
Monitoring Virtualized Infrastructure in the Context of Grid Job Execution

Jiřı́ Sitera, Zdeněk Šustr, Boris Parák, and Daniel Kouřil
Grid Department – MetaCentrum

CESNET z. s. p. o.
Zikova 4, Prague, 160 00, Czech Republic

Email: emi-lb@metacentrum.cz

Abstract—This paper describes a new direction in the develop-
ment of the Logging and Bookkeeping service, a gLite component
tracking job life cycles in high performance computing grids.
From its early days, Logging and Bookkeeping is used to track
not only jobs themselves, but also the wider details of the
job execution environment. Since a large portion of the grid
infrastructure is now virtualized, the work at hand concerns
tracking the virtualized nature of that runtime environment.
With virtualization and cloud technologies being highly flexible
and dynamic, the authors believe that it is very important to
gather and keep status information for virtual machines used
to run the workload. A newly defined monitoring entity – a
virtual machine – is integrated with job state information and
provides an enhanced view of the current state and history of
both the computing job and the underlying infrastructure, as well
as their mutual relationship. This paper explains the motivation
and discusses the architecture of the newly emerged solution for
monitoring virtualized resources – uniquely – in the same context
as the workload they are processing.

Keywords-grid; cloud; virtualization; monitoring; relationship

I. INTRODUCTION

This article is an updated and extended version of a
work-in-progress report published in September 2012 at the
INFOCOMP Conference [1].

Logging and Bookkeeping (LB), part of the gLite grid
middleware stack, is a monitoring tool equipped for monitoring
the states of all kinds of processes related to grid computing
[2]. Besides traditional gLite Workload Management System
(WMS) [3] jobs (often refered to simply as “gLite jobs”)
and logical groupings thereof such as direct oriented graphs
(DAGs) or collections, it also monitors input/output data
transfers or the states of computing tasks submitted directly to
a local resource manager – the CREAM Computing Element
(also part of the gLite middleware stack) [4] or TORQUE
(Terascale Open-source Resource and QUEue manager) [5].

It collects event information from various grid elements and
sums it up to determine the current status of any such process
at the given moment. It is designed to accept additional state
diagram implementations to support other types of processes
as required, relying on essential common features such as
reliable event delivery (based either on LB’s own legacy
messaging layer or standard STOMP/OpenWire messaging),
or LB’s querying interface. LB is highly security-oriented and
has proved itself in WLCG (Worldwide LHC Computing Grid)

operations. It is widely deployed across the European Grid
Infrastructure.

This article explains how the grid monitoring tool is applied
to monitoring the grid’s underlying virtualized infrastructure.
Section II clarifies what the requirements are and why LB
is deemed suitable for monitoring virtualized resources as
provided by PaaS (Platform as a Service) clouds. Section III
outlines the solution designed and implemented to deliver not
only the essential functionality but also to support complex
real-world use cases, while Section IV discusses additional
issues to consider and focus on in the future. Finally, Section V
gives evaluation and results of the work, and Section VI sums
up the outcome.

II. MOTIVATION TO INCLUDE VIRTUAL MACHINES IN
THE LB MODEL

Using LB in monitoring virtualized resources is inspired
by obvious similarities with the existing processes, backed by
explicit requirements from infrastructure operators.

A. Virtual Machine as a Job

LB’s main objective is to know everything about the
scheduling and execution of computing jobs, not only to
respond to “current status” queries, but also to make it
possible to analyze the behavior of the infrastructure (fail-
ing components, misconfiguration) and possibly even provide
certain job provenance capability (ensuring repeatability of
jobs/experiments, storing computing environment character-
istics and configuration, the description of the compute job
provided on submission, etc. – in short, serving as lab notes
for “in silico” experiments).

In contemporary grids and other computing infrastructures,
machines running computing jobs are themselves dynamic
entities following a life cycle similar to that of the grid job
itself. It is not unreasonable to expect further blending of cloud
and grid models where grid components run either in a cloud
(StratusLab [6]), or in a mix with cloud services (MetaCentrum
[7], WNoDeS [8]).

All things considered, tracking virtual machines (VMs)
throughout their life cycle in contemporary grids is as im-
portant as tracking jobs. Moreover, there is an added value
to tracking those two kinds of entities in a common manner!
Not only does it provide for a better understanding of mutual

300

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1. Viewing compute jobs as workload executing over a VM.

relationships and dependencies, but also for a unified view for
users and administrators.

Figure 1 shows a simplified and illustrative example of the
desired higher-level view of the infrastructure state. It maps
compute jobs to the underlying VM life cycle and provides
the user with a comprehensive overview of its current state and
possible problems. In the case of highly dynamic virtualized
infrastructure it can be used to assess efficiency and induced
tradeoffs. Data collected in this manner can also be used to
produce higher-level statistics and monitoring (mapping actual
hardware resources to computing jobs), while the low-level
information is still available for detailed inspection if required
for debugging or any other kind of ex-post analysis. There are,
for instance, scientific projects such as the Grid Observatory,
which rely on data provided by LB for behavioral analysis of
processes within the grid.

The following LB features are considered most useful in
terms of (re)usability for virtual machines:

• Recording primary events and using a state machine
specific to the given type of process (job, VM, file
transfer, etc.) to combine all information contained
therein and determine the current state of that process.

• Providing the ability to get processes grouped or
annotated/tagged by the infrastructure, administrators,
or users.

• Architecture and implementation based on standards
(messaging, authentication and authorization infra-
structure, web services), allowing simple event gath-
ering in a reliable and secure way.

• Essential functions (logging events, querying for basic
information) provided not only by library functions
with bindings for multiple programming languages,
but also by command line tools allowing for simple
scripting.

