[32] can be used to solve Sub-problem I.

Sub-problem II.

C(p) = max
x∈[a,b]m

IX (m),σ(·)(X;Y )

subject to a ≤ x0 < x1 < · · · < xm−1 ≤ b
. (19)

The Karush-Kuhn-Tucker (KKT) conditions [33] of the sub-
problem are that there exists v∗ = (x∗, λ∗, µ∗) such that

∂I
∂x0

∣∣∣
v∗

= −λ∗,
∂I

∂xm−1

∣∣∣
v∗

= µ∗,

∂I
∂xi

∣∣∣
v∗

= 0, i ∈ {1, 2, · · · ,m− 2}
x∗0 ≥ a,

x∗m−1 ≤ b,
x∗i−1 < x∗i , i ∈ {1, 2, · · · ,m− 1}
λ∗ ≥ 0,
µ∗ ≥ 0,

λ∗(x∗0 − a) = 0,
µ∗(x∗m−1 − b) = 0.

(20)

Note that the solution of (20) may be sub-optimal (a local
solution) since the concavity of the mutual information w.r.t.
x is unknown. However, a better x with a greater mutual
information can be obtained by solving (20). The method to
find such a better x is shown as below.

For convenience, we denote the pdfs fY |X,σ(·)(y|xi)
in (3) and fY,σ(·) (y) in (4) and the mutual information
IX (m),σ(·)(X;Y ) in (8) as f (y|xi), f (y) and I(X;Y ), re-
spectively.

We compute partial derivatives of the mutual information
I(X;Y ). To this end, we first compute the partial derivatives of
the transition pdf f (y|xi) w.r.t xi for all i ∈ {0, 1, · · · ,m−1}
as

∂f(y|xi)
∂xi

=

{
f(y|xi)

[
−σ

′(xi)
σ(xi)

+ y−xi

σ2(xi)
+ (y−xi)

2σ′(xi)
σ3(xi)

]
, if i=j

0, if i 6=j
,

(21)
where σ′(xi)

∆
= dσ(x)

d xi
denotes the derivative of σ(xi) w.r.t. xi.

Then, using (8) and (13), the partial derivatives of the mutual

information w.r.t. xi for all i ∈ {0, 1, · · · ,m−1} are obtained

∂

∂xi
I(X;Y ) = −

∫ ∞
−∞

∂

∂xi
(f(y) ln f(y)) dy − piσ

′(xi)

σ(xi)

=

[
−piσ

′(xi)

σ3(xi)

∫ ∞
−∞

f(y|xi) ln f(y)dy
]
· x2

i

+

[
2piσ

′(xi)

σ3(xi)

∫ ∞
−∞

yf(y|xi) ln f(y)dy

+
pi

σ2(xi)

∫ ∞
−∞

f(y|xi) ln f(y)dy
]
· xi

+

[
−piσ

′(xi)

σ3(xi)

∫ ∞
−∞

y2f(y|xi) ln f(y)dy

− pi
σ2(xi)

∫ ∞
−∞

yf(y|xi) ln f(y)dy

+
piσ
′(xi)

σ(xi)

∫ ∞
−∞
f(y|xi) ln f(y)dy−

piσ
′(xi)

σ(xi)

]
∆
= Aix

2
i +Bixi + Ci. (22)

Solving the KKT conditions (20) is equivalent to finding
quantities (x, λ, µ) that satisfy the equalities{

A0x
2
0 +B0x0 + (C0 + λ) = 0

λ(x0 − a) = 0
, (23a){

Am−1x
2
m−1 +Bm−1xm−1 + (Cm−1 − µ) = 0

µ(xm−1 − b) = 0
, (23b)

Aix
2
i +Bixi + Ci = 0, i ∈ {1, 2, · · · ,m− 2}, (23c)

and the inequalities{
λ ≥ 0
µ ≥ 0

a ≤ x0 < x1 < · · · < xm−2 < xm−1 ≤ b
. (24)

Note that all quantities Ai, Bi and Ci depend on the input
vector x and the standard deviation function σ(·) when the
pmf p is given. To find the solution to the KKT conditions (23)
by an iterative method, we assume that quantities Ai, Bi
and Ci are independent of xi. Then Eqns. (23) have at most
9 × 2m−2 solutions. Moreover, under the full constraints
in (24), the number of solutions may be much less than
9×2m−2 (This happens in our numerical computations). Based
on (23) and (24), we employ an iterative method to find a
solution. Suppose that the input vector x(k) is known at the
beginning of the k-th iteration. Then solve Eqns. (23). Pick
those solutions that satisfy all constraints in (24), and from
them choose the one with the highest information rate as the
improved input vector x(k+1).

