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Abstract—When forecasting sales figures, not only the sales
history but also the future price of a product will influence the
sales quantity. At first sight, multivariate time series seem to
be the appropriate model for this task. Nonetheless, in real life
history is not always repeatable, i.e., in the case of sales history
there is only one price for a product at a given time. This
complicates the design of a multivariate time series. However,
for some seasonal or perishable products the price is rather
a function of the expiration date than of the sales history.
This additional information can help to design a more accurate
and causal time series model. The proposed solution uses an
univariate time series model but takes the price of a product as
a parameter that influences systematically the prediction based
on a calculated periodicity. The price influence is computed based
on historical sales data using correlation analysis and adjustable
price ranges to identify products with comparable history. The
periodicity is calculated based on a novel approach that is based
on data folding and Pearson Correlation. Compared to other
techniques this approach is easy to compute and allows to preset
the price parameter for predictions and simulations. Tests with
data from the Data Mining Cup 2012 as well as artificial data
demonstrate better results than established sophisticated time
series methods.

Index Terms—sales prediction, multivariate time series, peri-
odicity mining

I. INTRODUCTION

Time series capture the development of given values over
a uniform time interval. There are many areas in which this
kind of data can appear: power consumption data of different
housing areas per month, heartbeat rate of a patient per minute,
hourly weather data or also product sales per day. In this article
we will focus mainly on prediction of sales time series in order
to keep the main thread examples consistent. However, this is
not a limitation since the underlying patterns, which are used
in our algorithms, can occur in all of above’s application areas.

This work is based on our findings from [1], in which
we firstly applied an proposed algorithm named Fr on sales
data. The algorithm is characterized by its ability to use the
price as a input variable as well as the adaption of a hidden
periodicity. Sales prediction is an important goal for any time
series based analysis [2], [3]. The task consists of forecasting
sales quantities given the sales history. This can be achieved
by extending the time series into the future.

The extrapolation of the time series into the future is
determined by the underpinning time series model [4]. If this

model is not well supported by the empirical data it is likely
that the accuracy of the forecast is low. So the challenge is to
find data from ”similar” situations (e.g., in terms of time and
price). If a major sales factor like the product price changes,
a model solely based on previous sales will lead to wrong
forecasts. Therefore, it is important to include the price as
parameter into the model in addition to the sales history.

Standard solutions for this problem need to be provided
with a long history of sales with sufficient data to validate
the model and to correlate the sales data with the variable
product price. The mathematical tools of choice for analyzing
multiple time series simultaneously are multivariate statistical
techniques like Vector AutoRegressive (VAR) models [5], [6]
or such as the Vector ARIMA (AutoRegressive Integrated
Moving Average) [7]. The model parameters are estimated
with least square or Yule-Walker functions [5]. The accuracy
of the estimator depends on the number of observations and
its degree of correlation.

To illustrate the process consider an excerpt from the Data
Mining Cup 2012 dataset (Table I, http://www.data-mining-
cup.de/en/review/dmc-2012):

TABLE I
SAMPLE DATA, DATA MINING CUP 2012

day Prod# price quantity
1 1 4.73 6
1 2 7.23 0
1 3 10.23 1
1 4 17.90 0

. . . . . . . . . . . .
1 570 7.91 0
2 1 4.73 12
2 2 7.23 1

. . . . . . . . . . . .
42 569 9.83 2
42 570 7.84 0
43 1 5.35 ?
43 2 7.47 ?
. . . . . . . . . . . .
43 570 7.84 ?
. . . . . . . . . . . .
56 570 8.12 ?

The information provided comprises a collection of 570
products whose history of sales and prices are given over
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a period of 42 days. The task was to predict the sales
quantities for the next 14 days where the daily sales price was
preset. The majority of products produced only low quantity
sales. Comparisons with other sales data showed a similar
distribution [8], [9] which indicates that the sample is typical
for larger collections. When we tried to predict the future
sales with commercial ARIMA products we experienced a low
prediction quality with a relative accuracy of only 47%.

The disappointing results from professional tools imple-
menting ARIMA encouraged us to look for a simpler and
better prediction model. Thereby we assumed that the future
price is causally influenced and should not be treated as
stochastic variable. Second, we assumed that it is helpful to
filter out cyclic behavior from the ”white noise”.

In the next section follows a discussion of related work
and we contrast it with our contribution. The rest of the
paper is structured as follows: The research problem will be
described formally in Section III, which is followed by a
description of data profiles under investigation (Section IV). In
Section V, we present our parametrized time series algorithm
that predicts sales volumes with variable product prices and
low data support. This algorithm can benefit from a inherent
(i.e., hidden) periodicity within the given data. The periodicity
calculation method we used is further described in Section VI.
The following Section VII gives a description of the technical
framework for the implementation of the prototype. The results
are discussed in Section VIII and compared with standard
methods found in commercial products like ARIMA. Based
on these experiences we draw conclusion in the last section.