There is another key factor – a non-technical one. LB
is currently widely deployed across the European Grid In-
frastructure. It is not an emerging solution that has yet to
be put to production. The support for monitoring underlying
infrastructure layers is an evolution of an established and
broken in service, making it also a relatively costless solution
to the presented problem.

B. Features Requested by the Czech NGI

MetaCentrum, the Czech National Grid Initiative (NGI), is
designed as a mixed cloud/grid service, where resources from

a single, consistently managed pool can be provided either
as traditional batch system-managed resources or as VMs,
depending on current user needs [9]. The scheduler (TORQUE)
can handle three types of requests:

1) Run a job
2) Run a job in a selected VM image
3) Run a VM

What follows is a summary of feature requests made by
the NGI before work presented in this article started. How
they were addressed is explained in Section III “Designs and
Implementation”.

• The desired functionality should provide a uniform,
consistent view of the infrastructure, mapping all user
requests to actual hardware.

• It should replace currently used data mining tools
providing status feeds to the MetaCentrum portal and
to the long-term usage statistics processor.

• Since MetaCentrum is also involved in research of
batch system scheduling strategies, gathering data
relevant to this kind of assessment is another require-
ment.

• Yet another requirement, albeit one that is already
fulfilled by LB’s design, calls for an ability to ag-
gregate information from diverse sources (scheduler,
virtualization hypervisor, accounting) and even man-
ually triggered state transitions (for instance putting
resources in, and taking them out of maintenance).

C. Related Work

1) Regular Infrastructure Monitoring Tools: Tools such as
Nagios/Icinga or Ganglia focus primarily on the “running”
state of the given process. Unlike them, this work is not
intended to monitor infrastructure health and react to problems,
but focuses primarily on understanding the current state of the
workload and reporting to users.

Admittedly there is a minor overlap because even LB can
be used to provide certain details of infrastructure health. It
is namely the LB statistics feature (job/VM status statistics),
which, the authors believe, will be further improved by un-
derstanding the relationship between the workload and VM
layers.

It is, however, important to note that using the above-
mentioned monitoring tools to monitor highly volatile short-
lived VM instances set up on demand is on the edge of
practicality since – looking for instance at Nagios, albeit
equipped with a selection of plugins – it involves non-trivial,
almost continuous reconfiguration of the service not only with
machine details but also with access control data. Integrating
machine status info with up-to-date references to workload, or
vice-versa, would be another challenge, requiring solutions to
be designed and implemented on both ends.

2) FSM Implementations: The idea to use a Finite State
Machine (FSM) [10], [11] for monitoring purposes is not
new. Its typical usage is to monitor software or behavior
of network protocols via FSM designed to detect incorrect
states or excessive/wrong timing of states. The LB concept

301

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



is close to existing works describing the application of FSM
to monitoring networks of connected components [12], but
it is not the same, mostly because LB focuses primarily
on workload status, and the behavior of components is a
secondary objective.

3) Public Cloud Infrastructures: A typical example of a
public cloud infrastructure, the Amazon Web Services (AWS),
deploys a complex monitoring tool called Amazon Cloud-
Watch. It is an important brick in the AWS service portfolio
[13], allowing not only for monitoring, but also for performing
actions (the auto scaling feature). The CloudWatch architecture
is based on a central metrics repository fed by resource
monitoring tools and providing a common standard API to
clients. It also supports user-defined metrics with custom data
feeds. The client API has an ability to send notifications
and trigger actions when certain thresholds are reached. This
service is in many points similar to our proposed solution, but
does not employ an FSM.

4) Status Reporting Tools in Scientific Cloud Infrastruc-
tures: Each grid infrastructure or cloud management tool has
its own way (command line interface, portal) of providing
users with the current job or VM status. It is typically
implemented as a function of a computing element in a grid or
cloud manager (like the Virtual Machine Manager in the case
of OpenNebula). Indeed, the LB service is originally one of
those tools, monitoring and reporting the status of computing
jobs in gLite-based grids.

There is also standardization work in the area of cloud
computing, such as the OCCI standard [14] and its imple-
mentations, aimed at enabling standard interfaces for reading
information off different cloud managers (and even controlling
them). However, they do not deal in any way with information
from within the virtual appliances, losing a potentially valuable
source of information; what is more, they are in no way
applicable at the level of workload (grid job) monitoring,
and neither is there a separate activity addressing the area of
workload status monitoring in a similar way.

To sum up, the authors are not aware of any other work
addressing the crucial point – combining available information
from different infrastructure layers into a uniform, higher-level,
workload-centric view.

III. DESIGNS AND IMPLEMENTATION

The proposed solution has been implemented in progressive
steps, starting with a pilot implementation on MetaCentrum’s
OpenNebula instance, running and keeping track of VMs
and scheduled TORQUE jobs at the same time. OpenNebula
was chosen for the pilot implementation only because it was
the cloud manager of choice for the Czech NGI, and the
implementation team already possessed adequate expertise for
its instrumentation. Apart from that, the solution was in no
way tailored specifically to OpenNebula.

This work – i.e., the pilot implementation – was presented
and demonstrated at the EGI Technical Forum 2012 [15] and
forms the basis of the solution described below.

Next, the work focused on implementing a production-
grade solution for MetaCentrum operations (among others

Figure 2. Architecture and components.

instrumenting MetaCentrum’s in-house VM manager – Ma-
grathea) and support for federated cloud environments, bring-
ing in additional sources of information external to the batch
system and the virtualization stack (administrative operations,
information system).