Based on the two sub-problems, an alternating iterative
scheme is presented to solve problem (17). At each iteration,
the two-stage alternating strategy shown below is employed.

Stage 1. Fix x. Use the BAA to obtain the optimal p∗

p∗ = argmax
p

IX (m),σ(·)(X;Y ). (25)

Stage 2. Fix p. Solve (20) to obtain a better x∗ such that

IX (m),σ(·)(X;Y )
∣∣
x∗
≥ IX (m),σ(·)(X;Y )

∣∣
x
. (26)
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Figure 4. The standard deviation functions σi(x) of the input-dependent
Gaussian noise W : σi(x) ∝ qi(x), where i ∈ {1, 2, 3}.

From the discussion of Sub-problem II, x∗ may be a local
solution. This sub-optimality also implies that a lower bound
on the capacity Cm,σ(·) of the m-LFMC is evaluated.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we first numerically evaluate the capacities
of different m-LFMCs using the alternating iterative scheme
given in Section IV. We also interpret the results and put them
in context with respect to prior works [21], [22]. Second, we
estimate the optimal coding rate for the MLFM, which reveals
a relationship between the capacity and the optimal number of
levels. Third, the quantized capacities of the obtained DMCs
using finite-level quantizations of the channel output are also
numerically computed.

A. Lower Bounds on the Capacity

Let the lowest and highest threshold voltages be a = 0 and
b = 6.5, respectively. Then the difference is Vm = b−a = 6.5.
We introduce a new parameter σ > 0 that severs as the varying
noise parameter in our computations. Let qi(x) where i ∈
{1, 2, 3} be continuous and differentiable functions as shown
in Figure 4. We consider three different standard deviation
functions σ(x), denoted as

σi(x) = qi(x) · σ, where i ∈ {1, 2, 3}. (27)

We allow the parameter σ to vary such that the voltage-to-
deviation ratio (VDR) Vm/σ acts as an effective signal-to-
noise ratio. We assume that the intended threshold voltage level
x0 (usually corresponding to the erased state) is 0.

We present results for m ≤ 5, i.e., we consider multilevel
flash memory channels with at most 5 levels. We consider
three different m-LFMCs whose standard deviation functions
are σ1(x), σ2(x) and σ3(x). The lower bounds on capacities
of m-LFMCs with deviation functions σ1(x), σ2(x) and σ3(x)
are shown in Figures 5, 6 and 7, respectively.

From Figure 5, we make the following observations.

1) When the VDR is less than 10.5 dB, i.e.,
20 log10(Vm/σ) ≤ 10.5 dB, 2-LFMC, 3-LFMC, 4-
LFMC and 5-LFMC have the same rates.

2) When the VDR is less than 15 dB, 3-LFMC, 4-LFMC
and 5-LFMC have the same rates.

3) When the VDR is less than 18 dB, 4-LFMC and 5-
LFMC have the same rates.

Furthermore, we observe (not explicitly shown in the figure)
that in the VDR regime between 10.5 dB and 15 dB, the
optimized lower bound is achieved with m∗ = 3 levels, even
if, say, the constraint allows up to m = 5 levels. This implies
that, for a fixed VDR, there is an optimal (minimal) number of
levels m∗ for a given MLFM channel. Increasing the number of
levels m beyond m∗ does not further increase the capacity (nor
the computed lower bound).

