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Abstract—In this paper, a set of micro-benchmarks is proposed
to determine basic performance parameters of single-node main-
stream hardware architectures for High Performance Computing.
Performance parameters of recent processors, including those
of accelerators, are determined. The investigated systems are
Intel server processor architectures and the two accelerator lines
Intel Xeon Phi and Nvidia graphic processors. Additionally, the
performance impact of thread mapping on multiprocessors and
Intel Xeon Phi is shown. The results show similarities for some
parameters between all architectures, but significant differences
for others.
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I. INTRODUCTION
For resource-intensive computations in High Performance

Computing (HPC) on a single node level, a good performance
can only be achieved if the performance characteristics of
the processor, memory and core-core/core-memory intercon-
nect architecture are understood. First investigations on that
have been published in [1]. Finding and quantififying such
characteristics for a certain system is motivated by the fact
that, for most of their runtime, HPC applications stress only
parts of the hardware in compute-intensive program kernels.
Examples are compute-bound problems – such as direct linear
solvers [2] that are bound by the floating point capability of
a system, and memory-bandwidth-bound problems – such as
the multiplication of a sparse matrix with a dense vector in
iterative solvers [3], [4], [5]. Other application kernels may be
bound differently.

This paper proposes a set of micro-benchmarks to char-
acterize HPC hardware on a single-node level. The results of
the micro-benchmarks are performance parameters related to
performance bounds found in many computational kernels (see
[6] for two such parameters). These parameters often allow
conclusions to be drawn on the (at least relative) performance
of real applications or performance critical application kernels
of certain classes that are bound by one or few of those parame-
ters. Additionally, if carefully chosen, architecture-bottlenecks
can be revealed. The micro-benchmarks were chosen to allow
conclusions on an application level rather than to evaluate deep
structures in a processor architecture with sophisticated low-
level programs, as for example in [7].

The proposed micro-benchmarks are applied to representa-
tives of different classes of current hardware architectures. Re-
sults show similarities in performance between all architectures
for some parameters (e.g., reaching near peak floating point

performance for dense matrix multiply), but also significant
differences between architectures (e.g., main memory latency
and bandwidth). Consequently, only certain application classes
are suitable for a specific architecture.

The paper is structured as follows. The following sec-
tion discusses related work. Then, current mainstream HPC
hardware architectures are briefly described, focusing on their
differences. Section IV contains a description of the proposed
micro-benchmarks. Section V describes our experimental setup
and finally, in Section VI and Section VII, detailed evaluation
results are presented and discussed, followed by a conclusion
in Section VIII.

II. RELATED WORK
Benchmarks are widely used to evaluate certain perfor-

mance properties of computer systems. A benchmark should
thus be usable as an indicator that can support a decision,
e.g., whether this system is feasible for a certain task or not.
A multitude of different benchmarks exist, dependent on the
question to be answered.

The Top500 list [8] uses the High Performance Linpack [2]
to rank (very) large parallel systems. This benchmark produces
only a single value, the Floating Point Operations per second
(FLOP/s) for just one specific task, the direct solution of a
very large dense linear system.

The widely used SPEC CPU benchmark [9] is a mix of
several real world application programs for integer-dominant
computations or floating point dominant applications. Running
the benchmark on a system produces one number for each
class, a performance factor. These two numbers then express a
relative performance improvement compared to an older base
system with respect to integer performance and floating point
performance.

Williams et al. introduced the roofline model [6] to de-
scribe the expectable performance space in a resource-bound
problem. The two resources in this model are computational
density (operations per transfered byte) and peak floating
point performance. This is an example where two limitating
parameters on a system are used to show eligible perfomance
values.

The NAS Parallel Benchmarks [10] are more application-
oriented benchmarks. These benchmarks consist of larger
compute-intensive kernels and were originally designed to test
large parallel computers. Each of these applications in this
benchmark represents a different computing aspect. The ap-
plications include, for example, Conjugate Gradient (irregular
memory access), Multi-Grid (long- and short-distance commu-
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nication), or fast Fourier Transform (all-to-all communication).
These benchmarks have been, amongst others, implemented in
OpenMP [11] and recently in OpenCL [12]. With the OpenCL
extension they can be used to measure recent accelerators, such
as Graphic Processor Units (GPUs).

While the Linpack and the NAS Parallel Benchmarks aim
for rather scientific and computing intense applications, the
Graph500 benchmark [13] aims for data intensive applications,
which can arise in other fields such as social networks or
cyber security. Here, graph operations such as parallel Breadth
First Search or Single Source Shortest Path problems are
considered. A sequential reference implementation and parallel
implementations with OpenMP, XMT and MPI are given
by the Graph500 committee [13]. