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Abstract—We completed the numerical code CHIC (short for
Coupling Habitability, Interior, and Crust) for thermo-chemical
simulations of the evolution of both terrestrial and water-rich
planets and moons. The study focusses on the numerical aspects
of the code implementations and their validation. The thermal
evolution of the mantle is calculated either by solving the energy
conservation equation supplemented by boundary-layer theory
(1D parameterized thermal evolution model) or by solving the
energy, mass, and momentum conservation equations (2D/3D con-
vective thermal evolution). For the latter setting, the equations can
be solved in both incompressible and compressible formulations
and can include chemical buoyancy effects for an inhomogeneous
mantle by applying a particles-in-cell method. The code provides
a user updatable library of thermodynamic properties of core,
mantle and water/ice materials derived from the associated
equations of state. CHIC has been benchmarked with different
convection codes, and has been compared to published interior-
structure models and 1D parameterized models. CHIC is an
advanced simulation code that can be applied to a diverse range
of geodynamic problems and questions.

Keywords–fluid dynamics; convection; numerical modeling; ther-
mal evolution; planetology.

I. INTRODUCTION

To understand geophysical processes in a planet like Earth
including convection, surface processes as plate tectonics or
volcanism, and the evolution of mantle and atmosphere, nu-
merical models are essential tools [1] and have been applied in
the past decades to investigate various planets and moons. Nu-
merical simulations are especially needed for the investigation
of feedback cycles between the interior and the surface, as, for
example, the CO2-cycle (where subduction of carbonates helps
to regulate surface temperatures over geophysical timescales),
the subduction cycle (delivering volatiles to the mantle and
releasing volatiles by volcanic outgassing), the evolution of
continents (stabilizing plate tectonics) and the possible main-
tenance of a magnetic field by strong cooling of the core. These
processes are likely important for the habitability of Earth, i.e.,
for the ability to host life, and may also play an important role
for other planets [2], [3].

Different numerical models have been applied to study the
evolution of terrestrial planets or moons in the literature,
either focussing on the mantle convection pattern in 2D or
3D geometries, or investigating the general thermal evolution
with 1D parameterized models.

In this study, we couple both methods in one simulation code
CHIC together with a library of thermodynamic properties
that can be applied to self-consistently determine the interior
structure of a planet and its later evolution depending on key
factors as, for example, the planet mass, composition, and
initial temperature profile.

The paper is organized as follows: Section II gives an
overview of the state of the art and the progress in numerical
modelling via the CHIC code. In Section III, we describe the
different modules of CHIC, followed by the validation of the
correctness of the models in Section IV. Finally, in Section V,
we summarize the possibilities of a coupled 1D - 2D/3D code
and the planned future work.

II. STATE OF THE ART

Several 2D and 3D convection codes have been developed
over the past decades to investigate Earth-like planets. They
typically concentrate solely on either the thermal evolution
or do steady-state snapshots of the mantle and crust. Some
models include the simplified evolution of the core [4] or of
the atmosphere [5], [6] as boundary conditions to the mantle
convection simulation. In such a convection model, lateral
variations in the mantle can be investigated, including mantle
plumes, local melt regions, and plate motions.

On the other hand, a 1D model assumes a laterally averaged
profile for temperature and material properties. As a result,
simulations of, for example, the volcanic history of a terrestrial
planet may differ between 1D and 2D/3D models.

1D thermal evolution models also have several advantages
over 2D/3D convection models. Parameterization models [7]
are applicable over a large parameter space (applicable also
at high convection velocities, where convection models suffer
from numerical problems), and include the simulation of both
liquid and solid materials. Especially, strongly convecting
systems (e.g., liquid core or ocean) can be simulated, which
is generally infeasible for planetary convection codes, as
they will either produce numerical instabilities or require an
unacceptably large amount of computational power. 1D models
are very fast compared to convection models. Depending on
the specific application, a 1D thermal evolution model runs in
the order of seconds or minutes, whereas 2D/3D models (that
typically need a high resolution to avoid numerical errors) may
run for days or weeks.

To understand different geophysical processes and feedback
cycles on Earth-like or water-rich planets, a coupled model
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Figure 1. Possible configurations that are investigated with CHIC: a) mantle with variable CMB temperature, b) mantle with core evolution and inner core
freezing, c) mantle and core with an atmosphere, d) mantle and core with a deep ocean on top (we neglect here a possible atmosphere).

is needed that can combine 1D parameterized models (for
example for the treatment of the water-layer or the core) with
2D mantle convection models.

We therefore developed a new code CHIC at the Royal
Observatory of Belgium, that combines different numerical
models in one toolbox. The code is written in Fortran, which
allows for fast simulations (either running on one processor or
in parallel) on standard high-performance clusters.

The CHIC code is able to treat both 1D parameterized
models (using the thermal boundary layer theory to determine
the temperature evolution in a terrestrial planet [7], [8] or
ocean planet [9]) and 2D/3D models to investigate the detailed
convection pattern in a silicate mantle or ice layer over time.

