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Abstract—Collective operations strongly affect the performance
of many MPI applications, as they involve large numbers, or
frequently all, of the processes communicating with each other.
One critical issue for the performance of collective operations
is load imbalance, which causes processes to enter collective
operations at different times. The influence of such late-arrivals
is not well understood at the moment. Earlier work showed
that even small system noise can have a tremendous effect
on the collective performance. Thus, although algorithms are
optimized for large process counts, they do not seem to tolerate
noise or consider delay of involved processes and even a small
perturbation from a single process can already have a negative
effect on the overall collective execution. In this work, we show
a first detailed study about the effect of late arrivals onto
the collective performance in MPI. For the evaluation a new,
specialized benchmark was designed and a new metric, which
we call delay overlap benefit, was used. Our results show that
there is already some potential tolerance to late arrivals for the
most common collective operations - namely barrier, broadcast,
allreduce and alltoall - but there is also a lot of room for future
optimizations.

Keywords–collectives; late-arrivals; benchmarking; MPI collec-
tive operations

I. INTRODUCTION

Collective operations strongly affect the performance of
many Message Passing Interface (MPI) applications, as they
involve large number, usually all, of processes communicating
with each other. One critical issue for the performance of
collective operations is load imbalance, which causes processes
to enter collective operations at different times. The influence
of such delayed processes is not well understood at the
moment. The results in this paper extend our initial work [1] on
this topic. Earlier studies showed that even small system noise
can have a tremendous effect on the collective performance
[2] [3]. So, though algorithms are optimized for large process
counts [4], they do not seem to tolerate noise or consider delay
of involved processes and thus even a small perturbation from a
single process can already have a negative effect on the overall
collective execution.

The MPI 3.0 standard introduced non-blocking collective
operations, which give the opportunity to speed up applications
by allowing overlap of communication with computation [5],
reducing the synchronisation costs of delayed processes as well
as the effects of system noise. Many MPI programs are written

using non-blocking point-to-point communication operations
and application developers are familiar with managing this
process using request and status objects. Extending this to
include collectives allows programmers to straightforwardly
improve application scalability.

In contrast to the already existing blocking collectives, the
non-blocking counterparts require the MPI implementations to
progress the communication task in parallel to computations.
This is a non-trivial task, even if the network hardware
provides support for offloading network operations from the
CPU, e.g., message buffers may have to be refilled for large
messages or more complex collective operations need multiple
communication steps. The Cray XE6 and XC30 platforms
feature a special “asynchronous process engine” for this, which
uses spare hyperthreads (XC30) or dedicated CPU cores (XE6)
for the required operations [6].

This work analyses and emphasizes the effect of late arrivals
on collective operation in MPI for large number of processes.
Therefore, a benchmark and metric for evaluation and de-
tection of effects caused by late arrivals are introduced. The
obtained results show the tolerance of state of the arty MPI
collective operations used in the latests Cray XC30 and XC40
systems and may point to potential for improving performance
by solving the issue of late arrivals in the future.

This work is structured as follows. Section III describes the
testing methodology and the micro benchmark suite, which we
designed specifically to study the impact of late arrivals, i.e.,
delay on collective performance. At the begin of Section IV,
we define a metric to quantify the amount of tolerated delay.
Then, the results for different application relevant collective
operations are presented and evaluated on basis of absolute
times as well as the delay overlap metric.

II. BACKGROUND

Since long time, message passing is the standard when
it comes to the programming of high performance comput-
ing (HPC) applications on distributed memory systems. Since
its beginnings many different benchmarks have been developed
to measure the performance of the underlying hardware, or
to test the efficiency of the MPI library implementation. The
most well known of them are the OSU Micro-Benchmarks,
Ohio MicroBenchmark suite, Intel MPI Benchmarks and the
Effective Bandwidth (b eff) Benchmark [7]. All of these
benchmarks test bandwidth and latency of the various MPI
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communication functions for different number of processes
and data size. These benchmarks assume that communication
happens in a perfect environment and all operations are well
synchronized. While this allows to figure out the best per-
formance reachable with the various MPI calls for the used
hardware and MPI library, it does not represent the majority
of real world applications.

