
A Design Framework for Developing a Reconfigurable Driving Simulator

Bassem Hassan
Project Group Mechatronic Systems Design

Fraunhofer Institute for Production Technology IPT
33102 Paderborn, Germany

Bassem.Hassan@ipt.fraunhofer.de

Jürgen Gausemeier
Heinz Nixdorf Institute
University of Paderborn

33102 Paderborn, Germany
Juergsen.Gausemeier@hni.uni-paderborn.de

Abstract - Driving simulators have been used successfully in
various application fields for decades. They vary widely in
their structure, fidelity, complexity and cost. Nowadays,
driving simulators are usually custom-developed for a specific
task and they typically have a fixed structure. Nevertheless,
using the driving simulator in an application field, such as the
development of the Advanced Driver Assistance Systems,
requires several variants of the driving simulator. Therefore,
there is a need to develop a reconfigurable driving simulator,
which allows its operator to easily create different variants
without in-depth expertise in the system structure. In order to
solve this challenge, a design framework for developing a
Task–Specific reconfigurable driving simulator has been
developed. The design framework consists of a procedure
model and a configuration tool. The procedure model describes
the required development phases, the entire tasks of each
phase and the used methods in the development. The
configuration tool organizes the driving simulator’s solution
elements and allows its operator to create different variants of
the driving simulator by selecting a combination of the solution
elements, which are like building blocks. The design
framework is validated by developing three variants of a
reconfigurable driving simulator. This paper includes a
modified procedure model, more detailed analysis of the state
of the art and new results comparing with the previous
published paper “Concept for a Task–Specific Reconfigurable
Driving Simulator”.

Keywords - Advanced Driver Assistance Aystems (ADAS);
reconfigurable driving simulator; confiuration mechanis;
solution elements; bulding blocks; variants

I. INTRODUCTION
The development and testing of the in-vehicle systems,

such as Advanced Driver Assistance Systems (ADAS), is a
challenge due to their complexity and dependency on the
other vehicle systems, initial conditions, and the surrounding
environment [1] [2]. The testing of ADAS in reality leads to
significant efforts and cost. Therefore, virtual prototyping
and simulation are widely used instruments in the
development of such complex systems [3].

Virtual prototyping is well-established in facilitating the
development of new vehicle systems and components [4]. It
is the process of building, simulating, and analyzing virtual
prototypes. Virtual prototypes are the digital representations
(models) of the real prototypes. It allows the verification of
the properties and the functions of the product in the early
development phases without having to build a real prototype.
This saves time and costs [5]. One of the most useful virtual

prototyping tools in the automotive field are driving
simulators.

Driving simulators allow the ADAS developer to
investigate the interaction between the human driver, the
Electronic Control Unit “ECU” virtual prototype and the
vehicle, while the human driver steers a virtual vehicle in a
virtual environment. Driving Simulators rank among the
most complex testing facilities used by automotive
manufacturers during the development process. They are
based on close collaboration of different simulation models
at runtime [6]. These partial models represent dedicated
aspects of the different vehicle components, as well as the
vehicle environment [7].

Driving simulators vary in their structural complexity,
fidelity and their cost. They range from simple low-fidelity,
low-cost driving simulators such as computer-based driving
simulators to complex high-fidelity, high-cost driving
simulators such as high-end driving simulators with complex
motion platforms [8].

Nowadays, existing driving simulators are usually task-
specific devices, which are individually custom-developed
by suppliers for a specific usage during the ADAS
development. For example, a task-specific driving simulator
is typically used for testing the ADAS main functionality
without considering the human-machine-interfaces and
another task-specific driving simulator is used for
investigating different variant of human-machine-interfaces.
These driving simulators can only be configured by a driving
simulator expert. This is done by exchanging one or more of
their entire components. Existing driving simulators do not
allow their operator to change the system architecture or to
exchange simulation models without in-depth knowledge of
the driving simulator’s components and structure.

The development of a driving simulator is a costly and
complex task; the testing and training of ADAS often
requires more than one configuration of a driving simulator.
That is why there is a need for developing a reconfigurable
driving simulator that allows the system operator to
reconfigure it in a simple way without in-depth expertise in
the system.

This work is based on a previous paper of the authors
“Concept for a task–specific reconfigurable driving
Simulator” [1]. However, this paper describes a modified
procedure model, more detailed analysis of the state of the
art, and presents the new reached results in more details.

1

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RECONFIGURABLE DRIVING SIMULATORS DEFINITION
In most of existing driving simulators’ descriptions or

brochures, they are defined as a “reconfigurable driving
simulator”. Therefore, the term “reconfigurable driving
simulator” has to be clearly-defined with the help of three
questions: “Which driving simulator components could be
reconfigured?”, “Who can reconfigure the driving
simulator?” and “What is the difference between a
configurable and a reconfigurable driving simulator?” Based
on the answers of the questions, the term “Reconfigurable
Driving Simulator” will then be defined.

Which driving simulator components could be
reconfigured? The term “reconfigurable driving simulator”
is sometimes misused instead of using the term “driving
simulator with exchangeable components” or the term
“driving simulator with parameterized models”. Driving
simulators consist of various components. These components
are classified into three categories: hardware, software, and
resources. There are many driving simulators which have
exchangeable hardware components, e.g., vehicle mock-up,
motion platform, and visualization system. Other driving
simulators have exchangeable software components, e.g.,
vehicle model, traffic model, etc. Most driving simulators
have parameterized simulation models, e.g., a parameterized
vehicle model to simulate different vehicle types,
parameterized traffic models to simulate different traffic
scenarios, etc.

Who can reconfigure the driving simulator? The term
“reconfigurable driving simulator” is sometimes misused
instead of using the term “modular driving simulator” or
“configurable driving simulator”. Many driving simulators
could be customized individually by their manufacturer
according to the customer requirements. These are “modular
driving simulators”. Some driving simulator components
could be exchangeable or some components could be added
or removed. These are configurable driving simulators,
which can be reconfigured or upgraded only by their
manufacturer or developer.

What is the difference between a configurable and a
reconfigurable driving simulator? A configurable driving
simulator means that a variant of a driving simulator could
be created by selecting its entire components during the
development, but its structure and/or its entire components
cannot be changed after the development. However, a
reconfigurable driving simulator structure and entire
components can be changed after the development. In this
paper, we describe a reconfigurable driving simulator
development approach in means of, adding, removing,
modifying, and resampling the components of the driving
simulator is granted after the development.

Reconfigurable driving simulator definition: A driving
simulator is reconfigurable when different configurations can
be used optimally in different tasks at different times. The
reconfiguration should be feasible by the operator without in-
depth expertise in the system structure. The operator can
create different configurations by changing the system
structure (adding or removing some of its entire components)

and by exchanging the entire system components with other
suitable components.

III. RELATED WORK
There are thousands of driving simulators spread all

around the globe. They are complex mechatronic systems
and include different technologies, which widely range from
computer graphics to controlling a complex motion platform.
The publications about driving simulators usually take one
technology into consideration or just a partial aspect of
developing a specific driving simulator. The state of the art
in this section will only consider the publications that are
related to the development methods of driving simulators
and the previous approaches towards developing a
reconfigurable driving simulator.

This section surveys an existing driving simulator
selection method and previous approaches towards
developing a reconfigurable driving simulator.

A. The Driving Simulators Selection Method according to
Negele[6]
Negele developed a method called the “Application

Oriented Conception of Driving Simulators for the
Automotive Development”. He considered driving
simulators as one of the most complex test rigs used in the
automotive development. The development of a driving
simulator requires a wide expertise in different technologies
and disciplines, which widely range from the visualization
techniques to platform motion control. This essential know-
how is not in the core competence of the automotive
manufacturer. Therefore, driving simulators, which are used
as automotive test rigs, are usually developed by driving
simulator suppliers. Nevertheless, it is tough for automotive
engineers, who do not have a basic knowledge of driving
simulator technologies to select and specify a driving
simulator that fits with a specific-task [6].

Therefore, Negele developed a method, which allows
automotive engineers to formulate the requirements and
specifications of a driving simulator for a specific
application. The main objective of the method is to define
the relationships between the automotive applications and
driving simulators’ specification [6].

Automotive engineers could select a driving simulator
type based on two main criteria: a driving task category and
a driver stimulus-response mechanism, according to the
application of the required driving simulator.