In our implementation, the planets are assumed to consist of
several different spherical layers (shells). The lowermost shell
represents the core and is overlain by a silicate shell (mantle
and crust) and a potential water-ice layer. The uppermost shell
represents the planets atmosphere. All shells are thermally
coupled, i.e., the heat flux and temperature are continuous
at each interface between the different layers. The surface
temperature is allowed to vary with time depending on the
greenhouse gases in the atmosphere, or is taken constant if
changes in the atmosphere are neglected.

CHIC allows the user to apply different 1D or 2D/3D
modules as needed: for the core, either only changes in the
core-mantle boundary (CMB) temperature are investigated, or
a 1D parameterized model of the iron core including inner
core freezing is applied (Figures 1(a) and 1(b)); the thermal
state of the mantle and high-pressure ice layers are investigated
either via a convection model or a 1D parameterized model; the
atmosphere and a potential water ocean (Figures 1(c) and 1(d))
are investigated with a 1D module, whereas ice layers could be
investigated also with the 2D/3D convection module. CHIC is
therefore a powerful tool for the investigation of the evolution
of terrestrial or ocean planets - from interior to atmosphere -
and their possible habitability.

III. MODELS

CHIC uses various modules for modelling different shells
of a terrestrial or ocean planet. The basic modules provided
by CHIC are listed below. The density of the material and

other physical properties are determined as described in Sec-
tion III-A, and can be applied to both 1D and 2D/3D modules.
The input file used for the simulations is similar for all
modules, which simplifies comparison of the 1D model with
the 2D mantle model.

A. Interior structure model and material properties

Within CHIC, simple interior structure models can be gener-
ated to assess the radius of a terrestrial planet for given mass,
composition, and temperature profile. Those models assume a
spherical planet that is differentiated into an iron core, a silicate
shell, and an optional ocean layer. For the silicate mantle we
assume an Mg-end member olivine system. We neglect high
pressure olivine polymorphs but allow for the disassociation
of olivine to perovskite and Mg-wstite and the occurrence
of post-perovskite at high pressure and temperature. Material
properties (density %, thermal expansion coefficient α and heat
capacity cp) are computed from equations of state for variable
pressure and temperature [10], [11].

The gravitational acceleration g(r) as a function of radius
r is determined from the Poisson equation, it depends on the
gravity value at the surface of the planet,

dg/dr = 4πG%− 2g/r (1)

where G is the gravitational constant.
The pressure as a function of depth is calculated by assum-

ing hydrostatic equilibrium and depends on the atmospheric
pressure at the surface:

dp/dr = −g% (2)

The mass m(r) is

dm/dr = 4$r2% (3)

B. Core evolution model

The 1D core evolution module determines the variation of
upper core temperature with time via the energy conservation
equation

ρccp,cVcεcdTc/dt = −qcAc (4)
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where the index c denotes core values, Vc is the core volume
and Ac the core surface area, εc is a constant relating the
average core temperature to the CMB temperature, t is the
time and qc is the heat flux from the core into the mantle
(defined via the heat flux that the mantle can take up, e.g.,
[8]),

qc = −kmdT/dr|r=Rc (5)

where km is the mantle thermal conductivity. We neglect
radioactive heat sources in the core, as well as tidal heating
effects. If the freezing of an inner core is considered, additional
terms for latent heat and gravitational energy release have
to be added in Eq. (4) [12]. For 2D/3D convection models,
temperature is calculated at pre-defined grid points, and the
average temperature gradient at the CMB is calculated over the
two bottom shells of the mantle grid; in the 1D parameterized
model, the heat flux is computed from the boundary-layer
theory.

For the thermal evolution, either a pure iron core or an iron-
rich core containing lighter elements like sulfur is considered.
In the latter case, core freezing can be modelled if the core
temperature falls below the melting temperature. This model,
however, only works if the freezing of the core starts at the
core center (leading to a solid inner core as on Earth). This
may not be the case for Mercury or Ganymede, where iron
may solidify in the upper part of the core and sink down as
(so-called) iron snow.

We only model planets without the iron snow regime and
adopt the model of [4], which determines latent heat released
by iron solidification and gravitational energy produced by
differentiation of the core into an inner and outer core. Both
mechanisms have an influence on the thermal evolution of the
mantle. For super-Earths (i.e., planets up to 10 Earth masses),
we neglect lighter elements in the core, as material properties
for those are only known for a limited pressure range.

C. Mantle: 1D parameterized model

The 1D module assesses the thermal evolution of the mantle
based on [7], [8], [9]. We refer to these references for full
details. The model determines the evolution of the upper
mantle temperature Tm over time by considering that the loss
of energy due to mantle cooling and heat flux out of the mantle
is balanced by the heat flux from the core into the mantle and
the radioactive heat production in the mantle (we neglect heat
produced by tidal friction):

%mcp,mVlεmdTm/dt = −qlAl + qcAc +QmVl (6)

The index m denotes mantle values. Vl is the volume of the
mantle from core to the base of the lithosphere, and Al is
the area at the boundary between mantle and lithosphere. The
constant εm relates the average mantle temperature with Tm.
The mantle temperature decreases due to heat flux out of the
mantle into the lithosphere ql, increases due to inflowing heat
flux from the core qc and increases with heat released by
radioactive heat sources Qm.