II. RELATED WORK

Adaptive correlation methods for prognostic purposes have
been proposed early in the 1970th by Griese [10] and more
specifically as AutoRegressive Moving Average (ARMA)
method by Box and Jenkins [11]. As ARMA is constrained to a
stationary stochastic process the ARIMA is of more practical
use as it can handle time series with a linear trend and is
therefore widely implemented.

The idea behind ARMA and ARIMA is that the model
adapts automatically to a given history of data. A natural
extension is to include other influential factors beside the prog-
nostic value itself. This leads to multivariate models, namely
Vector Autoregressive (VAR) models [7]. The development
of the model was influenced and motivated by critiques of
Sims [12] and Lucas [13]. In essence, their statement is: every
available data is potentially correlated.

If the model is extended to cover the influence from
correlated data this leads to a vectorial stochastic model
(Xt(π, πr))1 that allows not only the serial time dependence
t of each component but also the interdependence of products
π and product prices πr. To estimate the parameters of such
a multivariate ARMA process the following Equation has to

1We use parentheses () for a stochastic process instead of braces {} because
it is rather a sequence of stochastic variables than a set

be solved [14], [5]:

Φ(L)Xt(π, πr) = Θ(L)Zt (1)

where L denotes the backshift (lag) operator and

Φ(x) := I − Φ1x− Φ2x
2 − . . .− Φpx

p (2)
Θ(x) := I + Θ1x+ Θ2x

2 + . . .+ Θqx
q (3)

are matrix-valued polynomials with dimensions of p (order
of regression) and q (order of moving average). Zt denotes a
multivariate ”white noise” process.

There is one major drawback to this approach in our
problem setting. The model treats all historical input values
as stochastic variables. However, the product price does not
vary stochastically, its value is preset by the vendor. Economic
models assume a causal dependency between the price of a
product and its sales quantities (see Arnold [15], chap. 17).
Variations in consumer demand are caused by various factors
like price, promotions, etc, Vorst [16] . This causal dependency
is not modeled by VAR methods. This is an issue for the
multivariate model.

Another complication that can arise in time series prediction
is a noisy periodicity resulting, e.g., from low volume sales.
The low sales quantity introduces a kind of random pattern
that makes it hard to find even a known periodicity. In the
sample data we used for our work, the overall sales history
shows a clear 7-day periodicity (see Fig. 1) but not for most
of the individual products. Therefore, we were looking for
a method to calculate the eventually existing periodicity on
product level. This kind of calculation is called periodicity
mining and has received some attention from the research
community lately.

Elfeky, Aref and Elmagarmid [17] introduce a periodicity
mining algorithm that is based on symbols and a Fourier
transformation inspired convolution. They defined two types of
periodicity (segment and symbol periodicity) and described an
convolution based algorithm for both of them. Our suggested
algorithm uses the ’shifting’ mechanic similar to Elfekys idea,
but it differentiates on how similarity of a sequence of symbols
is defined. The same authors also describe a method called
”WARP” (WArping foR Periodicity) [18] in order to deal with
noisy data. Thereby, their algorithm extends or shrinks the
time axis at several locations of the time series to remove
noise. Rasheed and Alhajj [19] recently used suffix trees (build
by Ukonen’s linear algorithm) as an underlying data structure
in order to detect periodicity in time series. Their iterative
approach decorates their suffix tree in a way that highlights
repeated occurrences of a sequence of symbols.

Another approach for periodicity mining worth-mentioning
was brought up by Berberidis, Aref, Atallah, Vlahavas and
Elmagarmid [20]. They create a set of candidate periods out
of a given time series and then use the autocorrelation function
as well as Fast Fourier Transformation (FFT) for calculating
a confidence value for each candidate period. We are also
using candidate periods in our approach, but then we use the
well known Pearson Correlation Coefficient in order to assess,
which of our candidate periods is most suitable.
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Fig. 1. Seven day periodicity for the overall sales data (DMC2012) and a
typical low selling product (item # 153).

In the field of time series analysis, it is quite common
to incorporate natural seasons or cycles into the prediction.
Cyclic sales quantities are a typical behavior for short shelf-
life products and are important for building a causal sales
model. Doganis, Alexandridis, Patrinos and Sarimveis [21]
investigated the sales quantity of fresh milk (a short shelf-life
product) in Greece. They used a genetic algorithm applied to
the sales quantities of the same weekday of last year. Our ap-
proach is only similar in that we take corresponding weekdays
but it differs in how we analyze the weekly periodicity and
correlate it with the sales prices.