The driving tasks are categorized into primary tasks,
secondary tasks, and tertiary tasks. The primary tasks consist
of vehicle navigation, vehicle guidance and vehicle
stabilization. The driver stimulus-response mechanisms are
categorized into the following: skills-based responses, which
are senso-motoric responses (e.g., acceleration or steering),
rule-based responses (e.g., driving slower in a curve) and
knowledge-based responses (e.g., route planning with the
help of paper maps) [6].

The driving simulator application should be defined by
means of the following: a driving task category (Which
driving tasks should be investigated?) and a driver stimulus-
response mechanism (Which driver stimulus-response

2

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

mechanism is relevant?). For example, if the driving
simulator application is the testing of vehicle dynamics, then
the application is focusing on a primary driving task (vehicle
stabilization) and investigating a skills-based response of the
vehicle driver [6].

Figure 1. Scheme for classifying driving simulator applications [6].

Fig. 1 shows the intersections matrix between the five
driving tasks categories: (vehicle stabilization, vehicle
guidance, vehicle navigation, secondary tasks, and tertiary
tasks) and the three driver stimulus-response mechanisms:
(skills-based responses, rule-based responses, and
knowledge-based responses). These result in 15 types of
driving simulators, which are marked from 1a to 5c [6].

 Each driving simulator type is described by a profile
table. The profile table specifies the entire components of the
driving simulator variant. Negele divided the simulator into
26 components grouped into 6 groups.

The method of Negele allows automotive engineers to
formulate the requirements and the specifications of a task-
specific driving simulator. The focus was on how to specify
the requirements of a driving simulator to fit with a specific
task. He did not consider the reconfigurability of driving
simulators and he did not mention a driving simulator’s
development method.

Nevertheless, the method is useful as a preliminary work
for driving simulator operators. They can use Negele’s
method to specify the preferred driving simulator’s
requirements and its entire components, then they can use the
design framework described in this work in order to create a
specific driving simulator variant.

B. Existing Low-Level Driving Simulators
Low-level driving simulators have restricted fidelity,

high usability and they are usually low-cost driving
simulators. Typically, they have a single display that
provides a narrow horizontal field of view and a gaming
steering wheel as a Human-Machine-Interface (HMI) [9].

The following sections describe one previous approach
towards developing low-level reconfigurable driving
simulator.

A Modular Architecture based on the FDMU
Approach: Filippo et al. had developed “a modular
architecture for a driving simulator based on the FDMU
approach”. This approach describes a modular and easily
configurable simulation platform for ground vehicles based
on the Functional Digital Mock-Up approach (FDMU).
FDMU is a framework developed by the Fraunhofer
Institute. The framework consists of a central component
called “Master Simulator”, which connects different
components through an application called “Wrapper”. Each
module communicates with the master simulator through its
own wrapper application and a standardized Functional
Building Block (FBB) interface. Fig. 2 shows the basic
scheme of the FDMU architecture [10].

Figure 2. Basic scheme of FDMU architecture [10].

Filippo et al. [10] had developed a driving simulator
based on the FMDU architecture. This driving simulator
consists of two hardware components and two software
components. The hardware components are a motion
platform, which is an off-the-shelf Steward platform, and an
input device, which is an off-the-shelf Universal Serial Bus
“USB” steering wheel and pedals. The software components
are the master simulator simulation core and a simple vehicle
model implemented with the help of OpenModelica, which is
an open-source modeling and simulation environment [10].

The developed approach: “A Modular Architecture for a
driving simulator based on the FDMU Approach” focusses
on the interfacing of the different components of the driving
simulator with the help of an FMDU modular structure. The
problem with this approach is that in order to add or
exchange any component, a wrapper application has to be
reprogrammed or adjusted for the new component. The
approach does not describe how to add, remove or exchange
any of the four pre-programmed components. Indeed, the
approach is promising for simulation core components,
which interface the driving simulator components with each
other. But it could not be used in a reconfigurable driving
simulator without some enhancements, e.g., the master
simulation has to be dynamically adjustable depending on
the connected modules without being pre-programmed by
the user.

C. Existing Mid-Level Driving Simulators
Mid-level driving simulators have a greater fidelity than

the low-level driving simulators, as well as high usability.

3

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Typically, they have multi-displays, which provide a wide
horizontal field of view, a real vehicle dashboard as an HMI,
and they are sometimes equipped with a simple motion
platform [9].

The following section describes one previous approach
towards developing reconfigurable mid-level driving
simulator.

The University of Central Florida Driving Simulator:
The University of Central Florida (UCF) driving simulator is
operated in the Centre of Advanced Transportation Systems
Simulations (CATSS). It has evolved since the late 1990's
into a mid-level driving simulator with the aim of conducting
research in transportation, human factors and real-time
simulation. The UCF driving simulator is equipped with a
hexapod motion platform with 6 DoF. It has a passenger
vehicle cabin as an input device. The vehicle cabin is
mounted over the motion platform. The UCF has a
visualization system that consists of 5 displays: one for the
front view, two for side views and two for the left and
middle rear mirrors. The simulator is also equipped with an
audio system, force feedback steering wheel and the main
operator console [11]. The simulator was designed with an
exchangeable vehicle cabin. The user can choose from a
commercial truck cabin and a passenger vehicle cabin
according to the test requirements. The vehicle model could
also be changed according to the used vehicle cabin [11].

The UCF driving simulator has exchangeable driving
cabins and exchangeable vehicle models. It could be
configured according to the customer requirements by
choosing from the passenger car cabin with its respective
vehicle model or the commercial truck cabin with its
respective vehicle model. The UCF driving simulator is not a
reconfigurable driving simulator because only the driving
cabin and vehicle model are exchangeable. Moreover, the
driving simulator user cannot exchange the entire
components or add a new component to the system without
the help of the manufacturer.

D. Existing High-Level Driving Simulators
High-Level driving simulators have great fidelity, high

usability and they are high-cost driving simulators.
Typically, they almost have a 360 degrees horizontal field of
view and a complete real vehicle as an HMI, which is
mounted on a high-end motion platform with at least 6
degrees of freedom [9].

The following section describes one previous approach
towards developing reconfigurable high-level driving
simulator.

Daimler Full-Scale Driving Simulator: Daimler AG
inaugurated the Daimler full-scale driving simulator in
October 2010 in Sindelfingen, Germany. The Daimler full-
scale driving simulator is used mainly in developing new
ADAS and the evaluation of different vehicle dynamics
concepts. It is equipped with a 7 DoF motion platform that
consists of the following two parts: the lateral 12 m long rail
system, which provides linear motion in Y-direction and a
hexapod which provides 6 DoF. The dome of Daimler full-
scale driving simulator has a diameter of 7.5 m, which can be
moved by a rail system for 12 m (in X or Y directions) and

by the hexapod as follows: +1.4 to -1.3 m in X-direction,
±1.3 m in Y-direction, and ±1 m in Z-direction, ±20 degrees
roll-rotation, -19 degrees to +24 degrees pitch-rotation and
±38 degrees yaw-rotation.

The Daimler full-scale driving simulator has a cylindrical
visualization system powered by 8 projectors and gives 360
degrees horizontal field of view and three rear mirrors
displays. It has several exchangeable driving cabins, e.g., S-
Class, A-Class, Actros-Truck, etc. It is operated by a
Daimler in-house developed software. The used software can
also operate Daimler internal fixed-base driving simulator
variants [12].

The Daimler full-scale driving simulator has
exchangeable driving cabins and a parameterized vehicle
model. It could be configured according to the test
experiment requirements by choosing from different driving
cabins and their respective vehicle model parameter set. The
Daimler full-scale driving simulator is not a reconfigurable
driving simulator because the driving simulator components
are only compatible with Daimler internal components. The
driving simulator user cannot exchange the entire
components or add a new component to the system without
the help of the manufacturer.

E. The National Advanced Multi-Level Driving Simulators
The multi-level driving simulators are different variants

of a driving simulator as they have different levels of
fidelity, usability and cost. But they are developed based on
the same structure using the same software, hardware, and
resources components. An example of the multi-level driving
simulator is the NADS driving simulator, which is described
in this section.

The National Advanced Driving Simulator (NADS) is a
driving simulator centre located at the University of Iowa.
The NADS centre has three driving simulators: the high-
level driving simulator “NADS-1”, the mid-level driving
simulator “NADS-2”, and the low-level driving simulator
“NADS miniSim”. The NADS driving simulators are based
on the same system architecture, software, and resources
[13].