CHIC also allows to model possible melting events and crust
formation over time. This leads to additional terms in (6). For
details on the crustal evolution, as well as the definition of the
thermal boundary layers and calculation of the temperature in
the lithosphere, we refer to [8]. Note that the 1D parameterized
model only considers the evolution of the temperature over
time, and assumes effective convection. To understand the
convection mechanism and its strength depending on mantle
parameters and planet size (possibly triggering plate tectonics
at the surface), a more sophisticated 2D/3D convection model
is needed.

D. Mantle: 2D / 3D convection model

The CHIC code uses a finite volume (FV) field approach
to solve the conservation equations of mass, momentum and
energy. A finite grid is placed in the mantle, with shells from
the CMB to the planet surface, and a predefined number of
grid points per shell. We then define Voronoi cell volumes
around each grid point and solve the system of equations on
each cell volume considering the flux in and out of the cell and
the energy production in the cell. We employ a staggered grid,
see Figure 2, where the scalar values like temperature (T ) and
pressure (p) are defined at the cell center (i,k), whereas the
lateral and radial velocities u,w are defined at the cell faces.
The viscosity η is calculated at the cell centers (CV) and is
interpolated at the cell nodes (N) and cell faces (A,B,C in x-,y-
and z-direction) with a geometric averaging scheme.

The grid is either defined in Cartesian coordinates in a
2D or 3D box or in polar coordinates for a 2D cylindrical
sphere (a cut through the planet at the equator representing
the temperature profile of a cylinder with the 2D plane as a
basis) or a 2D spherical annulus (an equatorial cut or polar
section that approximates the temperature profile of a sphere
in 3D, [13]), see Figure 3. For the 2D models with spherical
or cylindrical geometry, it is often useful to employ a regional
sector of the 2D spherical model (as shown in Figure 6). In
addition to the grid, randomly distributed particles (also called
tracers) are used to transport local information as for example
density variations or water content, see Section III-D3.

In CHIC, the thermal (or thermochemical, see Section
III-D3) evolution can be modelled either for an incompress-
ible medium with the Boussinesq approximation (BA) or the
Extended-Boussinesq approximation (EBA), or for a com-
pressible medium with the (truncated) anelastic liquid approx-
imation (TALA/ALA).

1) (Extended) Boussinesq approximation: We solve the
equation system for an incompressible medium either with the
Boussinesq approximation (BA), which neglects the influence
of compressibility on the mantle, or we apply the Extended-
Boussinesq approximation (EBA), which yields an adiabatic
temperature increase with depth depending on the dissipation
number Di = αgD/Cp, where D is the mantle thickness (see
[7] for details on the model). For a dissipation number Di of
zero, the formulation reduces to the Boussinesq approximation
(BA). We therefore concentrate on the EBA model below.
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Figure 2. The staggered grid enforces different local solver meshes for the
energy, mass and momentum conservation equations. The center of each

local mesh is highlighted with a red box.

Figure 3. Geometries implemented in CHIC. Top: 2D Cartesian box and 3D
Cartesian box. Bottom: 2D cylinder and 2D spherical annulus.

In the EBA approximation, the non-dimensional conser-
vation equations of energy, mass and momentum can be
expressed as (e.g., [14]):

∂T

∂t
+ ~v · ∇T +Di(T + T0)~vr = ∇2T +

Di

Ra
Φ +H (7)

∇ · ~v = 0 (8)

−∇p+∇ · σ = RaTer (9)

σ = η
(
∇~v +∇~vT

)
(10)

Here, T is temperature, T0 surface temperature, t time, and
Di the dissipation number. The convective pressure is denoted
by p; ~v is the velocity and ~vr the radial velocity, whereas er
is the radial unit vector. H is the heat source (e.g., radioactive
heat source). σ the convective stress tensor, η is the viscosity,
and T indicates a transposed matrix. The Rayleigh number Ra
is a measure for the convective vigour

Ra =
ρgαD3∆T

κηref
(11)

where ∆T is the mantle temperature contrast, κ = k/(ρCp) the
thermal diffusivity and ηref a reference viscosity defined at a
reference temperature, pressure and stress (for non-Newtonian
viscosity), see Section III-D5. Φ is the viscous dissipation [7],
[13], [14]

Φ =
1

2
σ : ε̇ = ηε̇ : ε̇ (12)

with strain rate tensor ε̇ = ∂vi/∂xj .

Equations (7)-(9) are written in a non-dimensional form
[15]. The non-dimensionalization is obtained by dividing the
dimensional value of each variable by a reference value as
given in [15]. The quantities given in Section IV are also non-
dimensional values.
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2) Anelastic liquid approximation: While the (Extended)
Boussinesq approximation models a constant density in the
mantle, in reality the density increases with depth due to
pressure-induced compression. In Mars’ and Mercury’s mantle
the compressiblity effect is small and is typically neglected.
For Earth-size and larger planets the density increases sig-
nificantly within the mantle and is typically addressed in
mantle convection codes via the (truncated) anelastic liquid
approximation (short TALA or ALA), see [7] and [14].

