
Data Persistency for Fault-Tolerance Using MPI
Semantics

José Gracia,∗ Nico Struckmann,∗ Julian Rilli,†‡ Rainer Keller‡
∗High Performance Computing Center Stuttgart (HLRS), University of Stuttgart, Germany

†University of Tübingen, Tübingen, Germany
‡University of Applied Sciences, HfT Stuttgart, Germany

Email: gracia@hlrs.de, struckmann@hlrs.de, julian@rilli.eu, rainer.keller@hft-stuttgart.de

Abstract—As the size and complexity of high-performance com-
puting hardware, as well as applications increase, the likelihood of
a hardware failure during the execution time of large distributed
applications is no longer negligible. On the other hand, frequent
checkpointing of full application state or even full compute node
memory is prohibitively expensive. Thus, application-level check-
pointing of only indispensable data and application state is the
only viable option to increase an application’s resiliency against
faults. Existing application-level checkpointing approaches, how-
ever, require the user to learn new programming interfaces, etc. In
this paper we present an approach to persist data and application
state, as for instance messages transfered between compute nodes,
which is seamlessly integrated into Message Passing Interface,
i.e., the de-facto standard for distributed parallel computing in
high-performance computing. The basic idea consists in allowing
the user to mark a given communicator as having special, i.e.,
persistent, meaning. All communication through this persistent
communicator is stored transparently by the system and available
for application restart even after a failure. The concept is
demonstrated by prototypical implementation of the proposed
interface.

Keywords–Message Passing Interface; MPI; fault-tolerance;
application-level checkpointing; data persistency

I. INTRODUCTION

This paper builds on top of work presented in [1].

Numerical simulation on high-performance computing
(HPC) systems is an established methodology in a wide
range of fields not only in traditional computational sciences
as physics, chemistry, astrophysics, but also becoming more
and more important in biology, economic sciences, and even
humanities. The total execution time of an application is
rapidly approaching the mean time between failures of large
HPC systems. Commonly, only a small part of the system
will be affected by the hardware fault, but usually all of the
application will crash. Application developers can therefore no
longer ignore system faults and need to take fault-tolerance and
application resiliency into account as part of the application
logic. A necessary step is to store intermediate result as well as
the current internal state of the application to allow restarting
the application at a later time, which is commonly referred to
as checkpointing.

In practice, however, the sheer size of simulation data and
the limited I/O bandwidth prohibit dumping checkpoints of the
full application state or even full compute node memory at high
frequency [2]. Checkpointing frequency is therefore chosen to
satisfy requirements of the scientific analysis of the simulation

data without any safety net for system failure. It is noted, how-
ever, that most computational experiments, i.e., simulations,
are by definition sufficiently robust to allow drawing similar
or equal scientific conclusions if initial or boundary conditions
– and by extension intermediate results – are changed slightly
within use-case specific limits. Application-level checkpointing
of suitably aggregated intermediate results is therefore being
considered as a promising technique to improve the resiliency
of scientific applications at relatively low cost of resources.
The application developer or end user, purposefully discards
most of the intermediate data and checkpoints only those
data which are absolutely essential for later reconstruction
of a sane simulation state. An example would be to store
mean values of given quantities, other suitable higher-order
moments of the distribution of the quantities, or leading terms
of a suitable expansions. Note however, that the nature of
the reconstruction data is fully application and even use-case
specific. The application at its restart will use this data to
reconstruct the state in the part of the application that was
lost to the failure, while keeping the full, precise data in the
reset of system which was not affected by the fault.

Previous work in [1] suggests a method for persisting
intermediate results and internal application state. The method
uses idioms and an interface borrowed from the Message
Passing Interface (MPI) [3], which is the most widely used
programming model for distributed parallel computing in HPC.
This allows users of MPI to integrate our method seamlessly
into existing applications at minimal development cost.

This paper is organised into a brief overview of related
work in Section II, followed by brief review of our approach
to data persistency through MPI semantics in Section III,
the demonstration and evaluation of the concepts through a
prototypical implementation in Section IV and Section V,
respectively, and finally, a short summary of this work in
Section VI.

II. RELATED WORK

SafetyNet [4] is an example of checkpointing at the hard-
ware level. It keeps multiple, globally consistent checkpoints
of the state of a shared memory multiprocessor. This approach
has the benefit of lower overhead of runtime but it as additional
power and monetary cost. Right now, this approach provides
checkpointing solution for a single node only.

In the kernel-level approach, the operating system is re-
sponsible for checkpointing, which is done in the kernel space

58

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

context. It uses internal kernel information to capture the pro-
cess state and further important information required for a pro-
cess restart. Berkeley Lab Checkpoint/Restart (BLCR) [5][6]
and Checkpoint/Restore In Userspace (CRIU) [7] are two
examples of this class. This approach provides a transparent
solution for checkpointing but files generated by this approach
are large and moving checkpoint files to stable storage takes
more time. Another problem associated with this approach
is that it requires considerable maintenance and development
effort as internals of process state, etc. vary greatly from one
OS to another and are prone to change over time.

Checkpointing at the user-level solves the problem of
high maintenance effort due to kernel diversity. In this case,
checkpointing is done in user-space. All relevant system calls
are trapped to track the state of a given process. However, due
to the overhead of intercepting system calls it takes more time
to complete. Similar to kernel-level, user-level checkpointing
needs to save complete process state. So, this approach also
suffers from the problem of large file size.

In contrast to the schemes mentioned above, which are
transparent to user, application-level checkpointing requires
explicit user action. The application developer provides hints
to the checkpointing framework. By means of these hints,
additional checkpoint code is added to the application. This
additional code saves required information and restarts the
application in case of failure. Application level checkpoint-
ing normally creates smaller size checkpoints as they have
knowledge about program state.

One such application-level checkpointing scheme is the
library Scalable Checkpoint/Restart (SCR) [8][9]. SCR stores
checkpoints temporarily in the memory of neighboring com-
pute nodes before writing them to stable storage. It also
includes a kind of scheduler which determines the exact
checkpointing time according to system health, resource utili-
sation and contention, and external triggers. SCR is designed
to interoperate with MPI. The application developer uses
SCR functions to acquire a special file-like handle. Any data
written through this SCR handle is replicated in memory
across network neighbours for redundancy and checkpointed
to storage transparently in the background at a suitable point
in time. The drawback is that application developers have to
learn yet another programming interface and add additional,
possibly complex, code which is not related to their numerical
algorithm. Nonetheless, SCR is a powerful scalable check-
pointing tool and thus used in the backend of our prototypical
implementation as described in later sections of this work.

Previous extensions to MPI, such as FT-MPI [10] offered
the application programmer several possibilities to survive,
e.g., leave a hole in the communicator in case of process
failure. This particular MPI implementation has been adopted
in Open MPI [11]. The Message Passing Interface standard
in its current form, i.e., MPI-3 [3], does not provide fault-
tolerance. Typically, if a single process of a distributed appli-
cation fails due to, for instance, catastrophic failure of the given
compute node, all other processes involved will eventually
fail as well in an unrecoverable manner. Recently, several
proposals [12][13][14] have been put forward to mitigate the
issue by allowing an application to request notification about
process failures and by providing interfaces to repair vital
MPI communicators. The application, in principle, can use this

interface to return the MPI stack to a sane state and continue
operation. However, any data held by the failed process is lost.
Notably, this includes any messages that have been in flight at
the time of the failure.

III. PERSISTENT MPI COMMUNICATION

In this paper, we present an approach that allows applica-
tion developers to persist, both, essential locally held data and
the content of essential messages between processes. Unlike
other models, we use idioms that are familiar to any MPI
developer. In fact, we add a single function which returns
a MPI communicator with special semantic meaning. Then,
the programmer continues to use familiar send and receive
MPI calls or collective operations to store data and messages
persistently or to retrieve them during failure recovery.

A. Background

In MPI, any process is uniquely identified by its rank in
a given communicator. A communicator can be thought of a
ordered set of processes. At initialisation time, MPI creates the
default communicator, MPI_COMM_WORLD, which includes all
processes of the application. New communicators can created
as subset of existing ones to allow logically grouping processes
as required by the application. Collective MPI operations,
as for instance a broadcast or scatter, take a communicator
as argument and necessarily require the participation of all
the processes of the given communicator. In addition, some
collective operation single out one processes which is identified
by its rank in the respective communicator. Also, point-to-point
communication routines take a communicator as argument. In
send operations, the target of a message is passed as rank
relative to the given communicator argument. The destination
of receive operations is given analogously.

In addition, most MPI communication routines require the
specification of the so-called tag which allows the programmer
to classify different message contents. A tag may be thought of
as a P. O. Box or similar. Finally, MPI messages are delivered
in the same order they have been issued by the sender. Any
MPI message can thus be uniquely identified by the signature
tuple (comm, src, dst, tag) and a sequence number that
orders messages with the same signature. The signature is
composed of a communicator, comm, the rank of the message
source, src, the rank of the destination, dst, and the message
tag tag.