The NADS-1 and NADS miniSim driving simulators are
modular driving simulators, which have been developed
based on the same software components. They could be
configured for different applications according to the
customer specifications. The NADS minSim is a low-level
configurable driving simulator. It is a promising approach
towards developing a reconfigurable driving simulator.
However, it is not a reconfigurable driving simulator,
because as well-developed as it is, the user cannot exchange
the entire components or add a new component to the system
without the help of the manufacturer.

The analysis of the existing methods and approaches
towards a reconfigurable driving simulator has shown that
there is no method, approach or developed driving simulator
to date which describes any systematics or approaches for
the development of a reconfigurable driving simulator and
none of them allows the operator of the driving simulator to
reconfigure the system without in-depth expertise in the
system structure.

4

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. THE SOLUTION APPROACH
The main aim of this work is to simplify a driving

simulator structure during the development. This simple
structure allows the operator to create different task-specific
variants by selecting the desired solution elements of the
driving simulator.

The development of reconfigurable mechatronic systems,
which consist almost of standardized modular components,
can follow the “Building Blocks Concept”. The benefits of
using the building blocks concept are speeding up the
learning curve of the system structure based on the many
years of experiences in the development of their entire
components [14].

The typical virtual prototyping cycle consists of three
phases: modelling, simulation and analysis. The modelling
process is the developing of simplified formal models of the
system under development. The system models represent the
system properties. The simulation process represents the
calculations of the system models with the help of numerical
algorithms in order to simulate the system behaviour. The
analysis process represents the interpretation of the
simulation results that are usually done by extracting,
preparing and visualizing the relevant information [5] [15].
The usage of driving simulators allows ADAS developers to
analyse the system under test functionality, the system
behaviour in different simulation scenarios as well as the
investigation of the interaction between the system, driver,
and environment.

Figure 3. The solution approach of the reconfigurable driving simulator,

according to the building blocks concept.

In order to reconfigure a driving simulator, there is a
need to add a phase between the modelling and simulation
phases. The new phase is the configuration phase shown in

Fig. 3. In the configuration phase, the driving simulator
operator can select the desired solution elements to create a
task-specific variant of the driving simulator.

The models that have been developed during the
modelling phase will be available for the selection in
addition to other existing components. The operator selects a
solution element for each component. These selected
solution elements, acting as building blocks, build together a
driving simulator variant. Fig. 3 shows a simplified example
of the configuration process; the selected solution elements
and the created variant are marked with a blue frame. As
soon as a variant has been created, the driving simulator will
be ready for the simulation and the analysis phases.

V. THE DESIGN FRAMEWORK
This section is the core of the present work. It describes a

design framework for developing a reconfigurable driving
simulator. This design framework supports driving simulator
developers and operators to develop and operate a
reconfigurable driving simulator. The design framework
consists mainly of the procedure model and the configuration
tool. They are specifically described as follows:

• The procedure model, which defines the required
phases in a hierarchy, in order to develop a
reconfigurable driving simulator. Each phase
contains entire tasks; these tasks have to be carried
out in order to achieve the phase objectives. The
procedure model organizes the required tasks in each
phase and describes which method or algorithm
should be used to fulfill each task. The used methods
and algorithms contain existing approaches, as well
as new approaches, which were developed during
this work. Moreover, the procedure model defines
the result of each phase. This is needed as an input
for the following phases.

• The configuration tool, which supports the driving
simulator operators in creating a driving simulator
variant or in reconfiguring an existing variant. The
configuration tool organizes the existing driving
simulator software and hardware components and
their corresponding solution elements in a solution
elements database. As soon as the solution elements
database is filled, the software guides the driving
simulator operator in order to create the desired
driving simulator variant. The variant creation will
be done by selecting a combination of solution
elements, which are available in the database.
Moreover, the configuration tool can deal with
guidelines for testing and/or for training approaches.
They can be added to the tool, and the configuration
tool can check whether the created variant guideline
conforms or not.

Fig. 4 describes a design framework for developing a
Rreconfigurable driving simulator. This design framework
supports driving simulator developers and operators to
develop and operate a reconfigurable driving simulator.

5

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. A design framework for developing a reconfigurable driving

simulator structure and components.

Procedure Model Overview: the procedure model is the
most essential part of the design framework; it describes the
theoretical fundamentals of the design framework. The
procedure model supports driving simulator developers in
the development of a reconfigurable driving simulator. The
procedure model is kept general and could be used for
different driving simulator areas of use, as well as other
mechatronic systems. It consists of six consequent phases
divided into two stages. Fig. 5 shows the procedure model in
the form of a phases/milestones diagram that shows each
phase. It also shows the tasks that have to be carried out, as
well as the results from each phase.

The six phases of the procedure model are generally
divided into two stages: The system development stage and
the variants creation stage. Each stage consists of three
phases. The first three development phases have to be
performed once by the driving simulator developer. As soon
as the developer finishes the development phases, the driving
simulator operator should carry out the variant creation
phases each time he/she creates a driving simulator variant.

In the following sections, a detailed description of all
needed tasks and operations during each phase, as well as the
results of each phase, will be presented.

A. Phase 1 – Driving Simulator System Specification
The objective of the first phase is to specify a

reconfigurable driving simulator, which is a complex
multidisciplinary mechatronics system. Therefore, there is a

need to specify the system under a multidisciplinary
development with the help of a specification technique.

The CONSENS – “Conceptual Design Specification
Technique for the Engineering of Complex Systems” will be
used during this work. CONSENS is developed in order to
specify complex mechatronic systems. The specifications are
multidisciplinary and they simplify the complexity of the
developed mechatronic system by describing it using a
coherent system of partial models [16].

Figure 5. Procedure model for developing a reconfigurable driving

simulator.

CONSENS Work Flow for a Reconfigurable Driving
Simulator: the specification technique “CONSENS” divides
the principle solution specification into coherent partial
models. The CONSENS partial models are: requirements,
environment, application scenarios, functions, active
structure, shape, and behaviour. Each partial model specifies
a precise aspect of the system under development [16].

The partial models’ weights of importance are not equal
within the development of reconfigurable driving simulators.
During this work, the focus will be on five of seven
CONSENS partial models. The relevant partial models are
environment, application scenarios, requirements, functions,
and active structure. The shape and behaviour partial models
will be neglected within the scope of this work because they
are not relevant to design a driving simulator. The both
neglected partial models are important to design a new
product.

The CONSENS work flow is divided into three steps:
firstly, the environment, the application scenarios and the
requirements have to be specified simultaneously. Secondly,
based on the result of the first step, the function hierarchy

6

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

has to be derived. The third step is to build up the active
structure based on the result of the previous steps. Fig. 6
shows the CONSENS work flow towards specifying a
reconfigurable driving simulator.

Figure 6. CONSENS work flow for reconfigurable driving simulator

according to Gausemeier [17].

The specification of the system is typically carried out in
the context of expert workshops with the help of a workshop
cards set. The workshops’ participants are usually experts in
several disciplines such as mechanical engineering, software
engineering, control engineering, and electrical engineering.
The definition of each partial model is presented in the next
sections.

1) Environment:
The environment partial model defines the external

influences, which affect the system under development. The
driving simulator has to be considered as a black box which
means that the investigation is not of the system itself, but of
the relevant external influences. These external influences
are environment elements or disturbance variables [16].

Fig. 7 shows an environment model example of a driving
simulator variant.

Figure 7. Environment model of a driving simulator variant.

2) Application Scenarios:
The application scenarios partial model is an essential

partial model of the system specification. In this

specification step, some operational application scenarios are
defined. Each application scenario describes the system
under development in terms of way of use, operation modes,
system manner and main components. By using CONSENS,
each application scenario will be described in a profile page,
which contains the scenario title, scenario numbering, the
scenario description and a simple sketch of the needed
hardware components [16].

3) Requirements:
This partial model collects and organizes the system

requirements of the system under development which need
to be covered and implemented during the development
process. The requirement list contains functional and non-
functional requirements [16]. Additionally, the organized
requirements distinguish between demands and wishes
(D/W) [18].