Reference profiles are employed for the pressure, density
and temperature (p̄, ρ̄, T̄ ), as well as lateral variation fields
due to convection (p′, ρ′, T ′):

T = T̄ + T ′

p = p̄+ p′

ρ = ρ̄+ ρ′

In addition, we apply reference profiles for the gravitational
acceleration, thermal expansion coefficient, heat capacity at
constant volume or pressure, bulk modulus and Grüneisen
parameter (ḡ,ᾱ,C̄v ,C̄p,K̄T ,γ̄).

The conservation equations of mass and momentum for the
ALA formulation are solved together in a coupled system and
read in non-dimensional quantities [7]

∇ · (ρ̄~v) = 0 (13)

−∇p′ +∇ · σ +Di
ρ̄ḡp′Cp
γ̄K̄TCv

~er = Raρ̄ḡᾱ(T − T̄ )~er (14)

σ = η

(
∇~v +∇~vT − 2

3
∇ · ~vI

)
(15)

I is the identity tensor. Cp and Cv are the specific heat
at constant pressure and volume, KT is the isothermal bulk
modulus.

In the truncated anelastic liquid approximation (TALA), the
third term in equation (14) is neglected

−∇p′ +∇ · σ = Raρ̄ḡᾱ(T − T̄ )~er (16)

The TALA formulation is a simplified compressible formu-
lation that is favoured by several codes to avoid numerical
problems due to the additional ALA term (third term in Eq.
(14)). Furthermore, this term is often neglected as it requires
knowledge of several material properties (as Gruneisen param-
eter or isothermal bulk modulus) depending on pressure, which
requires the usage of an equation of state.

The energy conservation equation for the composite temper-
ature field (T = T̄ + T ′) can be expressed as

ρ̄C̄p

(
∂T

∂t
+ ~v · ∇T

)
= ∇ ·

(
k̄∇T

)
+Diᾱρ̄ḡvr(T + T0)

+
Di

Ra
Φ + ρ̄H. (17)

3) Thermochemical formulation: Chemical inhomogeneities
influence the convective behaviour. Buoyancy results from both
thermal and compositional variations. The buoyancy term in
Equation (9) changes to

Ra
[
(T − T̄ )−B (1− d)

]
~er (18)

for the BA and EBA formulation, for the TALA and ALA
formulation it changes to

Raρ̄ḡ
[
ᾱ(T − T̄ )−B (1− d)

]
~er, (19)

where B is the buoyancy number defined here as 1/(Cp,0α0)
and d = Cref − C is the nondimensional density variation (a
value of 0 denotes reference mantle material density Cref and
a positive d value a decreased local density). Such a chemical
density variation can occur for example from partial melting
or subduction of crustal material. Note that the chemical
density variation is different from the compressible density
increase with depth. The conservation of the chemical field C
is modelled similarly to the energy conservation

∂C

∂t
+ ~v · ∇C =

1

Le
∇2C (20)

where Le is the Lewis number, which is a dimensional number
defined as the ratio of thermal diffusivity κ to chemical
diffusivity κc. For rocks, the chemical diffusivity is negligibly
small and often set to zero. However, solving Eq. (20) without
the diffusion term leads to numerical problems. In convection
codes therefore either large Lewis numbers are used, or the
particle are used instead of a chemical field to trace local
density variations. In that approach, the particles are advected
along the convective stream lines at the end of each time step
via a Runge-Kutta method of fourth order. Averaged cell values
are obtained by arithmetic averaging of particle values of all
particles in the cell weighted by the reciproce distance of the
particle to the cell centre.

4) Solver routines: The energy equation is solved with a
second-order implicit Euler method. To solve the conservation
equation of mass and momentum, we either use a direct solver
or a coupled mass and momentum solver. The direct solver
uses one solver matrix for (8) and (9) and applies a penalty for-
mulation following [16]. The iterative, coupled solver employs
a pressure correction algorithm called SIMPLER following
[16], [17]. In this paper, we apply the direct solver.

The resulting linear equations (for mass, momentum and
energy) are solved iteratively with either the Pardiso solver
[18] or a biconjugate gradient (BiCG) solver with an under-
relaxation scheme. The BiCG solver is slower compared to
the Pardiso solver, but is advantageous for parallelization in
combination with the SIMPLER pressure correction.

5) Viscosity formulations: The equations above depend on
the viscosity of the material η. The viscosity depends on
several factors including the temperature, pressure, grain size,
water content and strain rate of a material. In the mantle of the
Earth, creep is typically described by dislocation creep (motion
of dislocations through the crystal lattice) and diffusion creep
(deformation of crystalline solids by the diffusion of vacancies
through their crystal lattice). The latter is largely independent
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of the strain-rate, whereas dislocation creep does not depend
on the grain size. In CHIC, the user can choose between a
dislocation viscosity, a diffusion viscosity and a mix of both
formulations. The smaller viscosity is the dominant viscosity
for material motion.

The general equation used in CHIC for the viscosity follows
an Arrhenius law [19], [20]

η = Aε̇
1−n
n

II d
p
nC

−r
n

OH exp

(
E + pV

nRT

)
(21)

A is a material-dependent constant, n is the stress exponent,
d is the grain size, COH is the concentration of water (for dry
materials r=0), r is the water exponent, E the activation energy
and V the activation volume. p is the pressure and R the gas
constant. Note that the pressure p is the hydrostatic pressure
and not the convective pressure as in (9). The parameters for
both diffusion and dislocation creep are taken from [19], [20]
for both wet and dry materials. The concentration of water
COH is traced via particles and does not only influence the
viscosity, but also the local melt temperature, which is smaller
in the presence of water than for dry materials [21].

Even though the Arrhenius viscosity (21) is preferentially
used for simulations of terrestrial planets, for benchmarks and
basic convection simulations typically an approximated vis-
cosity is used, the so-called Frank-Kamenetskii approximation
(FKA), given by

η = A exp (−θTT + θpz) (22)

Here, θT and θp are either the logarithm of a pre-defined
viscosity contrast with respect to temperature or pressure,
respectively, or they are derived from the parameters in (21)
[22]. z is the non-dimensional depth (0 at the surface and 1
at the CMB). Note that for the application to plate tectonics
simulations, the FKA (22) may not be suitable as shown in
[22] and the Arrhenius viscosity (21) should be applied.

E. OpenMP and MPI parallelisation

The Pardiso solver [18], that can be used to solve the
linear equations for the mass-momentum and energy equa-
tions (see Section III-D4), can employ an automatic OpenMP
parallelization. In addition, we implemented an MPI domain
decomposition for the mesh. The domain is separated into
several subdomains, on which the conservation equations of
mass, momentum and energy are solved individually. However,
the solution on each subdomain depends on the neighbouring
domains. For this reason, additional boundary cells (ghost
cells) are added at the boundary between subdomains, which
contain the corresponding values (for example, temperature or
velocity) from the neighbour domain and serve as boundary
cells for their respective MPI domain. After the equation
system is solved, ghost cells are updated with the new values
from their neighbour domain and the conservation equations
are re-solved. This iteration continues until convergence occurs
for the root-mean-square velocity.

Figure 4 shows the domain decomposition for four CPUs
using either non-periodic or periodic boundary conditions

Figure 4. Schematic mesh decomposition for a 2D Cartesian box using four
CPUs. Additional cells at the domain boundaries are highlighted in the
respective domain color. The upper plot uses a free-slip, reflective side

boundary condition, the lower plot applies a periodic boundary condition.

at the left and right side of the box. The bottom and top
boundaries are free-slip boundaries (the temperature values
are either pre-set boundary values or evolve over time at the
1D model interface for core or ocean/atmosphere). Grey stars
denote boundary cells, boxes with coloured boundaries are
ghost cells, and black dots denote the cells, for which the
mass, momentum and energy equations are solved.

The MPI speed-up factor and simulation times are plotted
in Fig. 5 for different grid sizes (shells) and amounts of CPU
for a 2D Cartesian box and aspect ratio 1 (i.e., same number
of grid points in lateral directions as number of shells) for
the first 10 time steps, where the simulation parameters are
taken from the first benchmark case in Blankenbach et al. [23].
Here, the Pardiso solver is applied (see Section III-D4). The
high-performance SGI cluster, on which the simulations were
executed, contains nodes with 24 CPU cores and two Xeon
E5-2680V3 processors per node.

The speed-up factor is based on simulations with two CPUs
instead of one. The update of the ghost cells (boxes with
coloured boundary in Fig. 4) demands at least two iterations
to solve the coupled mass-momentum equation system. When
using only one CPU, no update of ghost cells and thus
no additional iteration is needed. The parallel version can
therefore never show a perfect speed-up behaviour when using
one CPU as reference. The effect of parallelization on the
simulation time can also be observed in the right plot in Fig.
5.

For small grid sizes with 20, 40 or 80 shells, the speed-up
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Figure 5. Left: scaling factor for MPI parallelization using different grid sizes (20sh stands for 20x20 grid points plus boundary cells) based on a reference
time obtained for 2CPUs. Right: simulation time in seconds for different amounts of CPU for the same simulations.

factor decreases to non-optimal behaviour (i.e., curve drops
below the black dotted line) when using more than 2, 4 and
8 CPUs, respectively. For larger grids the simulations show
an optimal speed-up behaviour up to approximately 24 CPUs,
which is the number of CPUs per node on the used HPC
architecture. The simulation time is still steadily reduced with
increasing number of CPUs.

When employing a larger 2D grid size with doubled resolu-
tion, the number of grid points is four times larger. The right
plot in Fig. 5 shows that the simulation time also increases by
a factor ∼4 for doubled resolution.