B. Persistent communicators and proposed idioms

The basic idea of our approach is very simple. The user
marks a communicator as having a special, i.e., persistent,
semantics. Any communication issued through a persistent
communicator is stored transparently by the MPI library and
is available for application restart even after failure (see
Figure 1). In contrast to no-persistent communicators, the
message is not immediately delivered. An MPI process may
thus persist any data and application state by sending it to
itself through a persistent communicator. In case of failure
the data is simply restored by posting a receive operation on
the persistent communicator. Moreover, a process may persist
data for any other process by sending a message targeted to
the other process through a persistent communicator.

59

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Stable

Storage

P
0

P
1

P
0

P
1

Figure 1. Illustration of communication between two processes, P0 and P1,
through regular communicators (top) versus through persisten communicators
(bottom).

1 #define VALUE_TAG
2 const char mykey[] = "Run A, June 6 2015";
3 MPI_Comm persistent;
4 int value = 3;
5
6 MPI_Comm_persist(MPI_COMM_SELF, info,
7 mykey, persistent);
8
9 if (failure())

10 MPI_Recv(&value, 1, MPI_INT, rank,
11 VALUE_TAG, persistent, &status);
12 else
13 MPI_Send(&value, 1, MPI_INT, rank,
14 VALUE_TAG, persistent);

Figure 2. Simple example of data persistency

A communicator is marked as persistent by calling the rou-
tine MPI_Comm_persist, which has the following signature

int MPI_Comm_persist(MPI_Comm comm, char *key,
MPI_Info info, MPI_Comm *persistentcomm)

Here, persistentcomm is a pointer to memory, which will
hold the newly created persistent communicator. It is derived
from the existing communicator comm and will consist of the
same processes, etc. A user-provided string key shall uniquely
identify this particular application run or instance in case part
of it needs to be restarted after a fault occurred. Essentially
this serves as a kind of session key. Finally, the info object
info may hold additional information for the MPI library, as
for instance hints where to store data temporarily, or the size
of the expected data volume.

A simple example how to persist data is shown in Figure 2.
On line 6, the persistent communicator persistent is derived
from MPI_COMM_SELF which is a pre-defined communicator
consisting of just the given process. The routine failure()
shall return TRUE if this process is being restarted after a fault.
If this is not the case, the application will persistently store the
content of the variable value by sending a message to itself on
line 13. If a fault occurred the application instead will restore
the content of the variable value by receiving it from itself
on line 10.

Our approach also allows to replay or log communication
between processes in the case of faults. The programmer
simply derives persistent communicators from all relevant
communicators and then mirrors every send operation done
on a non-persistent communicators with the persistent one.
Receive operations are posted on the persistent communicator
as necessary by the failed process only. The reduce the amount
of additional code one could also allow transparent persistency.
In this case a persistent communicator would persist data and
also actually deliver data as expected from a non-transparent
one. For simplicity, we will not use this facility for the rest of
the paper and use persistent communication explicitly.

The core of a somewhat more elaborated example is shown
in Figure 3. For the sake of simplicity, we assume that the
application is executed with only two processes. This fictitious
algorithm evolves for several iterations a very large array of
data through a complex calculation compute (line 35). At
any given point in time, one can however aggregate the
data into a single value seed (line 45). In turn, seed can be
used to reconstruct the data array with sufficient accuracy by
calling init_data(seed) (line 25). The algorithm requires
to exchange boundary conditions between processes. The first
element of the local array is send to the other process, where
it replaces the last element (line 38). The system shall provide
a function failure(), which notifies fault conditions.

The state of the application is given by the iteration counter
i of the for loop on line 34. This value is persisted by sending
a message to oneself (line 50) at the end of each iteration.
The algorithm requires the persistence of the seed, again by
a message to oneself on line 49. Finally, the exchange of
boundary conditions is logged on line 42.

In case of failure, the failed process is restarted and restores
its internal state (line 22) and the aggregate (line 21) that is
used to reconstruct the data array (line 25). The same initialisa-
tion operation had been executed by the surviving process with
initial values at the original start of the application. The failed
process also retrieves the last boundary value received from
the other process (line 29). Then it enters the main loop with
the correctly restored iteration counter and resumes normal
operation in parallel to the surviving process.

IV. PROTOTYPICAL IMPLEMENTATION

In this section, we briefly outline a prototypical implemen-
tation of the proposed interface.