4) Functions:
The functions partial model is built based on the previous

partial models: environment, application scenarios and
requirements. It describes the system and its entire
components’ functionality in a top-down hierarchy [16].
Each block describes a sub-function of the system. Function
catalogues, according to Birkhoffer [19] or Langlotz [20],
support the creation of the functional hierarchy.

Due to the variation of the main function, structure, and
required components of the stated application scenarios, the
functions specification also varies in its complexity and
number of its entire sub functions. Therefore, there is a need
to merge the identified functions of the stated application
scenarios. Fig. 8 shows a function model example of a
driving simulator variant.

Figure 8. Function model of a driving simulator variant.

Ground

Energy Source

DriverEnvironment

Driving
Simulator

Humidity, Dirt

Light, Temperature

Heat, Operational noise

Driving
Simulator
Operator

Forces

Supply energy

Scenario parameter, Commands (On/
Off, Start, Stop, Pause, etc.)

Hardware preparation

Simulation results

Visual and acoustic info., Vehicle states

Driving signals:
acceleration, brake, gear, steering, etc.

Emergency stop

Motion Forces

Legend:

The System to be
Developed

Envrionment
Elements

Energy Flow

Information Flow

Material Flow

Disturbing Flow

Perform
Virtual Test
Drive

Simulate
Motion

Visualize
Virtual Scene

Produce
Sound

Simulate
Sound

Generate
Sound

Produce
Visual Scene

Drive
Virtual Vehicle

Display
Visual Scene

Regulate
Motion Platform

Simulate
Virtual Vehicle

Produce
Motion

Legend:
Function Aggregation

Relationship

7

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Active structure model of a driving simulator variant.

5) Active Structure
The active structure partial model is built based on the

previous partial models results, specifically the functions
partial model. The active structure describes the entire
system in more details in the form of system component
active principles. It describes the system components, their
attributes, the entire interfaces and how the components
interact with each other. Depending on the modeling level of
details, each system element could be described abstractly as
an active principle or a software pattern. Additionally,
material, energy, and information flows, as well as logical
relationships, describe the interactions between the system
elements [16]. Fig. 9 shows an active structure model
example of a driving simulator variant.

The first phase results, which are the driving simulator
system specification describes in the form of five partial
models, are: environment, application scenarios,
requirements, functions, and active structure. This result is
the input for the second phase.

B. Phase 2 – System Components Identification
The second phase objectives are the identification,

classification and definition of the driving simulator
components based on the results of the first phase. Towards
the identification of the driving simulator system

components, a distinction between optional components, key
components and solution elements must be defined.

As the driving simulator structure could also be changed
during the reconfiguration process, the key components have
to be identified. The key components are the obligatory
system components that always have to exist in the simulator
structure. For example, each driving simulator has to have a
visualization rendering software but a motion platform is an
optional component and not a key component, because a
driving simulator does not need to have a motion platform.

1) Identification of Driving Simulator Components
Based on the active structure partial model, the system

components, as well as the system key components can be
identified with the help of the following three operations:

1. Identify all components:
 The reconfigurable driving simulator components are the

union of the different variants components as follows:

 𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶 = 𝑉𝑉𝑉𝑉𝑉𝑉_1_𝑐𝑐𝐶𝐶 ∪ 𝑉𝑉𝑉𝑉𝑉𝑉_2_𝑐𝑐𝐶𝐶 ∪ …𝑉𝑉𝑉𝑉𝑉𝑉_𝑛𝑛_𝑐𝑐𝐶𝐶 (1)

Where: Sim_Cp is the reconfigurable driving simulator
components, Var_1_cp is variant 1 components, Var_2_cp is
variant 2 components, and n is the number of modelled
variants.

2. Identify common components:
The common components of the reconfigurable driving

simulator are defined based on the intersection between the
different variants components as follows:

 𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶 = 𝑉𝑉𝑉𝑉𝑉𝑉_1_𝑐𝑐𝐶𝐶 ∩ 𝑉𝑉𝑉𝑉𝑉𝑉_2_𝑐𝑐𝐶𝐶 ∩ …𝑉𝑉𝑉𝑉𝑉𝑉_𝑛𝑛_𝑐𝑐𝐶𝐶 (2)

For example, if variant 1 components are {A,B,C} and
variant 2 components are {A,B,D,E}, and the common
system components will be {A,B}.

3. Identify key components:
In order to identify the system’s key components, the

selection will be done based on the common components set.
Each component has to be investigated individually in a

8

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

logical way by eliminating the component from the set. If the
driving simulator can be operated without this component,
this means that it is an optional component. But if the driving
simulator cannot be operated, then this means that it is a key
component.

2) Classification of the Identified Components

In addition to the modelled software and hardware
components, the reconfigurable driving simulator resources
have to be taken into consideration. Each software or model
needs a computing unit (e.g., a computer) to be executed on.
Moreover, each hardware component needs a physical
interface to communicate with its corresponding software
interface.

In order to organize the identified components easily,
these have to be classified under the following three
categories: hardware, software, and resources. The software
category contains two subcategories: the applications/models
and the hardware interfaces. The resources category contains
two subcategories: the computing units and the signal
processing interfaces. Fig. 10 shows an example of the
classification of the identified components.

Figure 10. Classification of the identified components example.

3) Description of the Identified Components
In order to understand the function of each component,

each component has to be defined from a solution-neutral
point of view. The following are the description of two
identified components as an example:

Input Device: This is a hardware MMI (Man-Machine
Interface) between the driver and the driving simulator. It
provides driving signals, e.g., acceleration pedal position,
brake pedal position, etc. The input device provides the
driving simulator with these signals in energy flow, which
represents a physical signal.

Input Device Interface: This is a software component,
which converts the energy flows of the input device to its
computer representative information flows (digital signals).

C. Phase 3 – Configuration Mechanism Development
This is the third and last phase of the development stage.

The objective of the third phase is to develop a configuration
mechanism, which ensures that the selected solution
elements could operate together. This check is done after
selecting the preferred structure and the desired solution
elements. The configuration mechanism has to ensure the
consistency and the compatibility of the selected structure
and its entire solution elements. After the configuration
mechanism ensures the selected solution element consistency
and compatibility of the solution elements, it generates a
configuration file. The configuration file contains a list of the
selected solution elements, the interfaces’ topology and the
selected resources.

The configuration mechanism checks the selected
solution elements. However, the solution elements will be
deployed in the next phase, but it is the preferred order of the
procedure. Developing the configuration mechanism before
deploying the solution elements allows the mechanism to
also deal with unknown solution elements, which can be
added in the future.

There are two types of relationships between the selected
solution elements and each other. These relationships have to
be checked and confirmed by the configuration mechanism.
The first relationship is the logic consistency between the
selected solution elements with each other. The second
relationship is the compatibility between the interfaces of the
selected solution elements.

1) Consistency Check Algorithm
The consistency relationship can be determined by two

levels. The first level is the logic dependency between
components, which determines if there is a logic correlation
between two components or not. The second level is the
logic consistency between two solution elements.

a) Logic dependency between two components:
It is a logic relationship between two components, which

describes if they depend on each other logically or not. For
example, the motion platform and the input device are a
dependent pair of components. They depend on each other,
i.e., an input device has to be mounted on a motion platform.
Therefore, the motion platform dimensions and payload have
to match with the selected input device.

Dependency matrix: the dependency matrix is a two-
dimensional matrix that describes the logic dependency
between the identified components. The components are
stated in both the first row and the first column; the matrix is
mirrored along its diagonal. Therefore, only the lower half of
the matrix has to be filled with 0 or 1 by the driving
simulator developer.

0: means the components pair is logically independent of
each other, thus the inherited solution elements belonging to
these components will also be logically independent of each
other.

1: means the components pair is logically dependent on
each other, thus the inherited solution elements belonging to
these components will also be logically dependent on each
other. Fig. 11 shows the dependency matrix based on the
identified components.

9

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Dependency matrix of the identified components.

b) Logic consistency between two solution elements
It is a logic relationship between two solution elements,

which describes if they are logically consistent with each
other or not. The first relationship depends on whether the
solution elements’ parent components are independent. This
means that the two solution elements inherited the
independence and there is no need to check their consistency.
Otherwise, if the solution elements’ parent components are
dependent, this means that the two solution elements
inherited the dependency and have to be checked if they are
consistent or not.