IV. CODE VALIDATION RESULTS

In this section, we present several benchmark tests that have
been applied to validate the code.

A. Incompressible model

To validate our 2D Cartesian box implementation of the ther-
mal convection simulation in the incompressible approxima-
tion we compare it to the standard benchmark by Blankenbach
[23]. The benchmark assumes either isoviscous convection or
temperature- and pressure-dependent viscosity in the Boussi-
nesq approximation. A free-slip boundary condition is applied
to the walls of the box. The non-dimensional temperature at
the surface of the box is set to 0 and at the bottom to 1. The
simulations are run until steady-state is reached (i.e., variations
of the non-dimensional temperature drop below a tolerance
value of 10−10).

In Table I, we compare our results (for a fixed resolution
of 80(200)x80 cells for aspect ratio 1 or 2.5) to the published

TABLE I. BENCHMARK COMPARISON OF CHIC (CH) TO [23] (BL).

RMS velocity Max temperature Nusselt number
CH BL CH BL CH BL

1a 42.92 42.74-42.87 0.425 0.421-0.427 4.920 4.864-4.896
1b 194.3 192.4-198.0 0.432 0.415-0.437 10.60 10.42-10.69
1c 835.1 823.7-842.5 0.440 0.431-0.446 21.81 21.08-22.07
2a 496.6 458.3-503.3 0.725 0.716-0.741 10.43 10.04-10.07
2b 183.1 166.7-193.1 0.390 0.385-0.403 7.271 6.806-7.409

Case 1: isoviscous material, `=1, a) Ra=1e4, b) Ra=1e5, c) Ra=1e6.
Case 2: FKA (11), a) Rasurf=1e4, θT =ln(1000), θp=0, `=1,

b) Rasurf=1e4, θT =ln(16384), θp=ln(64), `=2.5.

results. Note that in [23] different resolutions have been used,
therefore we give the min and max values for resolutions of
at least 33x33 cells. Here, we provide only the three most
important quantities: the root-mean-square (RMS) velocity, the
maximum of the upper mantle temperature profile at the middle
of the box (0.5`, where ` is the length divided by height,
i.e., the aspect ratio) and the surface Nusselt number, which
is a measure of the ratio of convective to conductive heat
transport at the surface of the box. For more information on
the benchmark setup we refer the reader to [23]. CHIC yields
results that are in good agreement with all cases published in
[23], see Table I. They are either within the range of published
results or differ by less than 4 %.

A comparison between different geometries (Cartesian box
in two or three dimensions, 2D cylindrical shell and 3D
sphere) for the Boussinesq approximation has been published
by Noack and Tosi [24] using the convection code GAIA [25].
To verify our implementation of the different geometries, we
compare the CHIC code to the published results with respect
to RMS velocity, average mantle temperature and surface
Nusselt number. For the 2D box, we apply a resolution of
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TABLE II. BENCHMARK COMPARISON OF CHIC (CH) TO [24] (NT)

Case RMS velocity Average temperature Surface Nusselt number
CH NT CH NT CH NT

2D box, `=1, RBC a 54.59 53.81 0.689 0.6872 1.987 1.956
2D box, `=2, RBC a 54.59 53.79 0.689 0.6871 1.987 1.956
2D box, `=1, PBC b 55.61 54.62 0.7016 0.6993 2.047 2.014
3D box, `=1, RBC 61.91 57.21 0.7092 0.6927 2.259 2.363
2D full cylinder c 35.93 35.25 0.5734 0.5711 1.444 1.439
2D half cylinder 35.30 34.84 0.574 0.5725 1.439 1.440
2D quarter cylinder 35.31 34.87 0.574 0.5725 1.439 1.440
2D cylinder, CV d 17.39 17.11 0.4394 0.4377 0.993 0.995
2D cylinder, CR e 14.62 14.51 0.4046 0.4039 0.909 0.914
3D sphere / 2D spherical annulus f 15.5 16.19 0.3635 0.3374 0.796 0.744

We apply a surface Rayleigh number of Ra=10 and a FKA (22) viscosity contrast of 1e5.
a RBC stands for reflective boundary condition at the side wall with free-slip boundary.

b PBC stands for periodic boundary conditions.
c The sphere uses a radius ratio of 2, i.e., the core radius is half the planet radius.

d CV means corr. volume: ratio of core area divided by mantle volume is as in 3D.
e CR means corr. radius: ratio of core area divided by surface area is as in 3D.

f We use a 2D spherical annulus for CHIC with 4 initial plumes; a 3D sphere was used for GAIA.

80(160 for `=2)x80 cells, for the 3D box 40x40x40 cells and
for the 2D shells we use 80 shells in radial direction with
754, 377, 189, 440, 419 and 754 points per shell for the six
considered cylindrical/spherical cases. Note that we compare
the 2D spherical annulus of CHIC to the case of 3D sphere of
GAIA.