A. Implementation concerns

Our proposed persistent communicator semantics is rela-
tively easy to implement. As explained in Section III-A, any
given MPI message is uniquely identified by its signature and
the sequential ordering. In addition, the user has specified a
unique session key at the time of creation of the persistent
communicator. Together these are used to store any persistent
message content in a suitable stable storage. This could be for
instance the memory of a neighbor MPI process (or several for
redundancy), remote network filesystems, or any data base.
After the failure, the application is restarted with the same
session key and thus able to map messages to the state before
the fault. In our prototype, we persist messages using the SCR
library and leave the details to its automatics.

60

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1#define SIZE VERY_LARGE
2#define SESSION 1001
3
4int rank, other;
5float data[SIZE], boundary, seed=321;
6int iter = 0;
7MPI_Comm persistent, world;
8
9MPI_Init();
10world = MPI_COMM_WORLD;
11MPI_Comm_rank(world, &rank);
12if (rank==0)
13other = 1;
14else
15other = 0;
16MPI_Comm_persist(world, &info, SESSION,
17&persistent)
18
19if (failure()) {
20// retrieve seed and iter
21MPI_Recv(&seed, rank, SEEDTAG, persistent);
22MPI_Recv(&iter, rank, ITERTAG, persistent);
23}
24
25init_data(data, seed);
26
27if (failure()) {
28// retrieve boundary conditions
29MPI_Recv(data[SIZE-1], other, BNDTAG,
30persistent);
31}
32
33
34for (int i = iter; i<10, i++) {
35compute(data);
36
37boundary = data[0];
38MPI_Sendrecv(&boundary, other, BNDTAG,
39data[SIZE-1], other, BNDTAG,
40MPI_COMM_WORLD);
41// store boundary for recovery
42MPI_Send(&boundary, other, BNDTAG,
43persistent);
44
45seed = aggregate(data);
46printf("%i %i %f\n", rank, i, seed);
47
48// store state and aggregate for recovery
49MPI_Send(&seed, rank, SEEDTAG, persistent);
50MPI_Send(&i, rank, ITERTAG, persistent);
51}
52
53printf("Final: %i %f", rank, seed);
54MPI_Finalize();

Figure 3. A simple MPI program with persistency for 2 processes

1#include "scr.h"
2
3int MPI_Init(int *argc, char ***argv) {
4int scr_rc;
5
6// Regular MPI_Init stuff.
7// Assumes success so far.
8
9scr_rc = SCR_Init();
10
11if (SCR_SUCCESS != scr_rc) {
12// and error occurred,
13// delegate to OpenMPI for abort.
14return MPI_ERROR_HANDLER();
15}
16return MPI_SUCCESS;
17}
18
19int MPI_Finalize() {
20int scr_rc;
21
22// shutdown SCR first
23scr_rc = SCR_Init();
24if (SCR_SUCCESS != scr_rc) {
25// and error occurred,
26// delegate to OpenMPI for abort
27return MPI_ERROR_HANDLER();
28}
29
30// Regular MPI_Finalize stuff.
31}

Figure 4. Illustrative code for initialisation and shutdown of SCR inside the
respective MPI methods

Incoming persistent messages with the same signature, and
thus different sequence number, shall overwrite the previously
stored one. However, one could also implement a stack of
user-defined depth and store a history of messages, which are
retrieved in order of storage or in reverse. Such schemes could
be facilitated by additional parameters provided in the info
object at the time of creation of the persistent communicator.
For the sake of simplicity of our prototypical implementation,
we have chosen the first approach: incoming messages on
a persistent communicator overwrite any received previously
message with same signature.

We have implemented our prototype on top of OpenMPI
v1.10.0. OpenMPI is a very modular implementation of the
MPI standard and thus very easy to extend. We have further
used the latest version of SCR.

B. Initialisation & shutdown

Users of our persistent message logging shall not
have to invoke any method for initialisation or shutdown
other than the usual MPI interfaces, i.e., MPI_Init() and
MPI_Finalize(), respectively.

However, any application wishing to use SCR needs to
invoke the method SCR_Init() to initialise the library before
invoking any other SCR method. Further, such initialisation
of SCR needs to happen after MPI initialisation. Similarly,
SCR expects to be shut down by invocation of the method
SCR_Finalize() before invocation of MPI_Finalize().

61

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1
2// extend communicator object
3struct ompi_communicator_t {
4// Regular OpenMPI code.
5int persistFlg; // >0 if persistent
6char *key; // session key
7ompi_info_t persistInfo; // arguments
8};
9
10int MPI_Comm_persist(MPI_Comm comm,
11char *key,
12MPI_Info info,
13MPI_Comm *newcomm) {
14
15int rc;
16
17// duplicate communicator
18rc = MPI_Comm_dup(comm, newcomm);
19
20// flag as persistent and attach info
21(*(*newcomm)).persistFlg = 1;
22(*(*newcomm)).key = key;
23(*(*newcomm)).persistInfo = info;
24
25if (MPI_SUCCESS != rc) {
26// and error occurred,
27// delegate to OpenMPI for abort
28return MPI_ERROR_HANDLER();
29}
30return MPI_SUCCESS;
31}

Figure 5. Illustrative code of the method to create a communicator with
persistency semantics.

In order to hide this from the user, we have modified the
respective MPI methods to take care of SCR initialisation
and shutdown as shown schematically in Figure 4. SCR
Initialisation is done at the very end of the MPI initialisation
method; similarly, SCR shutdown is done right at the beginning
of the MPI initialisation method.

An alternative initialisation scheme, is to delay SCR
initialisation up to the point where the first communicator
is marked for persistency, i.e., the first call to the method
MPI_Comm_persist(), or even delayed further to the point
where the persistent communicator is used for the first time for
sending or receiving a message. The advantage of both these
approaches is that SCR is only initialised if persistent message
logging is actually used in the application. On the other side,
the overhead of repeatedly checking if SCR has been initialised
already is presumably non-negligible. In any case, SCR needs
to be shutdown together with MPI, as there is no other way
to infer the last usage of any persistent communicator.

C. Setting up persistent communicators and passing additional
arguments

Our proposed scheme is based on using communicators
that have been marked by the user as being special. Setting
up such a special communicator with persistent semantics is
done through the method MPI_Comm_persist(). Figure 5
shows a sketch of our implementation of this routine. In
order to designate a given communicator as persistent we have

extended the definition of OpenMPI’s internal communicator
data-structure struct ompi_communicator_t and added
the flag persistFlg. We also added a further field key to
hold the user-specified session key. The meaning of the last
additional field persistInfo will be explained a little further
down this section.

Essentially, setting up a persistent communicator is
down by first duplicating the user-provided non-persistent
communicator comm using the standard MPI functionality
MPI_Comm_dup(). Then the communicator is marked as per-
sistent by setting the flag persistFlg and storing the session
key key in the communicator object. Finally, if any of the
previous steps produced an error, the implementation delegates
to OpenMPI’s error handler, otherwise it returns successfully.

In addition, the user shall be able to pass additional
arguments or hints during setup of persistent communicators.
We have decided to follow the same approach for user-hints
as in other parts of MPI and exploit the so-called MPI_Info
objects. Basically, these info objects are a set of user-defined,
arbitrary key-values pairs which have semantic significance
only in specific context and ignore otherwise. Note that this is
also intended as a way to introduce future extensions to our
proposal. To that end the method MPI_Comm_persist() also
takes an argument info of type MPI_Info. This argument is
stored in the corresponding field of the communicator object
for later use. In principle, an advanced implementation of our
proposal might check the contents of this object at setup time;
our prototype just ignores them at this point.

D. Message logging and retrieval

Most of the programme logic required for our scheme
sits in the actual communication primitives. As our prototype
is intended only as proof-of-concept, we have implemented
our proposal only for the two main communication routines
MPI_Send() and MPI_Recv(), as shown schematically in
Figure 6. It is trivial to extend the implementation to non-
blocking communication primitives or the other communica-
tion modes such as buffered and synchronous.

The first thing the communication routines do, is check
if the communicator for this messaging request is flagged as
persistent. If it is not, processing of the message is delegated
to the regular MPI routine. If the communication takes place
on a persistent communicator, though, we construct an un-
ambiguous envelope address from the MPI message signa-
ture (comm, src, dest, tag) (which uniquely identifies
a MPI message, see Section III-A), and the user specified
session key, which is retrieved from the communicator. The
envelope can be something like a string concatenation or a
hash function. The next step consists in calculating the total
message volume from size of the given MPI datatype dtype,
which is determined by calling internal MPI services, and the
number of such data items count. Finally, we pass control to
the method persist() and unpersist(), for MPI_Send()
and MPI_Recv(), respectively, which takes care of actually
persisting and retrieving data.