Consistency matrix: the Consistency matrix is a two-
dimensional matrix that describes the logic consistency
between the available solution elements. The solution
elements are stated in both the first row and the first column.
The matrix is mirrored along its diagonal. Therefore, only
the lower half of the matrix has to be filled with 0, 1 or 2 by
the reconfigurable driving simulator operator.

0: means the solution elements pair is logically
inconsistent with each other. This means that they could not
be selected together in a driving simulator variant.

1: means the parent components pair was originally
logically independent of each other, thus the inherited
solution elements under those components will also be
logically independent of each other. This means that the
solution elements do not have to be checked for consistency.

2: means the solution elements pair is logically consistent
with each other. This means that they could be selected
together in a driving simulator variant.

Fig. 12 shows a part of a consistency matrix based on the
result with the assumption that each component has two
solution elements. Dealing with the solution elements in this
section will be illustrated in an abstract form, e.g., the
solution elements will be called (A1, A2, B1, etc.); where A
and B are components and A1 is the first solution element
for the component A, etc.

The consistency matrix is filled out based on the
dependency matrix. If a pair of components is independent
(0 value in the dependency matrix), e.g., A and B, their
solution elements will inherit this relation (1 value in the
consistency matrix). Otherwise, if a pair of components is
dependent (1 value in the dependency matrix), e.g., A and C,
their solution elements will inherit the dependency

relationship and they are either consistent or not
(respectively 2 or 0 value in the consistency matrix).

Figure 12. The consistency matrix – example of some solution elements.

Consistency check sequence: considering the
consistency relationship, which is determined by two-level
matrices, the consistency check will also be performed by
two level checks.

Fig. 13 shows a flowchart of the consistency check. For
example, the consistency between solution elements A1 and
B2 has to be checked. The first check will be based on the
dependency matrix between the two parent components A
and B. The second level will be based on the consistency
matrix between the solution elements A1 and B2.

Figure 13. Consistency check flowchart.

2) Compatibility Check Algorithm
One of the main approaches to building a reconfigurable

driving simulator is the ability of adding, removing or
exchanging one or more solution elements. In order to build
such a reconfigurable system, the applications/models
interfaces have to be carried out automatically. Therefore,
there is a need for an algorithm to check if all selected
solution elements are compatible with each other or not. The
compatibility here means whether the interfaces of the
selected solution elements match together or not. Hence,
each software component has its programming language and
naming system of the input and output signals. Additionally,
there is a need to extend the reconfigurable system

In
pu

t D
ev

ic
e

Vi
su

al
iz

at
io

n
De

vi
ce

M
ot

io
n

Pl
at

fo
rm

Ac
ou

st
ic

 D
ev

ic
e

Ve
hi

cl
e

M
od

el

Re
nd

er
in

g
So

ftw
ar

e

Ac
ou

st
ic

So

ftw
ar

e

In
pu

t D
ev

ic
e

In
te

rfa
ce

M
ot

io
n

Pl
at

fo
rm

 C
on

tro
lle

r

 S
im

ul
at

io
n

Co
m

pu
te

r

Si
m

ul
at

io
n

Co
m

pu
te

r I
nt

er
fa

ce

A B C D E F G H I J K

A. Input Device

B. Visualization Device 0

C. Motion Platform 1 1

D. Acoustic Device 0 0 0

E. Vehicle Model 0 0 0 0

F. Rendering Software 0 1 0 0 0

G. Acoustic Software 0 0 0 1 0 0

H. Input Device Interface 1 0 0 0 0 0 0

I. Motion Platform Controller 0 0 1 0 0 0 0 0

J. Simulation Computer 0 0 0 0 1 1 1 1 1

K. Simulation Computer Interface 0 0 0 0 0 1 1 1 1 1Re
so

-
ur

ce
s

Dependency Matrix

0 = Independent pair

1 = Dependent pair

Hardware Components Software Components Resources

Ha
rd

w
ar

e
So

ftw
ar

e

A1 A2 B1 B2 C1 C2 D1 D2 E1 E2

A. Input Device A1

A2

B. Visualization Device B1 1 1

B2 1 1

C. Motion Platform C1 2 0 2 0

C2 0 2 0 2

D. Acoustic Device D1 1 1 1 1 1 1

D2 1 1 1 1 1 1

E. Vehicle Model E1 1 1 1 1 1 1 1 1

E2 1 1 1 1 1 1 1 1

E. Vehicle
Model

Hardware Components

Ha
rd

w
ar

e

Consistency matrix

0 = Logically Inconsistent
1 = Logically Neutral
2 = Logically Consistent

A. Input Device B. Visualization
Device

C. Motion
Platform

D. Acoustic
Device

10

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

continuously by adding new unknown solution elements.
Therefore, a generic solution elements’ interface concept has
been developed to manage and check different existing
solution elements, as well as unknown solution elements that
could be added in the future.

Generic solution elements’ interface concept: in order
to interface the entire solution elements, each solution
element has to be considered as a black box. Mainly, only
the input and output interfaces have to be considered. To
keep the configuration process flexible and extendable, any
solution element can be added as soon as its input and output
interfaces are defined. The only required task for integrating
any solution element is to map its inputs and outputs to the
reconfigurable driving simulator’s unique signal names
there, this task is called signal multiplexing.

Fig. 14 shows an example of the signal multiplexing. A
vehicle model has to be integrated as a solution element. The
model will be considered as a black box, but all its input and
output signals have to be mapped to the reconfigurable
driving simulator’s unique signal names. The output signal
called “Otutput_ID563[m/s]” is the vehicle under test
velocity in m/s, but this signal’s unique name and unit
predefined in the reconfigurable driving simulator has the
name “Chassis_Velocity” and its unit is km/h. Also in this
case, a simple unit conversion will be used.

Figure 14. Generic solution elements interface concept.

In order to integrate this vehicle model, the user has to
connect all the input and output signals with different names
and units to the unique names and the units of the parent
reconfigurable system. The input and output signals
multiplexers should be programmed before registering the
solution elements in the solution element database.

Compatibility check steps: after selecting the preferred
solution elements, the compatibility check algorithm proofs
the solution elements one by one to ensure that the input
signals could be satisfied from the outputs from other
solution elements. The compatibility check algorithm does
not only check the signals’ name but also other signal
attributes such as frequency and unit to ensure the
compatibility.

Fig. 15 shows a flowchart of the compatibility check. The
compatibility check algorithm checks the compatibility of
each signal through the following steps:

a) The algorithm checks each input signal of each
selected solution element.

b) Each input signal has a unique name and must be
delivered as an output from another selected solution
element output. Therefore, the algorithm searches by the
signal unique name in all output signals of the other
selected solution element.

c) If the search engine finds the input signal as an
output signal of the other selected solution elements that
means this input signal could be satisfied.

d) Additionally, the search algorithm can check the
compatibility of the signal unit and frequency. The output
signal must have a greater frequency than the input signal
or a sample rate converter will be required.

e) Then, the algorithm confirms the compatibility of
this signal or stores an error in the error log.

These five steps have to be repeated for each input signal
of each selected solution element.

Figure 15. Compatibility check flowchart.

D. Phase 4 – Solution Elements Deployment
The first stage of the development procedure “System

Development” was described, as well as its entire three
phases. The first stage has to be carried out only once by the
driving simulator developer. The result of the first stage is a
reconfigurable driving simulator outline, which should be
extended in the variants creation stage by the driving
simulator operator. The first stage describes the system’s
entire components from a solution-neutral point of view. The
second stage is the concretisation stage, which deals with
solution elements instead of the solution-neutral components.

11

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The second stage “variants creation” consists of three
phases, starting with phase 4 “solution elements
deployment”. The main objective of this phase is to build a
solution elements database, which contains the existing
solution elements, their interfaces and attributes. This phase
is an iterative process that has to be carried out each time to
add or modify a solution element to the solution elements
database.

The solution elements deployment is carried out in two
steps. The first step is the identification and classification of
the solution elements and the second step is the filling out of
the solution elements database with the required attributes of
each solution element.

1) Identify and Classify Solution Elements
The solution elements’ identification and classification

will be carried out based on the results of the first and second
phases. The preferred solution elements will be carried out
based on the morphological box concept according to
Zwicky [21].

2) Filling the Solution Elements Database
In order to make the configuration tool deal with the

component and solution elements, there is a need to register
the identified components and solution elements in a
database. This database stores and organizes the components
and solution elements. It also has to be readable by the
driving simulator operator and accessible by the
configuration tool.