The results obtained with CHIC are in good agreement with
those obtained with GAIA, with deviations below 2 % apart
from the 3D box (7.6 % deviation for the velocity) and the
spherical annulus (7.2 % deviation for the temperature), where
we compare to the 3D sphere in [24], see Table II. The plots
in Figure 6 show the steady-state for all cases.

Figure 6. Convection patterns obtained with CHIC for different available
geometries. See text and Table II for more details.

We do a further validation of our 2D spherical annulus
implementation for isoviscous material by comparing it to
the results in [13] for bottom-heated (i.e., constant bottom
temperature) and internally heated convection (i.e., zero heat
flux at bottom and internal heat sources), see Figure 7.

The non-dimensional radius of the core is 1.2222 and the
planet radius is 2.2222. We use a resolution of 32 shells
with 256 points on each shell. The CHIC results are in good
agreement with the published results. The differences are less
than 5 %, see Table III.

The largest deviations appear for time-dependent simula-
tions (indicated by ∼). For these cases averaged values depend

Figure 7. Temperature fields obtained for the isoviscous spherical annulus
models from [13].

TABLE III. BENCHMARK COMPARISON OF CHIC (CH) TO [13] (HT)

Ra Average RMS velocity Nusselt number
CH HT CH HT

1e4 38.22 37.7 4.13 4.18
1e5 157.2 ∼160 7.06 ∼7.39
1e6 ∼622 ∼640 ∼14.1 ∼14.4
Ra/H Average RMS velocity Average mantle temperature
1e4 / 3.4 24.3 23.5 0.3 0.308
1e5 / 6.6 ∼76.6 ∼78.5 ∼0.36 ∼0.349
1e6 / 14 ∼252.4 ∼265 ∼0.35 ∼0.35

Isoviscous material, case 1: bottom-heated convection,
case 2: internally-heated convection.

on the size of the averaging time domain (in this study an
interval of up to ∼0.2 diffusion times is applied). For this
reason, typically only steady-state simulations are used in
community benchmarks. Recently, an increasing attention has
been drawn to benchmarks for time-dependent simulations, for
example for plastic deformation and episodic overturn [26].
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B. 2D compressible model

The 2D compressible implementations TALA and ALA
(see Section III-D1) are compared to a benchmark published
by King et al. [14]. The benchmark includes compressible
simulations in a 2D Cartesian box using different dissipation
numbers and Rayleigh numbers. For the comparison we apply
a resolution of 80x80 cells and a dissipation number of Di = 1.
No viscosity variation is considered. The Rayleigh number is
varied between 104 and the maximal value that still leads to a
steady-state solution.

TABLE IV. BENCHMARK COMPARISON OF CHIC (CH) TO [14] (KI)

RMS velocity Average temperature Nusselt number
CH KI CH KI CH KI

EBA, Ra=1e4 24.2 23.9-24.2 0.47 0.47-0.47 2.19 2.15-2.19
EBA, Ra=2e4 39.4 39.1-39.5 0.47 0.47-0.47 2.65 2.60-2.65
EBA, Ra=5e4 71.5 70.8-71.7 0.47 0.47-0.47 3.36 3.30-3.36
EBA, Ra=1e5 107.9 107.1-108.2 0.48 0.48-0.48 3.95 3.89-3.97
EBA, Ra=2e5 146.7 147.0-148.0 0.49 0.49-0.49 4.42 4.40-4.44
TALA, Ra=1e4 26.0 26.0-26.1 0.51 0.51-0.51 2.56 2.51-2.57
TALA, Ra=2e4 40.2 40.2-40.5 0.51 0.51-0.52 3.01 2.96-3.02
TALA, Ra=5e4 66.9 66.8-68.7 0.52 0.52-0.52 3.63 3.61-3.64
TALA, Ra=1e5 84.6 84.9-91.1 0.53 0.52-0.53 3.91 3.89-3.98
ALA, Ra=1e4 24.3 24.7-25.0 0.51 0.51-0.51 2.42 2.44-2.47
ALA, Ra=2e4 37.9 38.5-39.0 0.52 0.52-0.52 2.86 2.88-2.92
ALA, Ra=5e4 64.1 64.9-65.9 0.52 0.52-0.52 3.50 3.51-3.55
ALA, Ra=1e5 84.0 84.6-85.6 0.53 0.53-0.53 3.86 3.86-3.88

We validate the accuracy of the simulations by comparing
the RMS velocity, the average mantle temperature and the
Nusselt number in Table IV to the value range listed in [14].
CHIC compares well with the published results with deviations
below two percent. Note that these small deviations appear
only for some of the TALA and ALA cases, where less codes
contributed to the original study, leading to a narrower value
range in [14].

C. Chemical buoyancy

Density variations in the mantle occur due to temperature
influences (the thermal buoyancy term in the momentum equa-
tion), chemical influences (inhomogeneous mantle due to crust
subduction, local melt depletion, etc.), and compressibility
effects. CHIC traces chemical density variations either via
particles or with a field approach, see Section III-D3.