Suppose that the number of levels is unknown. Then the
MLFM channel is an amplitude-limited channel with ID-AGN,
whose capacity is defined as

Cσ(·)
∆
= max

m
Cm,σ(·), (28)

where σ(x) is the standard deviation function of the ID-AGN.
The previous observations from Figure 5 imply that 2-LFMC,
3-LFMC and 4-LFMC can achieve the capacity Cσ1(·) as
defined in (28) in the cases of VDR ≤ 10.5 dB, 10.5 dB
< VDR ≤ 15 dB and 15 dB < VDR ≤ 18 dB, respectively.
In other words, at a given VDR less than 10.5 dB, a 2-LFMC
is “optimal”; at a given VDR less than 15 dB, a 3-LFMC
is “optimal”; at a given VDR less than 18 dB, a 4-LFMC
is “optimal”. Naturally, as the VDR increases, the optimal
number of levels does not decrease. This is consistent with
prior work [21], [22], which showed that for the amplitude-
limited AWGN channel, the capacity is achieved by a discrete
channel input distribution over a finite alphabet.

Similar conclusions hold for the other two channels with
noise standard deviation functions σ2(x) and σ3(x). Namely,
even if the constraint is set to be, say, m = 5, at low VDRs
the optimal number of threshold levels m∗ is less than 5. For
example, as shown in Figure 7, the optimal number of levels is
m∗ = 4 in the VDR regime between 12 dB and 14.5 dB even
when a 5-LFMC with noise standard deviation function σ3(x)
is considered. In the case that VDR is equal to 14 dB, using
the lower bound optimizing algorithm presented in Section IV,
we obtain that the optimal number of levels is m∗ = 4 with
assignment x∗0 = 0, x∗1 ≈ 2.718, x∗2 ≈ 4.212 and x∗3 = 6.5
and pdf p∗0 ≈ 0.274, p∗1 ≈ 0.171, p∗2 ≈ 0.271 and p∗3 ≈
0.284, shown in Figure 8. Again, this is consistent with the
literature [21], [22] for the amplitude-limited AWGN channel,
even though in m-LFMC the noise standard deviation σ(x) is
input-dependent.

B. Optimal Binary Code Rate R∗

From the previous subsection, we know that for a given
VDR, there is an optimal number of levels m∗ that achieves
that capacity Cσ(·) in (28). In other words, m∗ is the minimal
number of channel input levels required to achieve the capacity.
Hence, the corresponding optimal binary code rate R∗ is given
by

R∗
∆
=

Cσ(·)

log2m
∗ . (29)

R∗ is the rate of the equivalent binary capacity-achieving code
that achieves the capacity using the smallest possible number
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Figure 6. The information rates of m-LFMCs with m ∈ {2, 3, 4, 5} when the
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indicate that 2-LFMC, 3-LFMC and 4-LFMC can achieve the (computed)
maximum rates in the cases of VDR ≤ 8 dB, 8 dB < VDR ≤ 16.5 dB and
16.5 dB < VDR ≤ 20 dB, respectively.

of levels m∗. Consequently, since m∗ is the smallest number
of levels that still guarantees the achievability of capacity, it
follows that R∗ is the highest possible rate of an equivalent
binary code that can achieve the capacity Cσ(·). Hence, we
refer to R∗ as the optimal rate.

Figure 9 shows the optimal coding rate R∗ for different
optimized number of levels m∗, where m∗ ≤ 8, when the
standard deviation function of the channel noise is σ1(x).
Figure 10 shows the optimal coding rate R∗ for different
optimized number of levels m∗, where m∗ ≤ 15, when the
standard deviation function of the channel noise is σ2(x).
Figure 11 shows the optimal coding rate R∗ for different
optimized number of levels m∗, where m∗ ≤ 15, when the
standard deviation function of the channel noise is σ3(x).
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standard deviation function is σ3(x). The numbers m∗ on the top of the figure
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maximum rates in the cases of VDR ≤ 6.5 dB, 6.5 dB < VDR ≤ 11.5 dB
and 11.5 dB < VDR ≤ 14.5 dB, respectively.
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function σ3(x) and m = 5 is used at VDR = 14 dB. The optimal number
of levels m∗ is 4 with assignment x∗0 = 0, x∗1 ≈ 2.718, x∗2 ≈ 4.212 and
x∗3 = 6.5 and pdf p∗0 ≈ 0.274, p∗1 ≈ 0.171, p∗2 ≈ 0.271 and p∗3 ≈ 0.284.