The main database operations are based on CRDU
classes [22]: create, read, update, and delete. These
operations must be covered by the database.

Create: This operation could be performed for both
components and solution elements. The database is always
extendable by adding a new component or by adding a new
solution element for an existing component. This operation
will be described in detail in this section.

Read: This operation can be executed for both
components and solution elements. The database internal
entries are accessible for the driving simulator operator, as
well as for any software that would be used during the
configuration process. All stored component and solution
elements as well as their attributes can be accessed.

Update: This operation can be executed for both
components and solution elements. Each stored component
or solution element can be changed and restored.

Delete: This operation can be executed for both
components and solution elements. Each stored component
or solution element can be deleted from the database.

In this section, the create operation is described in detail
in order to fill the solution elements database. The filling
process is done in two steps: create component then create
solution element.

Create a component entry: In order to create a
component, the following attributes must be registered and
stored in the database: Component name “which is the
unique name of each component”, Component type “a key
component or an optional component”, Component
classification “hardware, software or resources”,
Component description, Component symbol, Component

logic dependency row “which is a row contains the logic
dependency between the components and the previously
added components”, and Component guideline entry “ that
is an optional attribute, which defines a preferred parameter
value and condition regarding the component”. For example,
a guideline defines that the visualization device must have a
minimum horizontal viewing angle of 100 degrees. This
attribute can be added to the component in the form of the
condition greater than (>) and parameter value (100 degrees).

Create a solution element entry: In order to create a
solution element, the following attributes must be registered
and stored in the database:

Solution Element Name: This attribute is the unique
name for each solution element.

Solution Element Path: This attribute is the storage path
on the file storage system. This is applicable only for an
application/model.

Solution Element – Parent Component: This attribute
is the name of the corresponding parent components.
Therefore, it represents the relationship between this solution
element and a component.

Solution Element Description: This attribute is a brief
description of the solution element.

Solution Element Symbol: This attribute contains a
symbol (logo) associated with the solution element.

Solution Element Author: This attribute is the solution
element developer name, if known.

Solution Element Company: This attribute is the
solution element producer company name if known.

Solution Element Release Date: This attribute is the
date of when the solution element was released.

Solution Element Interface: This attribute is a table
containing all the input and output signals of the solution
element. Each signal has the following attributes:

Signal Name: It contains the names of the input and
output signals of the corresponding solution element.

Input/Output: It indicates the direction of the signal, i.e.,
whether it is an input or an output signal.

From: It contains the component name from which this
signal is to be fulfilled. This is applicable only for input
signals.

Unit: It contains the measuring unit of the corresponding
signal.

Frequency: It contains the sampling frequency of the
corresponding signal.

Resolution: It contains the resolution of the
corresponding signal.

Protocol: It contains the transmission protocol of the
corresponding signal, e.g., Controller Area Network “CAN”
or Transmission Control Protocol / Internet Protocol
(TCP/IP) TCP/IP.

Physical Port: It contains the physical port used to
transmit the corresponding signal.

Mandatory/Optional: It indicates whether the signal is
mandatory or optional.

Description: It contains a brief description of the
corresponding signal.

Solution Element Consistency Row: This attribute is a
row, which contains the logic consistency between the

12

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

solution element and the previous added solution elements.
This row is part of the solution elements consistency matrix.

Solution Element Guideline Entry: If the parent
component has a guideline entry, the solution element
inherits this entry and should define a parameter value for the
entry to check the solution element confirmation with the
guideline.

After registering all identified components and all
preferred solution elements, which result from the
metrological box in the database, the solution elements
database is filled and ready to be used in the variant
generation phase.

E. Phase 5 – Driving Simulator Variant Generation
The main objective of this phase is to define the

configuration selection sequence, as well as define the
configuration file structure, error reports structure and the
physical connection plan.

1) Configuration Selection Sequence
In order to make a reasonable selection sequence for the

solution elements, the identified components and their
relationships have to be investigated. The selection sequence
can be changed based on the area of use. During this phase,
an example of the use case study shows how it can be
determined.

The driving simulator components have been previously
classified as three main classes: Hardware, software, and
resources. A driving simulator structure is respectively based
on hardware components, software, and finally, the used
resources.

In order to make the selection sequence reasonable, it is
not sufficient to make the selection sequence based on the
classification, because of the tight correlation between some
hardware and software components. Therefore, the identified
components will be divided into groups of software and/or
hardware based on the groups identified during the active
structure specification step.

2) Configuration Files and Error Reports Structure

After the compilation of the solution elements’ selection
process, the configuration mechanism checks the selected
components in terms of consistency and compatibility.

Based on the configuration mechanism check results, if
the selected solution elements are consistent and compatible
with each other, the configuration tool confirms that the
selected solution elements can build a driving simulator
variant and generates a configuration file. However, if the
configuration tool finds any inconsistency or incompatibility
between the selected solution elements, the configuration
tool generates an error report. In the next section, the
structures of the configuration file as well as the error report
will be described.

Configuration File Structure: the configuration file is
considered to be the result of the configuration process. It is
a readable text file containing all the relative data about the
selected variant. It consists of four parts: configuration data,
hardware, software, and resources. The configuration data is
the part that describes general information about the
configuration itself, e.g., configuration name, author, etc.

The hardware part contains all selected hardware solution
elements attributes, parent component name and detailed
input/output signal descriptions. The software part contains
all selected software solution elements attributes, parent
component name and detailed input/output signal
descriptions. The resources part contains the selected
resources.

Error Report Structure: the error report is a readable
text file containing warnings and errors, which are detected
by the configuration mechanism. It contains five parts:
configuration data, hardware, software, resources and,
errors/warning. The first four parts are the same as in the
configuration file. The error and warning part lists all
detected inconsistent solution elements, as well as all
incompatible signals.

3) Physical Connections Plan
The configuration tool generates configuration files that

contain the interfaces between the selected solution elements
and the software side, but the configuration file does not
contain the physical connections between the selected
hardware solution elements and the selected resources. A
physical connection plan is very useful for the driving
simulator operator in order to prepare the driving simulator
for operation. It shows in a simple way how the diverse
hardware solution elements should be connected with the
resource interfaces. It could be considered as a simple wiring
plan.

Fig. 16 shows an example of the physical connection
plan regarding. This variant consists of four hardware
solution elements, which have to be connected to the
simulation computer interfaces. With the help of the
information stored in the solution elements database, the
physical plan for the components can be generated. In this
case, there were 4 connections, each hardware solution
element is connected through one connection.

Figure 16. Example of a physical connection plan.

F. Phase 6 – System Preparation for Operation
The result of the fifth phase is the configuration file and a

physical connection plan. The configuration file contains the
selected solution elements, interface topology, and selected
resources. Additionally, the physical connection plan
contains the physical interfaces between the selected
hardware solution elements.

There are two preparation steps required in order to build
up the selected driving simulator variant and to prepare it for

13

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the simulation. The first step is the preparation of the
hardware connections and the second step is the software
preparation.

1) Hardware Setup Preparation
Assuming that the selection process finished successfully

and the configuration tool generated the physical connection
plan, and then the driving simulator operator has to plug the
different hardware solution elements together. The physical
connection plan makes this step easy and understandable.

For the example, in Fig. 16, the driving simulator
operator has to plug in 4 cables: a USB cable between the
steering wheel and the simulation computer, an High-
Definition Multimedia Interface “HDMI” cable between the
75” Liquid Crystal Display “LCD” monitor and the
simulation computer, a network cable between the motion
platform and the simulation computer, and an audio cable
between the dolby speakers and the simulation computer.
The example shows that the hardware preparation step can
be easily done manually.

2) Simulation Software Preparation
 To prepare the selected software solution elements for

the operation, which is a complicated process (unlike the
hardware preparation step) there is a need to develop
software to assist this step. The software is called
“Assistant”. The assistant software is responsible for
preparing the software solution elements for the simulation
by the following three steps:

Read the configuration file: The assistant software can
load and phrase the configuration file. It identifies the
selected applications/models and their different attributes.

Fetch the applications/models: The assistant software
retrieves the storage path for each application/model. It
accesses the storage file system where the
applications/models are stored.

Distribute the applications/models over resources:
The assistant software loads each application/model on its
corresponding source selected during the selection process.

Figure 17. IIM function during simulation run-time.