At first, real world applications are influenced by system
noise. So, compute nodes run services in parallel to the ap-
plication, as for instance, time synchronization or node health
checker, which interrupt the execution of the application. Also,
there are shared resources like I/O or the network itself, which
are used by other applications running at the same time.
This noise can have a tremendous effect on the collective
performance [2].

A second point, which is not taken into account by existing
benchmarks are load imbalances inside the application. These
load imbalances lead to different entering times of different
processes at communication points. So called late arrivals will
cause other processes to wait on them. The more processes
are involved in the communication the more this becomes a
problem, as equal load distribution becomes more complicated
and the number of processes, which may have to wait on a
single late arrival, increases.

Algorithms implementing collective operations use different
strategies to optimize the network use and achieve the best
possible performance [4]. Common technique here are tree
based communication structures and ring sends to match the
underlying network hardware on the one hand, as well as
to reduce the number of send messages or reduce the band-
width requirements on the other hand. Late arrivals in these
communication schemes will affect the performance badly at
this point due to the internal communication dependencies.
Though there is potential for optimizations, e.g., deferring the
dependence to communicate with a late arrival to the end
of the communication scheme inside the collective, can hide
some of the delay from this process. However, not much is
known about the effects of the entering time on MPI collective
performance at the moment; to our knowledge there is no
benchmark specific on this topic so far.

III. METHODOLOGY AND BENCHMARK DESCRIPTION

To study MPI collective operations with respect to late
arrivals, a micro benchmark suite was designed. The central
point for the analysis therein is a global clock. The global
clock is chosen to be the one of process with MPI rank 0. To
obtain this global clock the micro benchmark suite determines
the clock offsets between process zero and all other processes.
Based on the global time, the benchmark performs then the
following tasks for a collective benchmark:
• Measures start and end times of all involved MPI pro-

cesses.
• Determines earliest start and latest end time over all

involved MPI processes.
Each benchmark is run with different number of processes

and if the collective exchanges data, different data sizes.
Initially, a warm-up for the network, CPUs, etc. is performed

running the benchmark several times before the real measure-
ment is started. Then, the times for the real benchmark runs
are recorded.

The design of the benchmark suite allows for easy ex-
tendibility and addition of new benchmarks. Table III lists all
currently implemented MPI collective benchmarks. Within this
work, results for blocking and non-blocking barrier, allreduce
and alltoall operations are reported.

Table I. LIST OF CURRENTLY IMPLEMENTED MPI COLLECTIVE
BENCHMARKS.

benchmark blocking non-blocking

barrier x x
bcast x x
reduce x x
allreduce x x
alltoall x x

A. Clock offset determination

The local clocks of different processors across a distributed
system report different times as they are not perfectly syn-
chronized. They may even run at slightly different speeds [8]
[9], which is not taken into account by the benchmark suite
at the moment. This simplification is acceptable because the
benchmarks run only for a relatively short time. Nevertheless,
a verification step validating this assumption is performed at
the end of the benchmark. It shows that there is no significant
change in the time differences over the benchmark runs.

Hence, for the comparison of the times from the different
clocks in the benchmark, the error between the clocks has to
be taken into account. For this purpose, a simple linear ap-
proximation model is used [10]. Because of the short runtime
only the clock offset σ—defined as the constant difference
between the locally measured reference time t and the remote
time t′—is of interest:

t′ = t+ σ . (1)

The offset is determined at the start of the benchmark and
checked at its end.

A modified ping pong experiment is used to determine the
clock offset following Cristian’s algorithm [11]: A root process
sends a request to another process after determining his local
clock value t0. The other process answers with his current
local time t′r and the root process recognizes the time t1 after
receiving the response. We improve the accuracy by adding a
second timer t2 directly after taking t1 allowing to determine
the timer delay ∆, which is the time required to read out the
clock itself. From this experiment the ping pong latency λp
and timer delay ∆ are obtained, see Figure 1.

To obtain the clock offset σ between local clock t and
remote clock t′ defined in (1), both messages in the ping-pong
are assumed to have the same message latency. In this case,
the remote time t′r is at the mid of the ping pong. The clock
offset is then given by

σ = t′r − t0 − (λp + ∆)/2 , (2)

49

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



∆ λp ∆ ∆

t0 t1 t2ping po
ng

∆ ∆ ∆ ∆

t′0 t′r t′1 t′2

Figure 1. Modified ping pong experiment to determine ping pong latency λp,
timer delay ∆ and clock offset on the basis of the remote time t′r , which is
assumed to be taken at the mid of the ping pong.

where the timer delay ∆ is obtained via

∆ = t2 − t1 . (3)

The accuracy of the obtained clock offset is increased by using
the statistical value over 100 measurements.

To verify the correctness and to obtain an estimate for the
error in the obtained clock offsets intra node times can be
compared, which should not vary much. As can be seen in
Table II, the clock offsets between rank 0 and all processes
residing on one node are the same with a standard deviation
of not more than ±2 µs. In contrast, the clocks of different
nodes vary by more than 10 ms between each other.

Table II. DETERMINED AVERAGE CLOCK OFFSET σ̄ AND STANDARD
DEVIATION σσ FOR A BENCHMARK RUN WITH 12 PROCESSES AND 4

PROCESSES PER NODE BASED ON A SET OF 100 MEASUREMENTS.
(RESULTS OBTAINED ON HERMIT SYSTEM AT HLRS, SEE SECTION IV)

rank σ̄ [s] σσ [s]

0 +0.000000 0.000000
1 +0.000000 0.000000
2 +0.000000 0.000000
3 +0.000000 0.000000
4 −0.017258 0.000002
5 −0.017258 0.000001
6 −0.017258 0.000001
7 −0.017258 0.000002
8 −0.011140 0.000002
9 −0.011140 0.000002
10 −0.011140 0.000002
11 −0.011140 0.000002

B. Initial synchronization
A synchronization of all processes is done at the beginning

of each benchmark run. Two different synchronization methods
are available: One using MPI barrier, and another using clock
based synchronization [12]. The interface and implementation
of the synchronization function already includes the applica-
tion of a delay time, which we will describe in more detail in
Section III-D.

a) Barrier based synchronization: The barrier based syn-
chronization makes use of the MPI_Barrier to synchronize
processes as shown in listing 1. The barrier based synchro-
nization may not be perfect as can be seen from the trace
in Figure 2 where the processes finish the barrier at slightly
different times. The time difference between the processes at

the exit of the barrier is there in the order of 4 µs for 32
processes over two nodes of hermit. The observed exit time
pattern there shows the behaviour of a tree algorithm [13].

One idea to improve the barrier based synchronization is
to measuring the time differences at its exit and to improve
the sync using delays to compensate them afterwards. This
succeeds only if the barrier algorithm works always in the
same way, producing the same exit time pattern. But, testing
the compensation approach with a delay granularity of 1 µs,
resulted in even worse synchronization.

double synchronizeViaBarrier(MPI_Comm comm,
double delaytime) {

MPI_Barrier(comm);
double r = delay(delaytime);
return r;

}

Listing 1: Implementation of barrier based synchronisation.