A. Architecture

In the basic architecture used for the pilot, VM life cycle
was controlled by the OpenNebula cloud computing toolkit,
managed manually by administrators, while jobs were assigned
to VMs by a standard grid computing element through an
instance of TORQUE. All job-related functionality was already
in place (LB-aware TORQUE, [16]). The following sources of
events were used to govern the VM life cycle:

• OpenNebula – providing hooks for call-out scripts
activated on any relevant state change (described in
more detail in Subsection III-E)

• Hypervisor, (specifically Xen) – generating events
showing the current VM state and parameters at hy-
pervisor level

• Hosted worker nodes – Operating System running
the Worker Node was instrumented (init scripts) to
provide independent information from the running
VM

LB plays the key role in this concept by combining
events from all the above components into one higher-level
view. It makes the system more precise and robust, which
has been well tested in the context of gLite job monitoring.
Obviously on certain occasions, all three sources generate
almost identical, i.e., seemingly redundant events. But there
is undisputed value even in receiving almost identical events
multiple times. It improves reliability, and the comparison
between the three events provides for fine-grained job status
tracking and simplifies troubleshooting. Besides that, different
sources often provide values for different attributes, which are
unknown to the others.

Basic system architecture is shown in Figure 2. In that
design, the only new feature that had to be implemented was
VM instance support in LB, comprising of the VM job type
definition, introduction of VM-specific events, and a VM state
machine.

302

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Only basic attributes are defined in the VM type to cover
the expected virtual machine properties, such as owner iden-
tification, memory sizes, or the network status of the VM,
detailing the host/domain name, and the type of network
connectivity (VLAN, private vs. public). Aside of attributes
carried by the VM instance, there is also a solution to keep
record of its relationship to other entities actively tracked by
LB. That could not be implemented as a simple data structure
attribute, and the solution devised for that purpose is discussed
in greater depth in Subsection III-C.

The existing set of VM attributes, however, is not neces-
sarily final. LB allows any kind of additional attribute to be
simply stored with the instance’s status (functionality referred
to as “User Tags”) with only slight limitations. One cannot, for
instance, use relations such as “greater than” or “lower than”
when querying for instances by User Tag, since LB does not
know the type of that attribute and cannot decide. The only
comparison supported is string (in)equivalence.

Each VM instance is identified by a string constructed in
the same manner as Job IDs currently used in LB, consisting
of the LB server’s identification, a short literal denoting the
process type, and a random unique string. The randomized
unique part of the identifier can be supplied by the registering
component if required. In that case, it will only be checked by
LB for uniqueness, then accepted. While domain names are not
suitable for use as identifiers since they are often recycled (re-
used by another instance) or even used in alteration by multiple
interchangeable VM instances, internal VM identifiers used for
instance by OpenNebula (or any other virtualization stack for
that matter) are unique to their given OpenNebula server, and
can be easily used in the compound ID with the added benefit
that one can tell the responsible LB server, the virtualization
server and the internal identifier, all at a single glance. Thus,
instead of using an LB-generated random ID such as

https://lb.example.com:9000/
VM:1ch5-QIGMd_xW3oGM-HScg

one may choose to supply their own ID with, for instance, the
following format, which is much more informative:

https://lb.example.com:9000/
VM:nebula1.example.com_12345

B. VM State Machine

The VM state machine is shown in Figure 3. It is based on
OpenNebula’s internal states but modified to be general enough
to provide a single, common view for all VM management
systems that will be supported in the future. The states describe
major changes in the VM life cycle whereas attributes are used
to describe the instance’s properties in the current state, or even
to distinguish “substates.”

It is worth stressing at this point that although the proposed
state diagram is considered adequate and detailed enough
for the intended purpose, it is relatively easy to implement
changes, should it prove necessary. These may range from
simple changes in state transitions to extending the state
diagram with a completely new state or splitting a single state
into two or more. Even with real-world operating experience,

Figure 3. VM state machine.

however, just a single minor change in the mapping of VM
states to the generic state diagram was required so far.

Any event received by LB may or may not trigger a change
in the state and/or attribute values of an instance. Indeed, some
types of events never even attempt to trigger a state change and
are only used to bring in new or updated attribute values. (As
such, they are not even shown in the state diagram in Figure 3).

As soon as all events received by the current point in time
are correctly interpreted, which is an action performed auto-
matically on the arrival of each event, the instance’s current
state and attributes constitute the most up-to-date set of in-
formation as collected from all the various sources mentioned
above. LB is designed to overcome obstacles such as events
delivered out of sequence, intermediate events not delivered
at all, or events received from different sources with clocks
skewed in different directions. This is achieved by making the
event sorting algorithm rely on arbitrary hierarchical message
sequence codes rather than time stamps.

Table I shows how messages from each component/layer
(Hypervisor, Cloud Manager, VM Image) contribute to the
overall picture of the instance’s current state. Since they are
all instrumented to produce genuine LB events, the format of

TABLE I. DIVERSE SOURCES OF VM-RELATED EVENTS &
ATTRIBUTES

Component Events Attributes

CloudManager Register, Create, Running,
Host detail, Shutdown, Done

Hostname, Physical host
name, Owner, Requirements,
etc.

VM Image Really Running, Shutdown Runtime info, user tags

Hypervisor Running, Shutdown Actually assigned resources
(CPU, RAM, network)

303

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



incoming data is unified right from the start of the delivery
chain and the LB server can process incoming data uniformly
regardless of the source component.

To allow universal queries to the LB server, VM states
(as well as states defined in other state diagrams implemented
in LB) are also mapped to states in the default LB state
machine used primarily for gLite WMS jobs. Thanks to
that mapping, users can easily query LB for, e.g., all their
running tasks regardless of whether they are computing jobs,
virtual machines, or any other kind of supported process. The
complete mapping between VM and gLite job states is shown
in Table II.