The Intelligent Interfacing Module (IIM) initializes the
communication between the selected software solution
elements based on the interface topology, which is described
in the configuration file. As soon as the user starts the
simulation, the IIM ensures the communication between the
simulation-related software solution elements during
simulation run-time.

Fig. 17 shows the IIM function. The IIM exchanges the
required input and output from and to the simulation related
software solution elements during run-time. Moreover, IIM
can connect the software solution elements together although
a part of them runs under hard real-time conditions and the
other part runs under soft real-time conditions.

The result of this phase is a ready-to-use driving
simulator that consists of the selected software and hardware
solution elements, as well as the selected resources.

VI. IMPLEMENTATION PROTOTYPE OF THE
CONFIGURATION TOOL

A prototype of the described concept has to be
implemented as a part of this work. The implemented
configuration tool consists of more than 150 embedded
functions. This section describes the essential components of
the configuration tool, the graphical user interface and the
important tasks/functions covered by the tool.

The software was implemented using two software tools:
Microsoft Office Excel and Matlab. The reconfigurable
driving simulator database is implemented simply in
MySQL. Further, the functions and algorithms are
implemented with the help of Matlab M-Functions and the
graphical user interface is implemented with the help of
Matlab-GUI utility.

The development of the reconfigurable driving simulator
database was done based on the relational database model
approach. This approach is efficient and overcomes the
complexity of the relationships between the entire different
database tables. The implemented database mainly contains
three types of tables: the components’ table, the solution
elements’ table and the interfaces’ table. These three types of
tables are connected together based on a relational model of
the database.

The dealing with the developed configuration tool is
carried out mainly via a graphical user interface. Fig. 18
shows the start screen, which contains the main operations of
the configuration tool and their correlation to the various
phases of the development procedure model.

The start screen operations of the configuration tool are
described as follows:

Configure New System: this operation is the essential
task of the configuration tool. It is responsible for creating a
new driving simulator variant by selecting solution elements
for hardware, software, and resources in a predefined
sequence; so that the user is prevented from dealing with
complex algorithms such as consistency and compatibility
check algorithms. Firstly, the consistency check algorithm
runs in the background parallel to the selection steps. The
configuration tool shows only the consistent solution
elements that match with the previously selected solution
element. Secondly, after the selection steps end, the

14

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

configuration tool executes the compatibility check
algorithm to check the compatibility of the selected solution
elements. After the compatibility check has finished, the
configuration tool generates a configuration file if the
selected solution elements are compatible with each other or
it generates an error file if the selected solution elements are
not compatible with each other.

Load Configuration File: this function allows the user
to view and modify a previously generated configuration file.
Moreover, it allows the operator to modify the previously
generated configuration file by exchanging one or more of
the previously selected solution elements.

View Components and Solution Elements: this
function allows the user to deal with the stored components
and the solution elements in the database. The user can view,
modify or delete one or more component or solution
element.

Add New Component: this function allows the user to
add one new driving simulator component per execution.
This function will guide the user through predefined schemes
in order to register the different attributes of the new
component.

Add New Solution Element: this function allows the
user to add one new driving simulator solution element under
a selected component per execution. This function will guide
the user through predefined schemas in order to register the
different attributes of the new solution elements.

Behind each operation in the main screen, a set of
panels/schemas exists to accompany the user until he
accomplishes the selected function.

Figure 18. The graphical user interface of the configuration

tool’s implementation prototype – start screen.

VII. THE DESIGN FRAMEWORK VALIDATION
In order to validate the design framework, three ADAS

driving simulator variants have been generated with the help
of the described procedure model and the implementation
prototype of the configuration tool. The three generated
ADAS driving simulator variants were generated simply by
selecting their desired components and their preferred
solution elements.

A. Configuration 1 – TRAFFIS-Full
The name of the first generated variant is “TRAFFIS-

Full”. This variant has the most complex structure and it
contains most of the ADAS reconfigurable driving simulator
components. This variant is based on an application scenario.
The main objective of the TRAFFIS-Full variant is testing
the real Head-Lamp Control Module “HCM” control unit in
HiL environment [23]. Additionally, the driving simulator
motion platform and the real vehicle cabin allow the
investigating of the inter-action between the driver and the
HCM control unit in a Human-in-the-Loop environment. Fig.
19 shows the TRAFFIS-Full variant.

Figure 19. The TRAFFIS-Full variant.

The motion platform, which is used in this variant is the
ATMOS motion platform. It consists of two dynamical parts
with 5 DoF. The first dynamical part is the moving platform.
It has 2 DOF and is used to simulate the lateral and
longitudinal accelerations of the vehicle. It can move in the
lateral plane and at the same time, it has the ability to tilt
around its lateral axis with a maximum angle of 13.5 degrees
and around the longitudinal axis with a maximum angle of
10 degrees. Four linear actuators are used to control the
movements in both directions. The second dynamical part is
the shaker system, which has 3 DOF to simulate the roll and
pitch angular velocities and the vertical acceleration of the
vehicle. It is driven by a three drive crank mechanism (three
actuators).

B. Configuration 2 – TRAFFIS-Portable
The name of the second generated variant is “TRAFFIS-

Portable”. This driving simulator variant is a stripped-down
version of the TRAFFIS-Full variant, which is based on an
application scenario. The main objectives of the TRAFFIS-
Portable variant are traffic safety training, as well as
illustrating the bene-fits of ADAS functions. The traffic
safety trainings typically take place on site at logistic
agencies. Therefore, a portable driving simulator variant with
a simple motion platform was needed. Fig. 20 shows the
TRAFFIS- Portable variant.

Phase 2 – System Components Identification

Phase 4 – Solution Elements Deployment

Phase 3 – Configuration Mechanism Development and
Phase 5 – Driving Simulator Variant Generation

15

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 20. The TRAFFIS-Portable variant.

C. Configuration 3 – TRAFFIS-Light
The name of the third generated variant is “TRAFFIS-

Light”. This variant has the simplest structure and contains
the smallest number of ADAS reconfigurable driving
simulator components. This variant is based on an
application scenario. The main objective of the TRAFFIS-
Light variant is testing the main HCM algorithms in the
laboratory in a SiL simulation environment. The generated
setup is a PC-based simulator with a simple vehicle model
and a visualization system. Fig. 21 shows the TRAFFIS-
Light variant.

Figure 21. The TRAFFIS-Light variant.

VIII. CONCLUSION AND OUTLOOK
Driving simulators have been used successfully for

decades in different application fields. They vary in their
structure, fidelity, complexity and cost from low-level
driving simulators to high-level driving simulators.
Nowadays, driving simulators are usually developed
individually by suppliers and they are developed with a fixed
structure to fulfil a specific task. Nevertheless, using a
driving simulator in an application field, such as ADAS
development, requires several variants of a driving simulator.
These variants differ in their structure, in the used solution
elements and in the level of detail of the entire models.
Therefore, there is a need to develop a reconfigurable driving
simulator, which allows its operator to easily create different
variants without in-depth expertise in the system structure
and without the help of the driving simulator’s manufacturer.

Driving simulators are complex, interdisciplinary
mechatronic systems. Therefore, the development of a
reconfigurable driving simulator is a challenge. During the

problem analysis, this challenge was analysed, the
reconfigurable driving simulator term was de-fined and the
essential requirements of the design framework were
identified.

The extensive analysis of the state of the art has shown
an existing method for the selection of the driving simulator
and previous approaches towards developing reconfigurable
driving simulators. The method named “Application
Oriented Conception of Driving Simulators for the
Automotive Development”, developed by Negele, allows
automotive engineers to formulate the requirements and
specifications of a driving simulator for a specific
application. Further to this, many driving simulators were
investigated, but only seven of them could be identified as
possible previous approaches towards developing a
reconfigurable driving simulator. The seven identified
driving simulators were classified into four categories: low-
level, mid-level driving simulators, high-level, and multi-
level driving simulators. The investigation of the existing
methods and driving simulators has shown that there is no
existing method or a developed driving simulator to date
which covers all the design framework requirements.
Therefore, a need for action was identified.

In order to solve the challenge of developing a
reconfigurable driving simulator, a design framework for
developing a reconfigurable driving simulator was developed
to meet the defined requirements and to fulfil the need for
action. The design framework consists mainly of the
procedure model and the configuration tool.