To recapitulate, there are two general arguments against
the multivariate VAR approach sketched above: Granger and
Newbold [22] showed that simpler models often outperform
forecasts based on complex multivariate models. And Lucas
[13] criticized that the economic models are too static and that
”any change in policy will systematically alter the structure of
the econometric model”. Applied to the sales forecast situation
the variation of the price does not play a stochastic, but a
systematic, i.e., a functional role.

Our idea is to filter the seasonality by a period-based
”folding” of the sales quantity, i.e., the aggregation of sales
quantities for the same weekdays. This cancels the stochastic
variation and accumulates the seasonal effect. Applying such
a model improves the prediction coverage and accuracy for
low volume data with a cyclic behavior.

III. PROBLEM DESCRIPTION AND CONTRIBUTION

In Section I, we pointed out that the nature of the data
and its sales profile play an important role for the time series
analysis. In particular, the influence of price and periodicity
are dominant factors as we will see in the following.

A. Formal Problem Description

The problem in terms of predicting time series consists of
developing a parametrized time series model that is able to
forecast future sales quantities depending on the given sales

history and a price parameter. The solution of the stochastic
Equation (1) is a multidimensional mapping

F : (Π,T) −→ (R+,N0) (4)
(π, t) 7−→ (π̂r, x̂t)

where Π is the set of products and T are consecutive time
intervals. A product π ∈ Π is described by its identification
number πi and its price πr. The mapping F computes sales
quantity x̂t and price π̂r for every product π and time interval
t.

The bi-variate time series (π̂r, x̂t) is a concrete realization
of the stochastic process (Xt) of Equation (1). The mapping
F has to be adjusted so that the process (Xt) explains best a
given realization. This can be done by various estimator func-
tions: least square error, Yule-Walker, maximum-likelihood, or
Durbin-Levison algorithms. This is where our approach differs
from the traditional because in real-life business the price is
not a stochastic variable but is preset by the vendor. Instead
of predicting the future price π̂r we use the price as input
parameter.

Having fixed the model in this way it is possible to
transform the mapping F to the following form:

Fr : (N,R+,T) −→ N0 (5)
(πi, πr, t) 7−→ x̂t

With this predictor Fr(πi, πr, t) it is possible to forecast the
sales quantities for future time periods t > T (T is the present
time) of a product π ∈ Π using the future price πr as input.

B. Contribution

By restricting our approach to model a linear trend, season-
ality, and using historic and future prices as causal parameter
leads to a predictor function that is easy to compute and ex-
plain. It yields higher accuracy for data with hidden periodicity
and variable prices than the ARIMA model. The novelty of
our contribution comprises:

• a model that has a causal explanation
• where the future price is a major input factor
• the overall periodicity is respected by individual items
• an algorithm for fast and automated periodicity mining

The prediction function can also be used for simulation to
see how the price will influence the sales quantity. In addition
to that, we introduce a new approach for periodicity mining,
which is able to identify complex seasonal components within
a time series. It is based on a simple form of data folding and
comparisons of Pearson correlation coefficients.

IV. DATA PROFILE

We used two types of data sets in this article. The first one
was obtained from the DataMiningCup (DMC) in 2012. This
real life data set was used to assess the prediction performance
of our time series algorithm. It will be more closely described
in the following subsection. During the development of our
periodicity mining method, we also created an artificial data
set in order to vary different aspects of a time series, such as
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Fig. 2. Sales quantity ranking of sample data (DMC2012).

noise, time series length or season length (length of period).
The method to create these data is detailed in subsection IV-2.

1) DMC data: The 570 products of the sample data realized
a total of 86641 units sold. The average price for all products
of a day ranged between 14.46 and 15.92 over the given time
series, which included a total of 42 days. The maximum price
variability of a single product is ±48%, but on average the
price varies only by ±9%. However, for high selling products
(> 500 units) the variability stands at ±15%.

The total sales quantity per product ranged from 17 to 2083
over the 6 weeks. Broken down to the day level the product
price ranged from 0.24 (cheapest product) to 152.92 (most
expensive product) and the sales quantities between 0 and
193. The sample had average sales per product of 152 units
with a standard deviation of 257, which indicates a high sales
variability of the items.

This conjecture is confirmed by the product sales ranking
that roughly follows a shifted hyperbolic distribution (see
Fig. 2), which supports the assumption that low volume sales
contribute significantly to the overall sales and may not be
neglected. From the total of 570 products, the majority (506
products) sell less than 250 units in total, but contribute with
approximately the same quantity sold (43991 units) as the 64
high selling products.

The low volume sales (sum of sales < 250) showed a strong
positive trend (≈ 40% increase over 42 days) whereas the
high volume sales (sum of sales ≥ 250) had a more stationary
behavior. In the sample data are more than 100 products that
sell less than six units a day. Nearly all of them sell none at
half of the time.

The above properties require an adequate forecasting algo-
rithm, which is able to handle low volume sales with high
variability and which is also able to adapt to some price
variability.

2) Artificial data set: The creation of artificial time series
enabled us to accurately modify different aspects of a time
series. This allowed us to investigate on how our periodicity
mining algorithm reacts on changes of different parameters.
Our goal was to create time series that show rather complex,
periodic behavior with some added noise of various intensity.

The time series xt of length n consist of a constant value

Fig. 3. Sales quantity and average price time series of sample data
(DMC2012).

c, which is modified by a repeating seasonal components S,
which are (again) modified by a randomized noise parameter r
as well as an noise intensifying factor f . Seasonal components
consist of values s ∈ S and have the length of m. The length
n of a time series is the length m of one season multiplied
by the number of seasons. The seasonal component repeats l
times [see Equation (8)] along the time series to be created.

T = {ti|∀i = 1, . . . , n} (6)
S = {sj |∀j = 1, . . . ,m} (7)
n = l ∗m (8)

i mod m = j (9)

A value of the constructed time series is calculated as the
sum of constant c and the value of the current season value
multiplied by the noise factor r and intensifying factor f :

xti = c+ (sj ∗ r ∗ f) (10)

The subsequent value in that time series xti+1 is calculated
by shifting the seasonal component one position:

xti+1 = c+ (sj+1 ∗ r ∗ f) (11)

This allowed us to create constant time series with an additive
period that is disguised by a strong multiplicative interference
factor. We created a total of 12 time series for this work with
the following specifications:

• season length m: varied between 7 and 33 days
• time series length: 384 days
• basic constant c: was set to 100
• randomized noise parameter r: ranged between 0< r <1
• noise intensifying factor f : varied between 1, 5, and 10
An excerpt of one of the created time series can be seen in

Fig. 4. The name of the shown time series is 29 days 1 n,
this indicates that a 29 days long periodic component was used
and also a noise intensifying factor of 1. The corresponding
periodic component, which was used in this example, can be
seen in Fig. 5.

Our intention was to create rather difficult seasonal compo-
nents. We used several ’hand made’ components. In addition
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Fig. 4. This example time series was created by using a noise factor of 1 and
the seasonal component from Fig. 5 with a length of 29. The vertical blue
lines indicate the end of one seasonal component.

Fig. 5. This example seasonal profile has a length of 29 and was created
using a noise factor of 1.

to that we used the following sinus Formula for creating some
of the seasonal profiles:

sin(
2π

m
∗ t) +

1

3
∗ sin(

2π ∗ 3

m
∗ t) (12)

The parameter in above Equation is the base frequency,
which determines the period length after the pattern is re-
peated. Variable t represents the time. This Formula creates
time series with a base frequency as well as its third harmonic.
An example of a sinus based time series is shown in Fig 6.

V. THE PARAMETRIZED TIME SERIES MODEL

This section describes the process from our initial analysis
of the data for the DMC 2012, to the justification of our
suggested time series model. For the causal predictor function
Fr we needed to identify and quantify all influencing factors.
Therefore, we firstly analyzed correlations of the attributes
quantity, price and time of all products given in the DMC
2012 task. We used the standard Pearson Correlation [23] as a
measure to determine the linear dependence between two time
series. It is widely used and can range between −1 and +1.
The following subsections will present the relations that have
been analyzed.

Fig. 6. Upper part: Example of a Sinus based time series with a period length
of 17 days and no noise added. Lower part: shows the same time series, which
was altered by a noise intensifying factor of 10.

A. Price-Sales Correlation

The main conjecture was that the price has a causal influ-
ence on the quantity. This is justified by the price elasticity of
demand theory by Alfred Marshall [24]. As the correlation
coefficients of all 570 products ranged from −0.6515 to
+0.3471, we expected that the products with strong correlation
exhibit a better prediction accuracy. Surprisingly, this seemed
not to be the case.

A systematic analysis with three synthetic time series lead
to an explanation. The first series had a growing price trend,
the second and third had a cyclic price development where one
product responded immediately and the other responded with
a delay. ARIMA did recognize the price trend but forecasted
a constant quantity instead of a decreasing one. This was
the result of the low integer sales numbers that produced a
monotone decreasing step function. Our approach managed to
forecast the right quantities as long as a matching price was
found in the history.

Surprisingly ARIMA could not deal well with the system-
atic cyclic price development and a detailed analysis showed
that the step function of the price (which was kept constant
for two days) was the reason. Fig. 7 shows the result of the
ARIMA compared to our Fr algorithm (see Equation (5)).
The reduced extrema produced by our algorithm results from
the delay in the response to the price change. Without lag, no
damping of extrema occurs in Fr.

B. Price Similarity

We also analyzed correlations between the price develop-
ment of different products. The assumption was to find product
bundles that are linked together via their price development.
For the analysis the prices were normalized first in order to
be able to easily compare the different price levels. Several
bunches of products were linked together via their prices.
But the corresponding sales figures of these products were
not related. This is why we ignored the possible cross price
influence from other products for the forecast.
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Fig. 7. Forecast of synthetic time series with delayed price-sales dependency.

C. Sales Periodicity

One of the most interesting properties of the DMC 2012 data
was the periodicity of the total sales curve. It showed a clear 7
day period (Fig. 1). This period was not directly observable in
most sales time series of individual products. Also the Pearson
Correlation between the sum curve and the single products was
too low to draw any conclusions. Nevertheless, since the total
sales curve consists of all products, there must be a hidden
periodicity within the individual products.

A systematic spectral analysis discovered not only the dom-
inant weekly patterns but weaker 4, 5 and 14 days patterns.
Since these periods differ on item level, there is the need for
an automated periodicity mining method. For our work we
developed JaPerCalc (Java Periodicity Calculator), which is
detailed in Section VI.

D. The Parametrized Predictor Function

Putting all correlation observations together the result is a
function Fr whose pseudo code is shown in Fig. 9. As input,
it takes the price πr of a product π at the prediction day t,
the periodicity m and a price range δ. The upper and lower
price limits are set to ±δ percent. Using the periodicity from
the previous analysis the algorithm looks for prices πr(w)
that occur on days w = t modulo period. For example, if
the prediction day is 43 and JaPerCalc returns a suggested
periodicity of 7 days, only the information from the days 36,
29, 22, 15, 8 and 1 will be considered (see Fig. 8). If the price
on such a day is outside of the upper or the lower limit (day
1 in our example), the sales quantity is ignored. If the price
is within the bounds, the corresponding quantity is selected.
After all matching quantities have been selected, the forecast
quantity is computed as linear trend of these quantities.

If all prices are outside of the upper and lower limit, no
forecast is produced. The procedure may be repeated with
enlarged upper and lower limits if needed. The Fr algorithm
defines a simple forecasting model that takes into account the

sales trend, the periodicity, and the price influence to predict
sales quantities.

VI. PERIODICITY CALCULATION

In the normal case, the periodicity of a time series is
unknown. However, it is beneficial for most time series
algorithms to use this kind of information. The normally
suggested standard algorithms [17] - [20] used to calculate this
information are based on Fourier Transformation (FT), which
is dependent on long time series histories. In order to automate
and reduce complexity of the periodicity mining process, we
developed our own approach, which will be detailed in the
following subsections.

A. General Idea

JaPerCalc is an iterative approach in which a range of
candidate periods (e.g., from 5 days period as minimum to
40 days period maximum) are tested. These upper and lower
boundaries are the only input that needs to be defined prior
by the user. For our hypothetical example, lets assume that
we start with candidate period of 5 days. The first step is to
fold the data accordingly to the given candidate period (in our
case 5 days). This means that we sum up the sold quantity on
every 5th day (e.g., day 1, 6, 11, 16 etc.). This is repeated for
each consecutive day until our candidate array is of length 5.

The next step is to take this folded candidate array and
evaluate it against the given time series using the Pearson
Correlation. In terms of our hypothetical example, we compare
the folded 5 day candidate array with the days 1-5, 6-11, 11-16
etc. Each comparison results in a Pearson Correlation value r.
Thereby, r is given as the mean of the products of the standard
scores as it can be seen in Equation (13).

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(13)

The average from all of these Person Correlation values is
then associated with the candidate period of 5 days.

The process is repeated for all periods within the given
boundaries. The finally suggested period is the one with the
highest average Pearson Correlation Coefficient.

B. Formula Description

As mentioned before JaPerCalc takes a lower and upper
period boundary (l, u) as well as a time series under examina-
tion as user input. All possible periods between the mentioned
boundaries are referred as candidate periods. The algorithm
starts by selecting the first suggested l period and use it to
fold (i.e., sum up) every modulo cj days of the given time
series xt (j is the length of candidate period cj , see also Fig.
11). The resulting candidate period is held against all parts b
of time series xt of corresponding length. This process is also
visualized in Fig. 10.

The algorithm calculates the Pearson correlation coefficient
r for each pair of cj and b. The average of these correlations
is associated with the length j of the current candidate period
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Fig. 8. Illustration of prediction concept using trend, a 7 days periodicity, and a parametrized price.

Input: t > n // prediction day
πr (input) // price at day t
δ (input) // price range (e.g. ± 10%)
period (input) // period suggested by JaPerCalc

Def: u, l // upper & lower price limit
QtyList // list of sales quantities
w // = t - n * period (n ≥ 0)
x̂t // predicted quantity at day t

for each π ∈ Π {
u := πr(1 + δ/100); l := πr(1− δ/100)
w := t− period
while (w ≥ 1) {

if (πr(w) < u) & (πr(w) > l)
QtyList.add(xw)

w := w − period
}
if (QtyList 6= ∅)
x̂t := trend(QtyList)
return x̂t

else
return nil

}
Fig. 9. Parametrized Sales Prediction Algorithm Fr in conjunction with
JaPerCalc.

Fig. 10. Illustrative example of JaPerCalc comparing a candidate period cj
with all b parts of a time series xt of length n.

and put into PearsonResult array for later use. This process
is repeated for each candidate period between the lower
boundary l and the upper boundary u. The length of cj is
thereby incremented by one for each round. After retrieving
the average Pearson correlation coefficient for each candidate
period, the algorithm simply returns the j for the candidate
component with the highest Pearson correlation coefficient.
The complete pseudo code can also be seen in Fig. 11.

VII. TECHNICAL FRAMEWORK AND INFRASTRUCTURE

This section covers some technical details about execution
and implementation of the algorithms mentioned in this article.
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Input: (xti), i = 1, 2, ..., n // time series length n
u (input) // upper bound candidate period
l (input) // lower bound candidate period

Def: PearsonList // Set of Pearson corr coefficients
PearsonResult // stores average Pearson results
r // Pearson correlation coefficient
cj // candidate period array of length j
b // part of time series xt, from day e to day r
y // integer to iterate through cj
x // integer to shift b through xt
iter := 0

while l + iter ≤ u{
j := l + iter
y = 0
for (y < j) {

//create candidate period cj of length j
cy = sumi+(y≡mod(j))(xti)
y++
}

repeat (bn/jc) times {
//compare component cj with all parts b
//of time series (xt)
x = 0
b = (ti|∀i : x ∗ j ≤ i < x ∗ j + j)
r := PearsonCorr(cj , b)
PearsonList.add(r, j)
x++
}

PearsonResult.add(PearsonList.getAvg(r), j))
iter++
}

if (PearsonList 6= ∅)
return j from PearsonResult

where r = PearsonResult.getMax(r)
else
return nil

Fig. 11. Pseudo-code for JaPerCalc. Returns a suggested period for a given
timeline.

A. ARIMA Model Execution

The Microsoft Visual Studio 2008 and Microsoft SQL
Server 2008 were used to apply the ARIMA model on the
two given data sets (DMC and artificial data). In order to run
the ARIMA mining models for both data sets, a OLAP cube
was build. It consists of the dimensions price, product and
time. In the corresponding time series mining model we used
itemId and day as key attributes and the price attribute as
input. The quantity was set as predictable attribute. For the
DMC data we used mostly the default parameters, apart from
the the minimum series value and the periodicity hint. The
following table shows all model parameters used:

AUTO DETECT PERIODICITY 0.6
FORECAST METHOD ARIMA
HISTORIC MODEL COUNT 1
HISTORIC MODEL GAP 10
INSTABILITY SENSITIVITY 1.0
MAXIMUM SERIES VALUE +1E308
MINIMUM SERIES VALUE 0
MISSING VALUE SUBSTITUTION None
PERIODICITY HINT 7
PREDICTION SMOOTHING 0.5

The specification for the artificial data is equal to the one
shown above, except for the PERIODICTIY HINT that was
left blank.

B. Implementation of Time Series Model Fr

Our suggested approach was implemented in Java. We used
Eclipse (Version: Indigo Service Release 1) with Java Platform
Standard Edition 6.0 (JRE6). The data was stored in a MySQL
database on an Apache web server (2.2.21). During execution
time the data is queried from the database, the model param-
eters computed and the forecast results are instantly stored
in the corresponding result table in the database. The model
was developed using the standard java.sql.* package, which
was used to interface with the database and for SQLException
handling.

C. Implementation of Periodicity Calculation JaPerCalc

As the name indicates, JaPerCalc was also implemented
in Java. We used the two freeware libraries java.util.* and
org.apache.commons.math3.stat.* in order to compute the
Pearson correlation. We implemented two version of it. The
first one outputs the suggested period as well as statistics
about the average Pearson correlations of the compared com-
ponents. It was used for pitching JaPerCalc against Fourier
Transformation, see also Section VIII-B. The second version
simply returns the suggested period and was used within the
Fr algorithm for periodicity detection.

VIII. EXPERIMENTS AND RESULTS

There have been three different sets of experiments, that we
carried out. The first set used data from the DataMiningCup
2012. We applied our suggested Fr algorithm in order to
predict sales quantities for a given price. We compared its
results with the predictions from an ARIMA implementation
described in Section VII-A. A discussion about the results can
be found in the following Section VIII-A. During the time of
the DataMiningCup 2012 we assumed a hidden periodicity
within the data on a item level [1]. However, there were some
exceptions from our assumption, which raised the need for an
automated periodicity detection.

In order to meet this need, we were looking for periodicity
detection methods. Our experiments with Fourier transforma-
tion led to rather unsatisfactory results and this was the starting
point for the development of JaPerCalc. We compare both
approaches in Section VIII-B.

The third set of experiments includes both, the time series
prediction as well as the periodicity detection problem. We
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TABLE II
COMPARISON OF ARIMA PREDICTION ERROR WITH Fr ALGORITHM ON

DMC DATA

Class ARIMA Fr improvement
All products 30512 22093 26.7%
quantity < 500 24338 17248 29.1%
quantity ≥ 500 6174 4845 21.5%
(quantity = 0) 19178 15942 16.9%
in < 1/3 time
(quantity = 0) 11334 6151 45.7%
in ≥ 1/3 time
avg(πr) < 20 26756 18711 30.1%
avg(πr) ≥ 20 3756 3382 10.0%
top 100 items 15805 6131 61.2%
least 470 items 16167 15962 1.2%

used artificial data for these experiments and compared to
the results of ARIMA. We will discuss the results in Section
VIII-C.

A. Comparison of Results with ARIMA

The absolute prediction error was measured as |realQty −
predictQty|. The Fr algorithms benefited from two input
parameters: the hidden periodicity that was calculated in a
previous step and the predefined future price (see also [1]
for more details). The hidden sales periodicity contributed
for an improvement of about 20%. The overall forecast was
improved by 26.7%. The price influence was less dominant
than expected, but was determinant for a cluster of 26 products.
Cluster characteristics:

• correlation < −0.25
• relative standard error < 0.25
• sales quantity > 160
• price variation (max(πr)−min(πr)) > 4

In total, Fr could forecast this cluster 36.4% better than
ARIMA. Table II shows the prediction error points of both
ARIMA and Fr on certain product clusters. These were
grouped based on attributes which we guessed to have an
impact on the prediction performance (e.g., the top 100 vs the
least 470 items). The total error of all 570 products was 30152
for the ARIMA and 22093 for Fr. This is an improvement of
26.7% compared to ARIMA. For further analysis we clustered
the products into disjoint sets according to different criteria.
This allowed us to find the strengths and weaknesses of Fr in
terms of total sales quantity, sales sparsity, and price.

B. Periodicity Calculation

This subsection will show some results from our experi-
ments in which we compare Fourier Transformation with our
suggested methods for periodicity mining on our artificial data
set. Table III shows all results.

The FFT detected 8 out of 12 periods correctly. It seems like
FFT performs better on high frequency periods with a shorter
period length (e.g., 7, 16, 17). However, for longer periods
(e.g., 33, 29), FFT slightly underestimated the periodicity
length.
Fr was able to detect 9 out of 12 periods correctly. Please

note that in all of the three wrong suggested cases, a multiple

TABLE III
COMPARISON OF PERIODICITY SUGGESTED BY FOURIER

TRANSFORMATION AND Fr ON ARTIFICIAL DATA

time series name FFT Fr real
16 days 1 16 16 16
17 days 10 n sin 28 17 17
17 days 1 n sin 17 17 17
17 days 5 n sin 17 17 17
20 days 1 n 20 20 20
29 days 1 n 28 29 29
33 days 10 n 32 33 33
33 days 1 n 32 33 33
33 days 5 n 32 33 33
7 days 10 n 7 35 7
7 days 1 n 7 35 7
7 days 5 n 7 42 7

Fig. 12. Average Pearson Correlations for several candidate periods in time
series 20 days 1 n. Please note that also multiple and partial candidate
components are highlighted (i.e., the correct periodicity of 20 is highlighted,
but also partial components such as 10, 30 or multiple components such as
40 or 60.)

of the correct period length (harmonic) was suggested. Reason
for this lies within the intrinsic mechanic of JaPerCalc. If a
periodicity of a certain length n is repeating within a time
series, there is also a multiple of the inherent periodicity
with length 2n (4n, 6n and so forth) visible. Same goes for
partial periodicity of length 1.5n or 2.5n. JaPerCalc is able to
highlight all of these periodicity lengths. Fig. 12 shows this for
the example of time series 20 days 1 n. In case of the wrong
suggested periodicity from time series 7 days * n it is very
likely that noise caused a multiple component of the inherent
periodicity length to have a slightly higher average Pearson
correlation coefficient than the inherent (given) periodicity.
This can occur in following scenario: if a inherent period has
a significant peak on, lets say the 7th day, this periodicity is
disguised if noise randomly causes every second of these peaks
to diminish. Result is a higher average Pearson correlation
coefficient for a period of length 14 (rather than the correct 7
days). How this affected the predictions made by Fr can be
seen in the following section.