TABLE II. MAPPING OF VM STATES TO GENERIC GLITE STATES FOR
UNIVERSAL QUERIES

VM State Generic State

Pending
Submitted for freshly registered VMs

Waiting for VMs resumed from Stopped state

Running Running

Shutdown
Waiting

Stopped

Done
Done, distinguished by the done code attribute

Failure

C. Relationship of Entities

Limited support for specific inter-job relationships was
inherited from previous LB versions. Relationships between
different types of jobs were implemented differently, de-
pending on then-existing requirements. Experience with that
implementation was taken into account when designing the
new solution.

1) Pre-existing Implementations: Only the following job
type pairings were supported before the generic solution was
designed:

• Parents/children in DAGs (Direct Acyclic Graphs) and
job collections, where one single parent job is linked
to its children and vice versa. This is implemented
by an extra database attribute in all children, which
explicitly states the ID of the parent. This attribute
can be used directly in the LB server’s database
queries and, being also implicitly indexed, allows for
a quick reconstruction of the whole set of children in
a collection.
The relationship is established on registration, wherein
status records are created for the parent job as well as
all the children in a single server-side step, filling in
the parent reference. There is no support for removing
jobs from collections, hence the relationship can be
never canceled. Neither is there currently support for
growing collections already registered.

• Compute jobs/Sandbox transfers, where each gLite
compute job can maintain a reference to its input and
output sandbox transfers. There are specific single-
purpose attributes included in the job’s internal status
structure, one for the input, another one for the output
data. They will contain job IDs of single sandbox
transfers, or collections thereof. Since the sandbox

transfer IDs are encoded in the internal status of
the job, they are slow to access unless the LB ad-
ministrator has set up specific database indices for
that purpose. This makes searching for compute jobs
by input or output sandbox transfer ID possible but
impractical.
The relationship is established by a special-purpose
sandbox event that will set or modify the reference,
but obviously the job status structure can never refer to
multiple input or output sandbox transfer IDs at once.
Collections must be used if multiple input or output
sandbox transfers are to be covered.

Both features remain, for now, available alongside the
generic solution outlined below. While the latter could be
adequately replaced with the new approach in the future, the
former presents a very specific case with built-in server-side
logic (registration, state and histogram algorithms, etc.), and
the functionality must remain unchanged.

2) Designing a Generic Bilateral Relationship Record:
Facing the task to implement yet another type of relationship
– that between a virtual machine and its workload – it was
decided to take a generic and more widely applicable approach
that could support any kind of bilateral inter-job relationship
in a common manner once and for all. The requirements were
as follows:

• Support m : n relationships as a VM will definitely
relate to multiple compute jobs as well as a compute
job can relate to multiple machines (typically in cases
where it did not succeed in one and had to be
resubmitted to a different resource).

• Allow distinguishing between active and past relation-
ships.

• Avoid adding complexity in server-side processing,
i.e., avoid, wherever possible, dependence on addi-
tional database queries when registering relationships.

• Support establishing or canceling the relationship at
any time during the participating entities’ lifetimes.

• Since it was decided to make this a generic functional-
ity, allow for specifying the nature of the relationship,
i.e., what does the relationship record mean.

To that end, a new type of event (relationship) has been
introduced to control the relationship records, and the present
SQL schema was extended with an additional table comprising
of the following attributes:

• Source job: the job the relationship originates from.

• Target job: the other job in the relationship. Note that
the source/target approach obviously makes the record
asymmetric. To achieve symmetry, every relationship
event actually results in two separate records being
created, one of them having the originating job as the
source in one instance, and as a target in the other
instance.

• Target job type. It is assumed that relationship infor-
mation is never retrieved from the LB server sep-
arately, but always together with the status of the

304

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



“source” job, which also indicates its type. Therefore,
the type of the “source” job does not have to be stored
with the relationship record and still the types of both
jobs in the relationship are known and can be used
to interpret the relationship’s meaning. For instance,
the existence of a relationship between a compute job
and a virtual machine can be easily interpreted in the
sense that the job is running on that virtual machine. A
relationship between a virtual machine and a sandbox
transfer, e.g., will be interpreted in the sense that LB
was monitoring the transfer of the virtual machine’s
image during the prolog stage.
Technically, a relationship can be registered for any
exotic combination of two job types. Sometimes the
meaning may be obvious, as in the two cases above,
and sometimes not. At any rate, interpretation is left
to the party who has logged the relationship in the
first place.
To minimize server-side overhead, the client is re-
quired to specify the target job type along with its ID
when logging a relationship. This allows the server to
register the relationship without having to unparse the
other job’s status – a relatively costly operation. There
is a minor danger that the client will log a wrong
job type, but it is felt that keeping the data correct
and reliable is always the client’s responsibility. Still,
implementing an option to read the target job’s type
from the database regardless of the extra cost is an
opportunity for future development.

• Relationship status. The status is given as an enumer-
ated type, allowing for future extensions. The initial
implementation recognizes the following states:

◦ Active: in the context of virtual machine/work-
load monitoring, an Active relationship will re-
fer to the job currently running on the machine.

◦ Inactive: primarily for relationships that are not
active anymore. Possibly also for relationships
that will become active in the future (for in-
stance a job has been scheduled to a particular
resource but has not arrived there yet). Once
again, the precise interpretation of the meaning
may be up to the party who has logged the
relationship.

◦ Canceled: used instead of removing the re-
lationship record. The physical relationship
record is only removed when one of the rele-
vant jobs is being purged from the LB server
for good.

Note that a relationship record carries only information
valid at present and does not maintain any record of the rela-
tionship’s history. However, since relationships are established
and controlled through events, their history can always be
reconstructed by querying for the logging history (i.e., raw
events) of jobs participating in the relationship.

D. Security Considerations

The security of data gathered by LB is an important part
of the solution. LB implements a messaging infrastructure to
deliver events from the place where they are created to the
LB server. The infrastructure is built upon a set of mediators

(inter-loggers) that provide a secure and fault-tolerant transport
of messages between LB clients and servers. This also means
that the actual worker nodes do not necessarily require direct
Internet access since they are sending their events through
the interloggers, typically installed only on head nodes with
different network accessibility settings.

All connections within the infrastructure are authenticated,
including the delivery of a new event. Upon receiving a
connection carrying an event, the LB server makes an autho-
rization decision to see if the originating component is entitled
to log that kind of event for the given job.

Reading access is likewise subject to similar security pre-
cautions. Every client querying the LB server must be properly
authenticated and authorized to obtain the data requested.
There are actually two ways of setting up access: both are
applicable to all processes monitored by LB, including virtual
machines:

• Server-wide authorization policy: there are several
authorization categories to grant rights across all jobs-
processes known to the server. The categories cover
both the logging and querying parts of data processing.
There is a specific category, for instance, to allow
logging events specific to workload managers. Only
grid components listed in that category can log those
specific kinds of events. Similar categories are there
for different levels of reading access.

• Per-job ACLs: an Access Control List can be main-
tained for any individual entity (job, VM, etc.), grant-
ing additional permissions to read or log events for
that entity alone. The ACL is stored as a part of the
entity’s internal state, maintaining a list of allowed or
banned users. Users are identified by DN or Kerberos
principal, which can be used interchangeably, and
mapped one to another by means of a server-side
Globus-compliant gridmap file [17].
Unlike the server-wide policies, ACLs on a job are
entirely under the control of the owner of that job.
Users can therefore specify fine-grained access control
for their jobs.

Per-job ACLs are used in virtual machine monitoring to
overcome the fact that OpenNebula currently cannot commu-
nicate the assigned ID to the virtual machine it has instantiated.
When creating a new virtual machine, the ACL of the corre-
sponding instance in LB is populated with its identity. Using
appropriate credentials later on, the virtual machine can look
up its appropriate job ID when needed.

In order to simplify the deployment of LB in diverse
environments, LB supports multiple security mechanisms. In
particular, the de-facto grid standard using X.509 and TLS/SSL
has been supported from the very beginning. Support for
Kerberos has been added recently. It is, however, implemented
in a generic way, so that adding additional security mechanisms
is quite feasible.

The LB server also supports mapping of client identities
by means of a gridmap file so that a single person relying on
different clients using different types of credentials obtained
through different authentication mechanisms can always be
identified as the same user. This “mixed” setup where users

305

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



use their Kerberos tickets for regular work in the command
line, and their X.509 certificates to access LB over the HTTPs
interface, is actually used in MetaCentrum where LB was first
deployed to monitor the virtualized infrastructure along with
the computing jobs.

E. OpenNebula Instrumentation

OpenNebula implements a system of so-called Virtual Ma-
chine Hooks. Hooks are programs automatically executed, or
triggered, when a virtual machine changes its state. This allows
us to provide simple and standard modular implementation
of OpenNebula instrumentation for LB. An LB hook for
OpenNebula has been implemented as a stand-alone script
invoked by hooks using supplied configuration files [18].

OpenNebula supports hooks for all the relevant states,
shown in Table III. Other hooks are available, ensuring future
extensibility of this solution.

Information about the virtual machine is passed to the script
in the form of an XML template. Each state change triggers a
hook, passing unique virtual machine identifier and its template
as arguments to the registered executable.

The instrumentation script is written in the Ruby pro-
gramming language, which is the language of choice for
OpenNebula’s modules and extensions. It should be registered
for all the relevant virtual machine states mentioned above.
The script requires a Base64-encoded virtual machine template
and the name of the hook as arguments. Other optional argu-
ments include logging method, log file location for debugging
purposes or map file location for dynamic mapping of user
identities.

Authentication of the instrumentation script as a trusted LB
events source can be performed using both X.509 or Kerberos-
based host credentials.

The script itself performs four basic actions:

1) Decodes and parses the virtual machine template.
2) Maps user identities (e.g., user names to their X.509

certificate DN).
3) Performs data transformation: currently computes the

overall VM runtime from runtime values on individ-
ual hosts.

4) Constructs and sends an event to LB using its native
API and local binaries

Events are constructed using ERB, Ruby’s templating sys-
tem. The templates are easily modifiable without an extensive
knowledge of the programming language itself.

TABLE III. OPENNEBULA STATES WITH HOOKS

State Trigger Event

Create Virtual machine has been submitted by the user

Prolog OpenNebula’s scheduler found an appropriate host and started deploy-
ment

Running Virtual machine is running and ready to accept jobs

Shutdown Virtual machine is shutting down

Stop Virtual machine has been stopped (temporarily)

Done Final state, end of the virtual machine life cycle

Failed Previously issued action has failed, virtual machine is not available

F. Support for Complex Use Cases

The newly developed solution is not limited to basic
interaction with a single instance of OpenNebula, but rather
implements all features required for other, more complex
scenarios.

1) MetaCentrum: Providing a unified view of resources
and job execution for users and administrators, this use case
follows requirements described in Section II-B with the addi-
tion of LB being used as a part of a distributed implementation
of TORQUE, recently deployed in MetaCentrum [16]. Here,
LB acts as a service providing users with job status information
via a modified qstat utility.

MetaCentrum operates its own cloud manager called Ma-
grathea [19]. Its role is to cooperate with the TORQUE batch
manager to provide integrated grid and cloud environment
running within a single resource pool. To use LB to combine
status information from both kinds of workload – virtual
machines and batch jobs alike – into one overall picture,
support for LB had to be implemented in Magrateha. The
instrumentation of Magrathea to send LB events in a manner
similar to the OpenNebula case was straightforward. The
common VM state diagram was tuned to work correctly with
both event sources (OpenNebula and Magrathea) at the same
time. Now each MetaCentrum user can use all three worlds
(OpenNebula, Magrathea, batch jobs) and see all the respective
status information in one common LB service.

2) FedCloud: The FedCloud Task in EGI (European Grid
Infrastructure) deals with federation of resources in a cloud
environment. Here, the aim is to achieve interoperability of
different cloud solutions, running in different administrative
domains and on different cloud manager implementations. The
role of LB in providing global status info for the whole
federated infrastructure is similar to that, which LB plays
in gLite-based grids such as WLCG – i.e., monitoring all
processes across the infrastructure, regardless of geographical
site, ownership or flavor of the underlying technology, as long
as it is instrumented to deliver events to LB.

This particular use case requires LB to support multiple
hypervisors and cloud managers (equivalent to supporting
different job managers – computing element implementations
– in grid job monitoring). There is currently support for
OpenNebula with XEN, and the work on supporting Open-
Stack and KVM is underway. It is important to stress that
the implementation of such additional support consists solely
in client-side work, i.e., in instrumenting the new sources
to generate LB events, or possibly finding ways to translate
existing streams of outgoing information into LB events. The
LB service as such is already prepared for the task.

This use case is also going to rely on the multitude of
ways one can access LB from the user perspective. LB can be
queried through different interfaces, or configured to become a
producer of messages delivered over different channels. Some
of the interfaces can be accessed with generic, widely available
clients such as Web browsers or RSS readers. Figure 4 shows
LB as a message processor capable of receiving a flow
of messages, potentially over diverse channels, and making
the processed information available either on query, or over
another streaming channel.

306

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 4. LB as a message processor publishing information over different
output channels.

LB has the potential to provide complete infrastructure for
common cloud status monitoring, taking care of all the stages
from data sources, through data transfer, interpretation and
storage, to client access.

3) Support of User Group Workflows: Compared to tradi-
tional computing jobs, VMs are a little specific in that they
always need to be assigned workload when running (i.e.,
having started for the first time, recovered from a downtime or
finished migration), which makes them actually very similar
to pilot jobs! Pilot jobs are simple computing jobs carrying no
workload on submission, but rather waiting until they acquire
the necessary resources and only then receiving the actual
workload, i.e., computing work to be done.

Thus a pilot job framework is a good example of a
user-specific workload management system. It is designed to
distribute workload to job slots at the moment when pilot
jobs (or – analogically – VMs) actually start. It may be very
convenient for such a framework to receive notifications of
relevant VM status changes, rather than heving to repeatedly
poll all relevant resources. That is easily achieved with LB
notifications generated on pre-determined conditions and sent
out over LB’s own legacy messaging chain or through a
STOMP or OpenWire-enabled messaging broker.

Users may choose, for instance, to be notified any time
any of their machines reaches state running. More elaborate
sets of conditions are also supported. The resulting notification
contains the full VM status information and, if requested on
registration, also the full history of events for that machine so
far.

Another option to receive updates on VM state changes
would be RSS. The RSS interface in LB is as elaborate as
the job querying interface, allowing for the creation of highly
customized feeds, which can be then received with any RSS
reader, provided it can handle X.509 authentication.

G. State Machine for Physical Machines

This is, at the same time, a usage scenario possible with the
current implementation, and a consideration for future work.

As per the original design, VM instances use their attributes
to refer to their respective physical hosts only by name (the
FQDN – Fully qualified domain name, actually) and no track
is kept of the actual status of those resources. But there is

an obvious similarity between physical and virtual machines.
If anything, physical resources are even simpler to describe
than virtual ones, and a VM state diagram is easily applicable
to physical machines. So the option is to register physical re-
sources as “VM” instances as well, and reference the identifier
instead, either by using the ID assigned by LB rather than the
FQDN, or by registering a bilateral relationship between the
virtual machine and its physical host as described in Subsection
III-C.

With that done, the same level of detail can be provided for
virtual and physical machines alike, although some supported
states can pick up different meanings in the physical world
(for instance state pending would not mean that the machine
is being set up by the virtualization stack, but rather that
it is being installed by its administrator) or remain unused
altogether. Maintaining detailed status information for physical
machines is important because sites need to keep operational
logs of physical resources management (maintenance, testing,
repair) and understand it correctly in the mixed grid/cloud
model (providing proper hardware usage statistics).

Events governing the status of a physical machine record
– be it an instance of the VM type used in an “overloaded”
mode, or a newly designed Physical Machine type – can be
generated:

1) automatically by the machine itself or, more specif-
ically, by its operating system’s image, properly in-
strumented and contextualized:

• machine start
• regular machine shutdown

2) automatically by infrastructure monitoring tools:
• machine down (when unreachable or other-

wise recognized as being down)
3) manually by resource administrators

• machine being installed
• machine being moved or maintained
• machine failed (due to a HW issue, for in-

stance)
• any additional operational records can be

logged as UserTags

Basically, then, the main distinction lies in the fact that
events logged for virtual machines by the Cloud Manager are
generated by a human administrator for the physical ones.

There are other benefits stemming from the fact that virtual
and physical resources are treated similarly. Figure 1 was
showing workload executing over a VM. By including physical
resources into the picture, one can also view workload running
directly on the physical machine (where allowed by the actual
solution – for instance Magrathea or WNoDeS), or watch jobs
executing in virtual machines over their physical hosts – see
Figure 5.

IV. FUTURE WORK

There are several topics identified as a potential im-
provement or extension of the existing solution. Potentially
important as they are, they were already envisioned and
accommodated for at design time but the decision on their
actual implementation was left for the future.

307

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 5. Virtual machines and native jobs executing on a physical machine.

A. Virtual Cluster Implementation

The Virtual Cluster service provided by MetaCentrum can
create multiple VM instances per request [7]. All the resulting
VMs have common attributes (type of network connection) and
are closely related. Similar functionality is provided by other
node-on-demand services such as WNoDeS [8].

In most cases, all nodes in a virtual cluster set up in this
manner are intended to be used together in close conjunction,
usually to run parallel computing jobs, which is why a user
can benefit from easily obtaining an overall view of the state
of the cluster.

It may be a good idea to reuse the “collections” func-
tionality in LB, typically applied to grid jobs or sandbox
transfers. From the user’s point of view the state of the
collection combines the states of all its members. Individual
VM details are still accessible under the VM instance’s own
ID – the collection functionality simply adds another identifier
(collection ID) to access aggregate information for the whole
collection, such as child (member) status histograms. The fact
that LB’s VM type can also be used to monitor physical ma-
chines as discussed in section III-G also makes such collections
applicable to hybrid clusters where a fixed physical cluster is
extended (perhaps temporarily) with additional virtual nodes
to improve peak computing power.

There are only minor differences between (already sup-
ported) job collections and (proposed) VM collections to
address, chief among them the understanding of the overall
status of such collections. While a computing job collection
can be considered running, for instance, as long as at least
one of its children is running, a VM collection should not
be considered running unless all the VMs in that collection –
or at least a certain majority – are up. Other collection-wide
states require similar redefinition. But apart from that, all the
essential functionality exists and can be applied to the new
collection type.

B. VLAN Status

Virtual Cluster services offered by MetaCentrum provide
not only sets of machines but also networking connections
in the form of virtual Ethernet (VLAN) [20], thus offering a
comprehensive IaaS (Infrastructure as a Service) solution. The
VLANs have their own life cycle managed by a purpose-built
VLAN manager (SBF) [21], which could become a source of
events for LB. After all, a network is recognized as an entity
in its own right by many cloud-related standards such as OCCI
(Open Cloud Computing Interface).

An ability to track the state of the network together with its
attributes (private vs. public network, additional services such

as tunnels, NAT (Network Address Translation) or firewalls)
could be valuable in many scenarios. True, it would require
another state machine to be implementeda, but that has become
a relatively routine task recently, and would be well justified
by an interesting use case.

C. State Diagram Evolution

Although the state diagram explained in Subsection III-B
currently seems to meet the intended need, there were sug-
gestions that it should cover additional states used in more
elaborate scenarios possible with advanced cloud managers,
such as the VM migrating, resizing, etc. As it is, these
states, for instance, are inherently the substates of the Pending
state, and even with the current implementation they can be
distinguished from other such substates by means of user tags,
or – with a simple extension of the code – by means of an
additional state attribute.

On the other hand, as long as there is a use case to
sufficiently justify the need for making these into separate
states, implementing an extension to the state diagram is
sufficiently straightforward.

V. RESULTS AND EVALUATION

The new experimental version of LB implementing the
features described in this paper was evaluated in MetaCentrum
pre-production environment for a few months and currently
runs in production. All the code is considered well tested, and it
is included in the official LB release, starting with version 4.0.
On top of that, TORQUE instrumentation code is available
with MetaCentrum’s TORQUE patches, and OpenNebula in-
strumentation can be obtained as a set of documented hook
scripts [18]. Thus, all tangible results of the work are publically
available.

Based on previous work and the new experience with a
production LB instance gathering all information about jobs
and virtual machines running in MetaCentrum, the following
results can be summed up and evaluated:

1) Performance: Since the whole event delivery chain is
ansynchronous, the overhead on infrastructure components is
negligible. The authors have previously performed extensive
measurements, showing that the processing capacity for a real-
world spread of jobs amounted to several hundred thousand
jobs per day [22], and the declared target of a throughput of
1 million jobs per day was achieved at least for simple jobs.

Table IV compares known performance limits to measured
production load extrapolated from eight months of production
use in MetaCentrum, a mid-sized grid infrastructure. It shows
that a typical combined grid/cloud operation uses up only a
small portion of the possible throughput, making the actual
overhead negligible.

TABLE IV. COMPARING REAL-WORLD LOAD IN THE CZECH
NATIONAL GRID WITH THE MAXIMUM CAPACITY

Item Prod. per Year Maximum Capacity

Computing jobs, mixed complexity 1,550,000 ∼ 90,000,000

Virtual machines 25,000 > 90,000,000

Individual Events 500,000,000 >1,550,000,000

308

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



2) Applicability of Results: The common monitoring so-
lution succesfully collects and, most importantly, correlates
workload and infrastructure status data. Evaluation of the
amount and structure of data collected and inferred by LB
shows that it indeed provides a detailed, unified view of the
multi-layered virtualized environment, and that its output can
be used not only to check current status, but also to feed higher-
level statistics and reporting systems.

An internal feasibility pre-study performed at the Czech
NGI, for instance, shows that its current statistics gathering
mechanisms could be replaced with an LB-based solution,
as long as LB provides a mechanism to monitor physical
machines as discussed in Section III-G, with the added benefit
that it wolud completely cover also the emerging PaaS and
IaaS cloud services – a task that the existing statistics gathering
solution cannot perform.