The design framework has been validated with the help
of a validation example. The validation example was the
development of ADAS reconfigurable driving simulators.
They are task-specific driving simulators, which are used for
the testing and training of ADAS. During the validation,
three variants of the reconfigurable driving simulator were
successfully developed.

This paper described a modified procedure model
comparing with [1]. Moreover, it showed a more detailed
analysis of the state of the art, and it presented three
validation examples of different driving simulators variants.

In summary, the developed design framework for
developing a task-specific reconfigurable driving simulator is
a comprehensive framework, which supports the driving
simulator developers in their development of reconfigurable
driving simulators. Moreover, it allows the driving simulator
operators to easily create task-specific driving simulator
variants.

Added value: In order to show the added value of using
the design framework, two driving simulators variants:
TRAFFIS-Portable and TRAFFIS-Light were developed
individually. Each one of them has its fixed structure, certain
software and hardware components. Furthermore, the
interfaces between the different components were done
manually. The development duration of the TRAFFIS-
Portable variant was about four work months and of the
TRAFFIS-Light was about three work months. By using the
design framework the development duration of each was
only two work weeks. That shows the benefits of using the
design framework from the effort and cost points of view.

16

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Outlook: The developed design framework for
developing a reconfigurable driving simulator has considered
the driving simulator as a mechatronic system. The
procedure model and the configuration tool have been kept
general, in order to be applicable for other mechatronic
systems. The usage of the developed design framework for
other mechatronic systems still has to be investigated. For
example, in the plant engineering and construction field,
most of the components are standard, e.g., conveyers,
actuators, sensors, etc., as well as a customised components,
e.g., controllers, robots, etc. This design framework can be
easily adapted in order to configure customer-oriented plant
solutions. These plant solutions are variants consisting of
standard and customised components in a desired
engineering design.

ACKNOWLEDGMENT

This work, as part of the project TRAFFIS (German
acronym for “Test and Training Environment for Advanced
Driver Assistance Systems”), which is funded by European
Union “ERDF: European Regional Development Fund” and
the Ministry of Economy, Energy, Industry, Trade and Craft
of North Rhine Westphalia – Germany, within the “Ziel2”
program.

We thank our project partner dSPACE for providing
detailed vehicle and traffic models, as well as specific HiL-
simulation hardware. We thank our project partner Varroc
Lighting Systems GmbH for providing a head light control
module for adaptive bending lights.

REFERENCES
[1] B. Hassan and J. Gausemeier, “Concept for a task–specific

reconfigurable driving simulator,” in Proc. International
Conference on Advances in System Simulation (SIMUL
2013), IARIA, pp. 40-46, 2013.

[2] T. Hummel, M. Kühn, J. Bende, and A. Lang “Advanced
Driver Assistance Systems – An investigation of their
potential safety benefits based on an analysis of insurance
claims in Germany,” German Insurance Association –
Insurers Accident Research, Research Report FS 03, Berlin,
2011.

[3] O. Gietelink, J. Ploeg, B. De Schutter, and M. Verhaegen,
“Development of Advanced Driver Assistance Systems with
Vehicle Hardware-in-the-Loop Simulations,” The vehicle
system dynamics, July 2006, volume 44, issue 7, pp. 569–
590, 2006.

[4] M. Meywerk, “CAE-Methoden in der Fahrzeugtechnik,”
Springer-Verlag, Berlin, 2007.

[5] J. Gausemeier, P. Ebbesmeyer, and F. Kallmeyer,
“Produktinnovation – Strategische Planung und Entwicklung
der Produkte von Morgen,” Carl Hanser Verlag München,
2011.

[6] J. Negele, “Anwendungsgerechte Konzipierung von
Fahrsimulatoren für die Fahrzeugentwicklung,” Ph.D. thesis,
Faculty of Mechanical Engineering, 2007, Technische
Universität München, Germany.

[7] S. Espié, E. Follin, G. Gallée, and D. Ganieux, “Automatic
Road Networks Generation Dedicated to Night-Time Driving
Simulation,” in Proc. Driving Simulation Conference North
America, 8.-10. October 2003, Dearborn, Michigan – ISSN
1546-5071.

[8] G. Weinberg and B. Harsham, “Developing a Low-Cost
Driving Simulator for the Evaluation of In-Vehicle

Technologies,” in Proc. the First International Conference on
Automotive User Interfaces and Interactive Vehicular
Applications (AutomotiveUI 2009), September 21-22 2009,
Essen, Germany.

[9] H. Jamson, “Cross-Platform Validation Issues,” In: D. Fisher,
J. Caird, M. Rizzo, J. Lee (Eds.): Handbook of Driving
Simulation for Engineering, Medicine, and Psychology. CRC
Press Taylor & Francis Group, USA, 2011, pp. 12.1-12.13 –
ISBN 978-1-4200-6100-0.

[10] F. Filippo, A. Stork, H. Schmedt, and F. Bruno,“A modular
architecture for a driving simulator based on the FDMU
approach,” International Journal on Interactive Design and
Manufacturing (IJIDeM), Springer-Verlag, March 09 2013,
Paris, France, 2013, ISSN 1955-2513.

[11] D. Gue, H. Klee, and E. Radwan, “Comparison of Lateral
Control in a Reconfigurable Driving Simulator,” in Proc.
Driving Simulation Conference North America, 2003,
Dearborn, Michigan, USA.

[12] E. Zeeb, “Daimler’s new full-scale, high-dynamic driving
simulator – A technical overview,” in Proc. Driving
Simulation Conference Europe 2010, September 9-10 2010,
Paris, France, pp. 157-165 – ISBN 978-2-85782-685-9.

[13] National Advanced Driving Simulator, “Overview 2010,” The
University of Iowa – National Advanced Driving Simulator,
Iowa City, USA, 2010.

[14] I. Gräßler, “Kundenindividuelle Massenproduktion”.
Springer-Verlag Berlin, 2004 – ISBN 978-3-642-18681-3

[15] S. Kreft, J. Gausemeier, M. Grafe, and B. Hassan “Automated
generation of roadways based on geographic information
systems,” ASME 2011 International Design Engineering
Technical Conferences & Computers and Information in
Engineering Conference, Washington DC, USA, 28-31 Aug.
2011.

[16] J. Gausemeier, U. Frank, J. Donoth, and S.
Kahl,“Specification technique for the description of self-
optimizing mechatronic systems,” Research In: Research in
Engineering Design, November 2009, Volume 20, Issue 4,
Springer, London, 2009, pp. 201-223 – ISSN 0934-9839.

[17] M. Vaßholz, and J. Gausemeier, “Cost-Benefit Analysis –
Requirements for the Evaluation of Self-Optimizing
Systems,” in Proc. 1st Joint International Symposium on
System Integrated Intelligence 2012 – New Challenges for
Product and Production Engineering, June 27-29 2012,
Hannover, Germany, 2012, pp. 14-16.

[18] G. Pahl, W. Beitz, J. Feldhusen, and K.-H. Grote,
“Konstruktionslehre – Grundlagen erfolgreicher
Produktentwicklung – Methoden und Anwendung,” Springer-
Verlag, Berlin, 7. Auflage, 2007.

[19] H. Birkhofer, “Analyse und Synthese der Funktionen
technischer Produkte,” VDI-Verlag Fortschritts-Bericht VDI-
Z, Reihe 1, Nr. 70, Düsseldorf, Germany, 1980.

[20] G. Langlotz, “Ein Beitrag zur Funktionsstrukturentwicklung
innovativer Produkte. Forschungsberichte aus dem Institut für
Rechneranwendung in Planung und Konstruktion,” RPK der
Universität Karlsruhe, Shaker Verlag, 2000.

[21] F. Zwicky, “Morphologische Forschung – Wesen und Wandel
materieller und geistiger struktureller Zusammenhänge,”
Schriftenreihe der Fritz-Zwicky-Stiftung, Band 4, Verlag
Baeschlin, Glarus, 1989 – ISBN 978-3-8135-0314-2.

[22] M. Brown, “Developing with Couchbase Server,” O'Reilly
Media, Sebastopol, California, USA, February 2013 – ISBN
978-1-4493-3116-0.

[23] C. Schmidt, “How to Make an AFS System Predictive:
ADASIS Interface Implementation,” in Proc. 7th International
Symposium on Automotive Lighting, September 25-26, 2007,
Darmstadt, Germany.

17

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