Figure 7 illustrates the implementation of the routines
which are used to persist and retrieve a given message
buffer through SCR, respectively. In order to persist mes-
sages! we register a checkpoint with SCR by calling

62

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1#include "scr.h"
2
3int MPI_Send(const void *buf, \
4int count, MPI_Datatype dtype, \
5int dest, int tag, MPI_Comm comm) {
6
7if (!comm->persistentFlg) {
8// normal send request
9return _MPI_Send(buf, count, \
10dtype, dest, tag, comm);
11}
12
13// persistent send request from here
14
15// construct envelope
16src = MPI_Rank(comm);
17key = comm->key;
18env = envelope(comm, src, dest, tag, key);
19
20// calculate message size
21msize = count * _OMPI_sizeof(dtype);
22
23// persist buffer
24scr_rc = persist(buf, msize, env);
25
26if (SCR_SUCCESS != scr_rc) {
27// and error occurred,
28// delegate to OpenMPI for abort.
29return MPI_ERROR_HANDLER();
30}
31return MPI_SUCCESS;
32}
33
34int MPI_Recv(void *buf, \
35int count, MPI_Datatype dtype, \
36int src, int tag, MPI_Comm comm, \
37MPI_Status *status) {
38
39if (!comm->persistentFlg) {
40// normal receive request
41return _MPI_Recv(buf, count, \
42dtype, src, tag, comm, \
43status);
44}
45
46// persistent recv request from here
47
48// construct envelope
49dest = MPI_Rank(comm);
50key = comm->key;
51env = envelope(comm, src, dest, tag, key);
52
53// calculate message size
54msize = count * _OMPI_sizeof(dtype);
55
56// unpersist buffer
57scr_rc = unpersist(buf, msize, env);
58
59if (SCR_SUCCESS != scr_rc) {
60// and error occurred,
61// delegate to OpenMPI for abort.
62return MPI_ERROR_HANDLER();
63}
64return MPI_SUCCESS;
65}

Figure 6. Illustrative code for dealing with persistent communicators inside
MPI communication methods.

1int persist(void *buf, int msize, \
2char *env) {
3char filename[SCR_MAX_FILENAME];
4FILE *fh;
5
6// register checkpoint with SCR
7SCR_Start_checkpoint();
8
9// ask SCR for full filename and open
10SCR_Route_file(env, filename);
11fh = open(filename, "w");
12
13// hand data over to SCR
14fwrite(buf, 1, msize, fh);
15
16// disengage from SCR
17fclose(fh);
18SCR_Complete_checkpoint();
19
20return success();
21}
22
23int unpersist(void *buf, int msize, \
24char *env) {
25char filename[SCR_MAX_FILENAME];
26FILE *fh;
27
28// ask SCR for full filename and open
29SCR_Route_file(env, filename);
30fh = open(filename, "r");
31
32// retrieve message buffer and disengage
33fread(buf, 1, msize, fh);
34fclose(fh);
35
36return success();
37}

Figure 7. Illustrative code to persist communication buffers through SCR.

SCR_Start_checkpoint() at the beginning of persist().
Next, we ask SCR for a full filename path, which is con-
structed from the unique envelope string described in the
previous paragraph. All (write) operations on this file are
routed through SCR and form part of the register checkpoint.
We use this facility to store the message buffer. The final
call to SCR_Complete_checkpoint() commits all data and
initiates replication across neighbour nodes as well as storage
to disk. The routine for retrieving messages from persistent
storage, i.e., unpersist,is a bit simpler. SCR is involved only
to get the SCR filename as above. The message buffer is than
read directly via POSIX file operations without intervention
by SCR.

V. EXPERIMENTAL EVALUATION

In this section, we present a demonstration that our pro-
posed idioms are sufficient to implement user-level fault-
tolerance in applications. To that end, we developed a small
scientific application, namely heat transfer, and implemented
that with Python on top of our MPI prototype. Further, we
use this demonstrator to show that the overheads incurred by
persisting data through MPI semantics behave as expected.

63

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1import mpi4py
2from heat import Heat2D
3
4comm = MPI.COMM_WORLD
5persist = MPI.Comm_persist(world)
6
7myself = persist.Get_rank()
8
9task = Heat2D()
10
11while time < end_time:
12# check for failure
13if task.failure():
14persist.Recv(state, myself, STATE_TAG)
15task.restore_local_state(state)
16
17# normal operation
18task.exchange_boundaries(comm)
19task.solver()
20
21# save state for fault-tolerance
22if time%interval == 0:
23state = task.get_local_state()
24persist.Send(state, myself, STATE_TAG)
25
26# progress time
27time += time_step_size

Figure 8. Illustration of the python implementation of the heat transfer
problem used for evaluation.

A. Experimental setup

We have tested our prototypical implementation on a Cray
XC40 supercomputing system running the Cray programming
environment CCE 8.4.3. The application code was imple-
mented with Python 2.7.8, and used NumPy 1.9.0 as well
as MPI4Py 2.0.0. The prototype was built on top of Open-
MPI 1.10.0 and the latest SCR commit 1e8358f from GitHub.
The nodes of the Cray XC40 consists of two Intel Haswell
E5-2680v3 sockets with 12 cores each. For the experiments
we ran OpenMPI over the TCP conduit, as stock OpenMPI
does not support the native Cray interconnect.

The application code solves the well known heat diffusion
equation. The schematic code in Figure 8 illustrates the parts
relevant to this paper only. Most of the programmes business
logic is encapsulated in the class Heat2D and instantiated
as object task. The application uses two distinct commu-
nicators: the regular communicator comm, and a persistent
communicator persist which is derived from comm on line
5. To complete the initialisation, each MPI process stores
its own rank in the variable myself. The main part of the
application consists of the time integration loop starting at line
11. In its original, i.e., non-persistent, version the time loop
would consist only of exchanging boundary conditions with
neighbour process through the communicator comm and the
actual solver step on lines 18–19, as well as increment of time
on line 27.

To achieve fault-tolerance, the local state is determined
and stored periodically through the persistent communicator as
illustrated on lines 21–24. Note that the definition of a local
state, which is suitable for application restart is completely

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1 10 100

n
o
rm

a
liz

e
d
 w

a
llt

im
e

normalized persist interval

performance penalty of data persistency

data
model fit

Figure 9. Overhead of our implementation as a function of length of interval
between two data persist events.

up to the use case. Here, we have take a straightforward
average over the temperatur on the grid. Saving the state is
accomplished simply by sending a message to myself on the
persistent communicator. The user may choose to do this for
every times step or at intervals specified through the variable
interval. In case of failure, the application retrieves the
state by receiving a message from myself on the persistent
communicator. This message is used to restore the local state
as shown on lines 12–15.

Clearly, achieving fault-tolerance incurs a runtime overhead
for the application. Additional time is spent, in particular,
determining if the application state needs saving, aggregating
the application state, and the actual cost of persisting it.
Part of these overheads are beyond the responsibility of our
implementation. However, for the sake on simplicity, we have
benchmarked the fault-tolerant code against a version where
lines 5, 14–15, and 23–24 were commented out, essentially.
So, the measured overhead includes the calculation of the local
state, which however should be small.

The overhead should depend on the frequency of persisting
the local state, and on the duration of doing so. In our
experiment, we have varied the persistency interval, i.e., the
variable interval in the code above. As we cannot directly
control the duration of the persistency operation, we have
varied the time taken to calculate a single iteration of the time
loop by increasing the problem size. We have expressed the
problem size in such a way, that the execution time for a single
iteration depends linearly on it. All benchmark experiments
have been repeated at least 10 times. The values reported
correspond to the average over all runs. The error bars are
calculated from the sample variance; error propagation calculus
is used for all values calculated from the basic measurements.

B. Results and discussion

In order to study the overheads of our implementation, we
have varied the interval at which the local state is persisted.
Figure 9 shows the ratio of execution time of the code with
persist logic over the original non-fault-tolerant version as
a function of the interval. Note that larger interval values
correspond to less frequently saved states. As expected, the

64

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1 10

n
o
rm

a
liz

e
d
 w

a
llt

im
e

normalized problem size

performance penalty of data persistency

data
model fit

Figure 10. Overhead of our implementation as a function of the application’s
problem size.

overhead is largest for small intervals and decreases with
increasing interval length. We have fitted the experimental data
to the expected model curve T (i) = (i + ci)/i. Here, T is
the normalised execution time, i the interval length, and ci
a fit parameter. The experimental data is described very well
by model; the standard error on the fit parameter ci is less
than 5%. This shows that for large values of the interval the
overhead becomes negligible and vanishes asymptotically.

In a second series of experiments, we fixed the interval to
unity and varied the problem size as shown in Figure 10. At
small problem sizes, the overhead is large, as persisting data
takes more time compared to the calculation of an iteration of
the algorithm. With increasing problem size, the time taken to
persist the application state decreases in relation to the time
spent in calculations and the overhead decreases. Again, this
can be modelled with a function of the form T (s) = (s +
cs)/s. As shown in the figure, the model describes the data
very accurately. The error on the fit parameter cs is less than
3%. From this model, we can again expect that the overhead
becomes negligible at sufficiently large problem size.

VI. CONCLUSIONS

In this paper, we have presented work in progress on the
a method to allow persisting of application data and internal
state for fault recovery. Unlike other methods, our approach
uses well known MPI semantics. The only addition to MPI is
a routine that allows to mark a communicator as persistent. All
messages to such a communicator are stored on a stable storage
for later usage during failure recovery. We have shown basic
idioms of storing and retrieving not only application data, but
also internal state of the application and to use message logging
to recover messages that have been exchanged with other MPI
processes just prior to the fault. To verify that the proposed
idioms are sufficient to realise user-level data persistency for
fault-tolerance, we have done a prototypical implementation
of our interface and demonstrated the concept with a typical
scientific application. Finally, we have shown that the over-
heads of prototypical become negligible for sufficiently large
problem sizes or sufficiently large data persistency intervals.

ACKNOWLEDGMENT

This work was supported by the German Research Foun-
dation (DFG) through the German Priority Programme 1648
Software for Exascale Computing (SPPEXA) and the EC
H2020 programme through the project MIKELANGELO un-
der Grant Agreement no. 645402.

REFERENCES

[1] J. Gracia, M. W. Sethi, N. Struckmann, and R. Keller, “Towards data
persistency for fault-tolerance using MPI semantics,” in Proceedings of
International Conference on Advanced Communications and Computa-
tion (INFOCOMP 2015). IARIA, 2015, pp. 26–29.

[2] Y. Ling, J. Mi, and X. Lin, “A variational calculus approach to optimal
checkpoint placement,” IEEE Trans. Computers, vol. 50, no. 7, 2001,
pp. 699–708.

[3] MPI Forum, “MPI: A Message-Passing Interface Standard. Version 3.0,”
September 21st 2012, available at: http://www.mpi-forum.org [retrieved:
May, 2016].

[4] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood, “Safetynet:
Improving the availability of shared memory multiprocessors with
global checkpoint/recovery,” SIGARCH Comput. Archit. News, vol. 30,
no. 2, May 2002, pp. 123–134.

[5] J. Duell, P. Hargrove, and E. Roman, “The Design and Implementation
of Berkeley Lab’s Linux Checkpoint/Restart,” Future Technologies
Group, white paper, 2003.

[6] J. Cornwell and A. Kongmunvattana, “Efficient system-level remote
checkpointing technique for blcr,” in Proceedings of the 2011 Eighth
International Conference on Information Technology: New Generations,
ser. ITNG ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 1002–1007.

[7] CRIU project, “Checkpoint/Restore In Userspace – CRIU,” 2015, avail-
able at: http://http://www.criu.org/Main Page/ [retrieved: May, 2016].

[8] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “Design,
modeling, and evaluation of a scalable multi-level checkpointing sys-
tem,” in Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 1–11.

[9] K. Mohror, A. Moody, and B. R. de Supinski, “Asynchronous check-
point migration with mrnet in the scalable checkpoint / restart library,”
in IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops, DSN 2012, Boston, MA, USA, June 25-28, 2012.
IEEE, 2012, pp. 1–6.

[10] G. E. Fagg et al., “Fault tolerant communication library and applications
for high performance,” in Los Alamos Computer Science Institute
Symposium, Santa Fe, NM, Oct. 2003, pp. 27–29.

[11] E. Gabriel et al., “Open MPI: Goals, concept, and design of a next
generation MPI implementation,” in Proceedings of the 11th European
PVM/MPI Users’ Group Meeting, ser. LNCS, D. Kranzlmüller, P. Kac-
suk, and J. Dongarra, Eds., vol. 3241. Budapest, Hungary: Springer,
Sep. 2004, pp. 97–104.

[12] W. Bland, A. Bouteiller, T. Hérault, J. Hursey, G. Bosilca, and J. J.
Dongarra, “An evaluation of user-level failure mitigation support in
MPI,” in Recent Advances in the Message Passing Interface - 19th
European MPI Users’ Group Meeting, EuroMPI 2012, Vienna, Austria,
September 23-26, 2012. Proceedings, 2012, pp. 193–203.

[13] W. Bland, A. Bouteiller, T. Hérault, G. Bosilca, and J. Dongarra,
“Post-failure recovery of MPI communication capability: Design and
rationale,” IJHPCA, vol. 27, no. 3, 2013, pp. 244–254.

[14] J. Hursey, R. Graham, G. Bronevetsky, D. Buntinas, H. Pritchard,
and D. Solt, “Run-through stabilization: An mpi proposal for process
fault tolerance,” in Recent Advances in the Message Passing Interface,
ser. Lecture Notes in Computer Science, Y. Cotronis, A. Danalis,
D. Nikolopoulos, and J. Dongarra, Eds. Springer Berlin Heidelberg,
2011, vol. 6960, pp. 329–332.

65

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