VI. CONCLUSION

This paper shows how the potential of an existing job-
monitoring infrastructure can be reused in the virtualized
world. The design and implementation of LB was extended to
support virtual machines as a new kind of monitored entity, and
the new functionality was demonstrated in real-word usage. LB
can now handle mutual relationships between various entities
involved in a modern computing environment (dynamic sets
of virtual machines available directly to users, and potentially
hosting jobs managed by a grid service). Although this work
was, at its beginning, primarily driven by the Czech NGI’s
requirements, it was found useful at a much wider scope.
Typical motivations involve resource federation in the cloud-
oriented world. The authors are proposing this solution to
FedCloud, the cloud interoperability task force acting within
the European Grid Infrastructure. LB, with its established
presence in gLite-enabled grid sites across the European Grid
Infrastructure, resulting in easy adoption, can be a reasonable
candidate for a monitoring and notification service in emerging
international “cloud-like” scientific environments.

ACKNOWLEDGEMENT

This work is part of the National Grid Infrastructure Meta-
Centrum, provided under the programme “Projects of Large
Infrastructure for Research, Development, and Innovations”
(LM2010005).

Fundamental development and maintenance of the Logging
and Bookkeeping service was co-funded by the European
Commission as part of the EMI project under Grant Agreement
INFSO-RI-261611.

REFERENCES

[1] Z. Šustr and J. Sitera, “Understanding virtualized infrastructure in
grid job monitoring” in INFOCOMP 2012, The Second International
Conference on Advanced Communications and Computation, Venice,
Italy, pp. 167 – 170, 2012.

[2] “Logging and bookkeeping,” 2008. [Online] Available:
http://egee.cesnet.cz/en/JRA1/LB/. [Accessed December 20, 2013].

[3] M. Cecchi et al., “The gLite workload management system,” J. Phys.:
Conf. Ser., vol. 219, 2010.

[4] P. Andreetto et al., “Status and developments of the CREAM computing
element service,” J. Phys.: Conf. Ser., vol. 331, 2011.

[5] G. Staples, “TORQUE resource manager,” in Proceedings of the 2006
ACM/IEEE conference on Supercomputing (SC), 2006.

[6] “StratusLab,” 2012. [Online] Available: http://stratuslab.eu/. [Accessed:
December 20, 2013].

[7] M. Ruda et al., “Virtual clusters as a new service of
MetaCentrum, the Czech NGI,” CESNET, 2009. [Online]
Available: http://www.cesnet.cz/doc/techzpravy/2009/virtual-clusters-
metacentrum/. [Accessed: December 20, 2013].

[8] D. Salomoni et al., “WNoDeS, a tool for integrated grid and cloud
access and computing farm virtualization,” J. Phys.: Conf. Ser. 331
052017, 2011.

[9] J. Sitera, M. Ruda, P. Holub, D. Antoš, and L. Matyska, “MetaCentrum
virtualization – use cases,” CESNET, 2010. [Online] Available:
http://www.cesnet.cz/doc/techzpravy/2010/metacentrum-virtualization-
use-cases/. [Accessed: December 20, 2013].

[10] J. E. Savage, “Models of computation: exploring the power of comput-
ing,” Addison-Wesley Pub, 1998.

[11] F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme, “Modeling
software with finite state machines: a practical approach,” Auerbach
Publications, 2006.

[12] B. Birregah, K. H. Adjallah, K. S. Assiamoua, and P. K. Doh, “Grid
systems monitoring and assessment using finite state machines with
median symmetry operators,” in IEEE International Conference on
Systems, Man and Cybernetics, Montreal, pp. 741 – 746, 2007.

[13] J. Varia, “Architecting for the cloud: best practices,” 2011. [Online]
Available:
http://media.amazonwebservices.com/AWS Cloud Best Practices.pdf.
[Accessed: December 20, 2013].

[14] R. Nyrén, A. Edmonds, A. Papaspyrou, and T. Metsch, “OCCI
specification,” OCCI-WG OGF, 2011. [Online] Available: http://occi-
wg.org/about/specification. [Accessed: December 20, 2013].

[15] Z. Šustr et al., “Monitoring national infrastructure with
L&B,” in EGI Technical Forum, 2012. [Online] Available:
http://youtu.be/tI5m45jbxmU. [Accessed: December 20, 2013].

[16] M. Voců et al, “Using L&B to monitor TORQUE jobs across a national
grid,” in EGI Community Forum 2012 Book of Abstracts, Garching,
Germany, 2012.

[17] “Gridmap,” 2007. [Online] Available:
http://dev.globus.org/wiki/Gridmap. [Accessed: December 20, 2013].

[18] “gLite LB instrumentation Scripts for OpeNebula,” 2012, [On-
line] Available: https://github.com/CESNET/metacloud-lb-scripts. [Ac-
cessed: December 20, 2013].

[19] M. Ruda, J. Denemark, and L. Matyska, “Scheduling virtual grids: the
Magrathea system,” in VTDC ’07 Proceedings of the 2nd international
workshop on Virtualization technology in distributed computing, Article
No. 7, ACM, 2007.

[20] D. Antoš, L. Matyska, P. Holub, and J. Sitera, “VirtCloud: virtualising
network for grid environments – first experiences,” in The 23rd IEEE
International Conference on Advanced Information Networking and
Applications (AINA). Bradford, UK, 2009.

[21] Z. Šustr et al., “MetaCentrum, the Czech virtualized NGI,” in EGEE
Technical Forum 2009, Barcelona, Spain, 2009. [Online] Available:
https://egee.cesnet.cz/cs/info/virtualizace.pdf. [Accessed: December 20,
2013].

[22] Z. Šustr et al., “Mass testing of EMI products in Czech NGI’s
virtualized environment,” in EGI Community Forum 2012, Garching,
Germany. [Online] Available: http://egee.cesnet.cz/cvsweb/LB/CF12-
mass-test.pdf. [Accessed: December 20, 2013].

309

International Journal on Advances in Systems and Measurements, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/systems_and_measurements/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