We compare our implementation of the chemical advection
(i.e., buoyancy forces driven by chemical density variations)
to the benchmark by van Keken et al. [27]. Three cases
for chemical advection have been investigated in the study
modelling a light layer at the bottom of a Cartesian box below
a dense layer. In addition, a viscosity contrast between the two
layers of 1 (case a), 10 (b) and 100 (c) is applied. The density
field of all three cases is shown in Fig. 8 at a non-dimensional
time of 500. For the simulations we use a spatial resolution
of 200x200 grid points and 50 tracer per cell for the particle
approach and a Lewis number of 1010 for the field approach.

The benchmark study [27] calculates the following control
parameters: the growth rate of the interface at the beginning of
the simulation, the maximal rms velocity and the time when the

Figure 8. Chemical convection initiated by the chemical buoyancy of light
material (black) below a layer of dense material (red) from benchmark [27]

at non-dimensional time 500 for the particle approach (top) and the field
approach (bottom).

maximal value is reached. The growth rate is calculated from
the initial rms velocity increase via the following formula (we
use t=100):

Γ = ln (vrms(t)/vrms(0)) /∆t (23)

Table V lists the growth rate, maximal rms velocity and time
for both the particle (P) and the field (F) approach for the
three cases. Our results reproduce the benchmark case almost
exactly.

TABLE V. BENCHMARK COMPARISON OF CHIC (CH) TO [27] (VK)

Growth rate Γ Max RMS velocity Time (Max RMS v.)
CH VK CH VK CH VK

a 0.0117 (P) 0.011- 0.00303 (P) 0.00289- 213.3 (P) 206.4-
0.0115 (F) 0.0125 0.00308 (F) 0.0031 208.3 (F) 215.7

b 0.0472 (P) 0.0392- 0.00944 (P) 0.00908- 72.7 (P) 71.9-
0.0429 (F) 0.0482 0.00917 (F) 0.00959 72.6 (F) 77.1

c 0.1058 (P) 0.096- 0.01457 (P) 0.01385- 50.2 (P) 48.8-
0.099 (F) 0.1052 0.01371 (F) 0.01506 49.4 (F) 51.3

D. 1D parameterized model

To our knowledge, unlike for the mantle convection calcula-
tion, benchmark results for the 1D parameterized model have
not been published. Therefore, we have validated our code by
reproducing results of [8]. The results are very similar [28], but
differ in detail because not all parameters used in the studies
are known. The module has been integrated into the CHIC
code and has been extended to include a regolith layer and
compared to [29], yielding again comparable results.

We do a further validation of our 1D parameterized thermal
evolution implementation by comparing it to a 2D convection
calculation in a spherical annulus. The simulations are done
for a Mars-like planet. We assume a Newtonian viscosity law
and apply the Boussinesq approximation. The initial mantle
temperature is 2000 K and the CMB temperature is 2300
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Figure 9. Upper temperature, CMB temperature and lid thickness for a thermal evolution of Mars applying either the 2D spherical annulus (black curve) or the
1D parameterized model (red).

K, the surface temperature is set to 220 K. Heat sources are
homogeneously distributed in the mantle and are taken Earth-
like [7]. For the 2D model, we use a quarter sphere with a
radial resolution of 80 shells.

In the convection model, we define the lid over the depth
where the conductive heat transport is more efficient than the
convective heat transport. The lid thickness is then fitted by a
third-order polynomial since the lid is strongly time-dependent
and oscillations occur. The lid thickness is in the beginning
larger than that of the 1D model (where we plot the total
conductive layer thickness including both the lid and the upper
thermal boundary layer), but shows a similar increase with time
after 2 Gyr (see Figure 9). The different lid thicknesses at the
beginning of the evolution can be explained by a delayed on-set
of convection in the 2D model, which also leads to a slightly
weaker mantle cooling at the beginning and hence a shift in
the upper mantle temperature compared to the 1D model, see
see Figure 9.

Our results show that the 1D parameterized model leads to
a thermal evolution comparable to the results obtained with
convection models.

V. CONCLUSION

We developed a new, advanced numerical code that couples
different models that are needed for the investigation of
habitability-relevant processes and feedback mechanisms for
Earth-like or water-rich planets or moons. The code can be
used with 1D and 2D/3D geometries for the silicate mantle
or ice shells. The thermal state of the core, the ocean and
atmosphere layer are simulated with a parameterized approach.

We have extended our earlier study [1] by a compressible
formulation, which is especially of interest for planets of
Earth size or larger. Chemical convection has been included
to investigate buoyancy effects from density variations due
to for example partial melting or subducted crust. Particles
have been implemented to transport local information like the

water content through the mantle. Both OpenMP and MPI
parallelisation are available to allow the usage of CHIC on
standard high-performance clusters.

We have validated our implementations for the parame-
terized model and 2D/3D convection model by comparing
CHIC to published results and by running a set of standard
benchmarks. For all benchmarks, CHIC is in good agreement
with literature values.

The code can be applied to investigate the possible habitabil-
ity of terrestrial or water-rich planets [9] and moons, including
the simulation of feedbacks between the interior and surface
for stagnant-lid and plate tectonics planets.
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