C. Quantized Capacities

In this subsection, we present the capacities of the quan-
tized m-LFMC, where the values of the channel inputs are
known and fixed and the standard deviation function of the
noise is σ1(x). We explore an (m ∗ 2k)-level quantizer, in
which the output is quantized into (m ∗ 2k) intervals in a
(non-uniform) way such that, around each level, there are
2k equi-spaced intervals (which are indexed by k bits). An
example of the quantization for the 4-LFMC with x0 = 0,
x1 = 3.25, x2 = 4.55 and x3 = 6.5 is shown in Figure 12.
Around each level, it is uniformly quantized into four intervals.
Actually, it is a non-uniform quantization over R. Then the
channel becomes an DMC with four inputs and sixteen outputs.
As mentioned in Section III-B, the quantized channel is a
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DMC whose capacity can be computed by the Blahut-Arimoto
algorithm.

Suppose that six different (m ∗ 2k)-level quantizers, where
k = 0, k = 1, k = 2, k = 3, k = 4 and k = 5 are used.
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Figure 12. A (non-unform) 16-level quantization of the channel output for
the 4-LFMC, where x0 = 0, x1 = 3.25, x2 = 4.55 and x3 = 6.5.

These quantizers are denoted by Q0, Q1, Q2, Q3, Q4 and
Q5, respectively. Figures 13 and 14 show the capacities of
different quantized DMCs for the 2-LFMC, where the channel
inputs are fixed X (2) = {0, 6.5}. Figures 15 and 16 show
the capacities of different quantized DMCs for the 4-LFMC,
where the channel inputs are fixed X (4) = {0, 3.25, 4.55, 6.5}.
Figures 17 and 18 show the capacities of different quantized
DMCs for the 8-LFMC, where the channel inputs are fixed
X (4) = {0, 1, 2, 3, 4, 5, 6, 6.5}. Also shown in these figures are
the exact capacities without quantization. From these figures,
we can see that,

1) as the number of quantization bits around each level
(i.e., k) increases, the quantized capacity does not
decrease;

2) in lower VDR regimes, a finite quantization in-
duces some loss of capacity, as shown in Fig-
ures 13, 15, and 17;

3) in high VDR regimes, the quantized capacity of the
3-bit quantization around each level almost matches
the exact capacity without quantization, as shown in
Figures 14, 16 and 18.

Hence, for an m-LFMC with given channel inputs, the m∗2k-
level quantization (where k could be very small - at most 3)
is good enough to practically approach the channel capacity.

VI. CONCLUSION

In this paper, the m-level flash memory was modeled
as an m-AM channel with ID-AGN, in which the standard
deviation of noise depends on the channel input. The capacity
and the optimal coding rate of the m-LFMC were given. A
simpler DMC was also derived by channel output quantization,
which drove an approximation of the capacity for the m-
LFMC. The determination of the capacity of the m-LFMC is
an optimization problem, which can be transformed into two
optimization sub-problems. One can be solved by the Blahut-
Arimoto algorithm. The other can be solved by finding the
solution to KKT conditions. Based on these, an alternating
iterative algorithm was presented to evaluate a lower bound
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on the capacity of the m-LFMC. This algorithm delivered not
only the optimal distribution of channel inputs but also the
optimal values of channel inputs. Numerical results showed
that at any given VDR there exists an optimal (i.e., minimal)
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Figure 16. The capacities of different quantized DMCs for the 4-LFMC,
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Figure 17. The capacities of different quantized DMCs for the 8-LFMC,
where the channel inputs are fixed X (8) = {0, 1, 2, 3, 4, 5, 6, 6.5}.
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Figure 18. The capacities of different quantized DMCs for the 8-LFMC,
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value m∗ such that the capacity (or its lower bound) is achieved
by an m∗-LFMC, and that increasing the number of levels m
above m∗ does not further increase the information rate for a
fixed VDR. Numerical results also showed that if (m ∗ 2k)-

372

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



level quantizers with k = 3 are used at the channel output,
the quantized capacity almost matches the capacity of the m-
LFMC. Moreover, using the optimal coding rates as shown
in the numerical results, we will design proper codes for the
MLFM, which is one of our future works.
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