(a)

(b)

Figure 2. Time line trace images of synchronization barrier (red) before actual
benchmark (orange) separated by timer calls (blue). Traces were obtained with
Score-P and Vampir for (a) 32 PEs on 2 nodes of Hornet (Cray XE6) and (b)
48 PEs on 2 nodes of Hazel Hen (Cray XC40).

b) Clock based synchronisation: The clock based syn-
chronisation allows a very precise time synchronization of
events across processes [12]. It uses a global clock and local
busy waiting until a defined start time point. The start time
point is exchanged beforehand between all processes removing
the dependence on sending messages over the network for
the actual synchronisation step. Therefore, it is not affected
by interconnect latencies, which may vary due to network
contention. The accuracy of this method is limited by two
things:
• the frequency and duration of clock read outs, which are

required to monitor the current time
• the accuracy of the clock synchronisation, which is

essential to define the global synchronisation time point.
With the current implementation of the clock based

synchronisation in listing 2, using internally the POSIX
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gettimeofday for the timer(), the quality of the syn-
chronization is already much better as the latest Barrier based
synchronization front on Cray XC40 as can be seen in Figure 3.

double synchronizeViaClock(MPI_Comm comm,
double delaytime) {

int syncRoot = 0;
double synctime =

0.01 - clockOffsetsAvg[comm_rank];
double endtime =

synctime + delaytime + timer();
MPI_Bcast(&endtime, 1,

MPI_DOUBLE,
syncRoot,
comm);

double r = timer() - endtime;
while(r < 0) {

r = timer() - endtime;
}
return r;

}

Listing 2: Implementation of clock based synchronisation.

Figure 3. Time line trace image comparing the clock based (blue) with MPI
barrier (red) synchronization before actual benchmark (orange). Traces were
obtained with Score-P and Vampir for 24 PEs on 1 node of Hazel Hen (Cray
XC40).

C. Collected data
For each measurement the process id as well as its start

and end time are stored. The results can be output as ASCII
text or in binary format using exchangeable data representation
(XDR).

In the binary format time values are stored as double
precision floating point values, which has 53 significant bits,
corresponding to 15 decimal digits, which is more than suffi-
cient for our purpose, as we collect times with no more than
nano second resolution over a time frame of several minutes.
The stored times are times corrected on the basis of the initially
collected clock offsets.

If not mentioned otherwise explicitly, global times for the
collective operations are reported, which is the time between
the start time of the first process entering and the end time of
the last process finishing the collective.

D. Delaying of single process

Load imbalances in programs cause some processes to enter
collectives later than the rest. To study the influence of such
late-arrivals on the overall collective time, the benchmark suite
allows to delay processes by a given amount of time, see
Figure 4.

The delay is implemented differently for the different syn-
chronization methods:

For the barrier based synchronisation the delay is imple-
mented indirectly by a separate delay function. The delay
function busy loops for the specified time on the bases of the
POSIX gettimeofday function, providing a microsecond
accuracy.

The clock based synchronisation implements the delay di-
rectly shifting the internal start time point by the desired delay
time. Therefore, the accuracy of the delay is the same as he
the one for the synchronisation.

delay collective

ta tb
collective

collective

Figure 4. Processes are except one synchronized at time ta and enter the
collective. The one delayed process enters the collective at time tb = ta + δ.

IV. RESULTS

In the following, the influence of different delay times
and different number of processes on the collective execution
time is studied. Within the study blocking collectives and
their non-blocking counterparts are compared side by side as
they may be implemented in different ways. Here the call of
the non-blocking MPI collectives are directly followed by an
MPI_Waitall mimicing the blocking behaviour.

Two metrics are used within the examination of the results:
The global collective time tglobal and the overlap benefit b.

Global collective time: The global collective time is defined
as the time between the earliest start time and the latest end
time of the collective operation by any process:

tglobal = max(tend)−min(tstart) . (4)

Delay overlap benefit: The overlap benefit metric gives
a measure for the potential of internal overlap of the delay
with communication in the collectives itself. The delay overlap
benefit is defined as the fraction of overlapped execution time:

b =
t0 + δ − tδ

tδ
, (5)

51

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



with t0 being the collective time when the collective is called
without any delayed processes and tδ being the collective time
when a process starts with delay δ.