402

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE IV
COMPARISON OF ARIMA PREDICTION ERROR WITH Fr ALGORITHM ON

ARTIFICIAL DATA

time series name ARIMA Fr + JaPerCalc improvement
16 days 1 797 240 69.89 %
17 days 10 n sin 10443 3400 67.44 %
17 days 1 n sin 1048 304 70.99 %
17 days 5 n sin 5165 1627 68.50 %
20 days 1 n 3002 1422 52.63 %
29 days 1 n 5006 2139 57.27 %
33 days 10 n 7883 3234 58.98 %
33 days 1 n 862 330 61.72 %
33 days 5 n 3776 1471 61.04 %
7 days 10 n 11307 9610 15.01 %
7 days 1 n 1154 937 18.80 %
7 days 5 n 5942 4576 22.99 %

Fig. 13. prediction results for ARIMA (upper part) and prediction results for
Fr (lower part).

C. Time Series Prediction with automated Periodicity Detec-
tion

As mentioned before we used artificial data described in
IV-2. We once again calculated the absolute prediction error
as |realQty− predictQty|. Table IV shows the results for all
generated time series.

JaPerCalc was able to find the correct period for 9 out of the
given 12 time series. The predictions for both compared meth-
ods for 33 days 10 n are visualized in Fig. 13. The period
length prediction for 7 days * n was incorrectly predicted by
JaPerCalc (as described in previous section). However, since
a multiple of correct period was suggested, Fr is still able to
outperform ARIMA by 15.01% to 22.99%. If the suggestions
from JaPerCalc is correct, the prediction improvement from
Fr compared to ARIMA rises to averaged 63.13%.

As it can be seen ARIMA is not able to compensate
the noise within the time series and gets biased. Fr on the

Fig. 14. prediction results for ARIMA (upper part) and prediction results for
Fr (lower part). We used a sinus function to create this time series.

other, hand is able to average the given noise by following
the candidate period, which was detected by JaPerCalc. The
interaction of two rather simple algorithms is able to deliver
impressive predictions results. Similar behavior can be seen
for the time series created by the sinus function described in
Equation (12). An example can be seen in Fig. 14.

As the name of the time series 17 days 1 noise indicates,
there was only a noise factor of 1 used. Although a rather
simple period component and low noise was used, ARIMA
gets distracted and produced poor prediction results.

IX. CONCLUSION AND FUTURE WORK

This article covered a long development. We started with the
DMC 2012 and its challenging data set. The broad range of
products with its hidden periodicity made the analysis difficult.
The low volume sales further complicated the analysis of the
influence of the price on the sales quantities. The conclusions
drawn from the above results can be summarized in the
following three statements:

1) Data profiling and periodicity mining is crucial for
choosing the best time series model

2) Low sales volume can hide a cyclic sales behavior and
the price should be treated as input parameter

3) Simple models for sales forecasting based on causal
parameters can outperform some sophisticated stochastic
models.

This lead to the development of the rather simple Fr algorithm.
If it is applied on other data, in which the periodicity is not
known, it is likely to produce disappointing results. Reason
for this is its dependency on the input period (which was set
to 7 in case of the DMC 2012 data).

JaPerCalc was created in order to overcome that weakness.
It is also a rather simple and fast algorithm that is able to detect
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periodicity in a given time series. The Pearson correlation
coefficient allows to detect periodicity of any form or shape.

The combination of both simple algorithms is able to sig-
nificantly outperform standard methods such as the ARIMA,
which was shown in Section VIII. JaPerCalc as well as Fr

algorithm can be used with incomplete time series. This is
particularly useful for real-time analysis used in recommen-
dation systems. The simplicity and low computational effort
for both algorithms makes them ideal for people who want to
delve into the field of time series prediction.

In terms of future work for Fr, a spectral analysis on
an individual product level could further improve the pre-
diction accuracy. For products with a strong monotone price
development, our approach to look for similar prices is not
well suited. The price trend should be computed instead.
There is also the option to adjust the price ranges by the
variance of the so far known time series. Products with a
high variance could be allowed to have a broader prince
range then product with a lower variance. JaPerCalc could
also be adapted in a way to automatically recognize and
adjust eventually existing trends. This would help to improve
periodicity recognition for monotonous increasing time series.
Another direction of development could be to use confidence
values to help JaPerCalc to find the base frequency of a time
series (i.e., shortest suitable period length). This could help to
prevent incorrect suggestion of multiples of the correct period
length as described in Section VIII-B.
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