A positive overlap benefit is found when there is overlap
potential within the collective operation. A value of 1 indicates
that the collective can hide a delay perfectly up to the time
required for the undelayed collective. A value of zero can be
observed when the delay just adds to the execution of a non
delayed collective call without positive or negative side effects.
A negative value means that the delay even results in additional
cost compared to a synchronized collective, which is started
after waiting delay time.

In the following, results for different collective operations
on the Hermit and Hazel Hen systems at HLRS are reported.
Hermit was a Cray XE6 system with 3552 dual-socket compute
nodes and a total of 113 664 cores, which were connected via
the Gemini 3D Torus network. Its successor Hazel Hen is a
Cray XC40 system with 7712 dual-socket compute nodes and
a total of 185 088 cores, which are connected in dragonfly
topology via the Aries interconnect. The native Cray MPI
implementations optimized for these system in combination
with the GNU compiler were used for all tests.

All benchmarks were run during normal operation mode of
the system so that other jobs on the system influenced the
process placement and network usage. Benchmark runs were
performed up to a maximum of 16 384 processes and were
grouped into jobs with the same processor count. We report
the found minimum values for the global times within 100
measurements. We use the minimum, as we are not interested
in the average behaviour of the collectives but in the best
we can get out of them on a system. This is responsible for
some outlying data points, as we cannot guarantee to catch the
best result even if multiple measurements were performed to
reduce this effect. Obtaining the accurate minimum time for an
operation under workload conditions is not always possible—
especially for the longer benchmark runs using more processes,
which get easily disturbed by other jobs.

For all measurements the MPI process with rank 0 was
delayed. Most tree based algorithms—usually using rank 0 as
tree root—should be badly affected by this choice, if they do
not switch over using another process as the tree root.

A. Barrier
The first collective studied is the barrier. As the barrier

is used for synchronization within the benchmark suite, the
understanding of this operation is essential. While the time
for MPI_Barrier is measured straightforward, the time
for MPI_Ibarrier includes the time for the corresponding
MPI_Wait.

A wide variety of different barrier algorithms exists [13].
Depending on the algorithm and the hardware support used
within the implementation, different algorithms may profit
differently. On the one hand, for example, the Central Counter
barrier may hide the delay of a late arrival easily by concept, or
the Binomial Spanning Tree Barrier could intelligently assign
the delayed process to a node, which is involved in later
communication steps. On the other hand, for example, the

Dissemination Barrier requires a ring like communication in
each step—which will not tolerate a late arrival.
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Figure 5. MPI Barrier and MPI Ibarrier global times for different delay
times on Hornet.

The results in Figure 5 show a nearly logarithmic scaling
of the blocking and non-blocking barrier operation up to
approximately 2048 processes. For higher process counts, the
behaviour seems to have a linear scaling. But we note here
that a single cabinet of the Hermit system has 96 nodes with a
total of 3072 cores. Jobs exceeding this number of processes
are more likely to be spread around the system and therefore
affected by network contention caused by other applications.
So, finding the minimum time for the barrier operation with
our benchmark may not have provided the correct result in this
case.

The delay benefit as defined in (5) of the MPI_Barrier
and MPI_Ibarrier for different delay times, where the
delayed rank was always rank 0, is shown in Figure 6. As
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Figure 6. Delay benefit of the MPI_Barrier and MPI_Ibarrier as
defined in (5) for different delay times on Hornet.

the benefit is mostly positive the implemented blocking and
non-blocking barrier algorithm already seem to tolerate smaller
delays. The non-blocking version MPI_Ibarrier seems to
perform slightly better than the blocking variant here. Figure 6
shows an change in behaviour at 1024 processes: While at the
beginning smaller delays have a higher overlap benefit, for
more processes a larger benefit can be seen for longer delays.
It is unclear if at this point an algorithm switch occurs within
the MPI implementation.

B. Allreduce

An important collective to aggregate data of multiple
processes into a single value is the allreduce operation. It
may be used to determine, e.g., global energies in molec-
ular simulations, time step lengths in finite element based
programs or residues in linear solvers. While the time for
MPI_Allreduce is measured straightforward, the time for
MPI_Iallreduce includes the time for the corresponding
MPI_Wait.

Again, the influence of delaying the process with rank 0
for different number of processes is studied. Results for 8 B
messages and a delay of 50 µs are presented in Figure 7 for
Hornet and in Figure 9 for Hazel Hen.

For Hornet, we see perfect logarithmic scaling up to
1024 processes, adding less than 5 µs when doubling the
number of processes. For larger process counts the scaling
is worse and adds up to 100 µs when doubling the number of
processes. The behaviour for larger message sizes is similar.
It is unclear how the synchronization barrier influences the
behaviour, as we showed earlier that the processes do not
exit from it perfectly at the same time. Also, the barrier itself
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Figure 7. Hornet: MPI_Allreduce (circles) and MPI_Iallreduce
(squares) global times for 8 B message size and a delay time of 50 µs (blue)
together with perfectly synchronized reference data (black).
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Figure 8. Hornet: Delay benefit of the allreduce collective for different
message sizes at a delay time of 50 µs).

does not scale well for larger process counts according to our
benchmark results, too, see Figures 2 and 5.

We have to mention a data outlier for the non-delayed
Allreduce/Iallreduce benchmark runs with 4096 processes—
which were grouped within one job. The job collecting these
data was likely disturbed by other jobs and seems not to have
been able to find an accurate value for the minimum collective
time.
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The delay benefit of the blocking and non-blocking allreduce
operations presented in Figure 8 shows slight overlap for
smaller number of processes. For more than 1024 processors
the delay has a negative effect onto the overall performance.
The message size does not have an influence on the delay
benefit for the chosen values. The peak for 4096 processes
is caused by too high values for the perfectly synchronized
collectives time t0.
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Figure 9. Hazel Hen: MPI_Allreduce (circles) and MPI_Iallreduce
(squares) global times for 8 B message size and a delay time of 50 µs (blue)
together with perfectly synchronized reference data (black).

The results for Hazel Hen shown good scaling up to over
1000 PEs in Figure 9. The delay benefit is positive in nearly
all cases as can be seen from Figure 10.

C. Alltoall

The alltoall operation is another important collective pattern
used in many parallel codes to distribute data in an application.
It is the most time consuming collective operation but it may
benefit a lot from intelligent algorithms, taking into account
delayed processes.

The same measurements as that for the allreduce operation
were performed. Results in Figure 11 show a nearly perfect
linear scaling for the alltoall algorithm up to the maximum of
16 384 processes used during the benchmarks on Hornet. The
message size has a strong influence on the execution time of
the alltoall collective but does not affect the overall scaling
behaviour.

The results for the delay benefit for the alltoall collective
on Hornet, presented in Figure 12, show zero effect for small
messages and an inconclusive behaviour for larger messages,
which may be caused by the fact, that our benchmark does not
find the minimum time as already mentioned before. So, we
find slight decreases as well as huge gains in performance.
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Figure 10. Hazel Hen: Delay benefit of the allreduce collective for different
message sizes at a delay time of 50 µs).
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Figure 11. Hornet: MPI_Alltoall (circles) and MPI_Ialltoall
(squares) global times for 8 B message size and a delay time of 50 µs (blue)
together with perfectly synchronized reference data (black).

The allreduce results on Hazel Hen show that the delay
benefit is nearly zero for small messages there as well. What
is interesting here, is the fact that the delay benefit for
the blocking versions is better than for their non blocking
counterparts, as well as the execution times.
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Figure 13. Hazel Hen: MPI_Alltoall (circles) and MPI_Ialltoall
(squares) global times for 8 B message size and a delay time of 50 µs (blue)
together with perfectly synchronized reference data (black).

D. Broadcast

The broadcast (bcast) operation is another collective pattern
found frequently for any kind of initial or intermediate data
distribution. For example, it is used to distribute configuration
parameters from an input file, which should be not opened
and read by all processes at the same time on today’s HPC file
systems. It is also an operation, which is used within optimized
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Figure 14. Hazel Hen: Delay benefit for the alltoall collective for different
message sizes at a delay time of 50 µs.

versions of more complicated collective operations as part of
the underlying communication patterns and algorithms.

The same measurements as before were performed. Results
from the Hazel Hen system are presented in Figure 15.
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Figure 15. Hazel Hen: MPI_Bcast (circles) and MPI_Ibcast (squares)
global times for 8 B message size and a delay time of 50 µs (blue) together
with perfectly synchronized reference data (black).

The results for the delay benefit for the bcast collective,
presented in Figure 16, show zero effect for small messages
and an inconclusive behaviour for larger messages, which may
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be caused by the fact that our benchmark does not find the
minimum time as already mentioned before. So we find slight
decreases as well as huge gains in performance.
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Figure 16. Hazel Hen: Delay benefit for the bcast collective for different
message sizes at a delay time of 50 µs.

V. CONCLUSION AND OUTLOOK

In this paper, we have evaluated the impact of late arrivals,
i.e., a delayed process, on the performance of the collective
operations MPI_(I)Barrier, MPI_(I)Allreduce and
MPI_(I)Alltoall on Cray XE6 and MPI_(I)Bcast on
Cray XC40.

For the detail study we introduce a new benchmark, which
allows to delay single MPI process out of a synchronized set.
For the process synchronisation we show the effectiveness of
a simple Barrier and compare it to the approach of a time
based synchronisation scheme. Our findings show that the time
based synchronization has better potential to achieve a flat
synchronization then a simple barrier, which we find to show
the structure of a tree based implementation.

For the evaluation of the results we make use of the global
time and the newly defined delay overlap benefit metric. The
first specifies the time span from the first process entering
the collective to the finishing time of the last process leaving
the collective. The overlap benefit metric is the fraction of
delay time, which can be overlapped by the collective when
comparing the collective times of a collective under a late
arrival process with a collective executed starting with well
synchronized processes.

The results show that blocking and non-blocking col-
lective barriers can tolerate small delays, i.e., hide a part
of the load imbalance within an application. The collec-
tives MPI_(I)Allreduce tolerate small delays for up to
1024 processes but is badly affected for larger processes

counts. The MPI_(I)Alltoall operations tolerate small
delays well for up to 1024 processes and the delays have
no negative effects for large processes counts. The alltoall
operation can profit a lot in some cases for larger message
sizes, while we see no negative effects for small messages. The
broadcast operation on the Cray XC40 scales well, but shows
an inconclusive behaviour when it comes to the tolerance of
late arrivals.

We have shown that the overlap availability of non-blocking
collectives and benefit of the overlapping depends on the type
of the collective operations, size of the communicator and the
amount of data to be communicated.

This work shows that the state of the art implementation of
the relatively new MPI 3.0 non-blocking collective specifica-
tion in Cray MPI is mostly head up or better than their blocking
counterparts. We expect new algorithms and hardware with
better overlapping capabilities and communication offloading
support in the future. Our preliminary work in this area shows
already some potential to hide small delays of single processes
for barrier, allreduce and alltoall operations. The techniques
for overlapping communication may also improve collective
operations in the case of system noise.

Future studies about other important collectives are planed
as well as detailed analysis of delaying other processes than
rank 0. Studies are planed to evaluate other MPI library im-
plementations. Here open source implementations can provide
insights into the algorithms as well as the cross over points
between them for different message sizes and process counts,
allowing better understanding of the results.
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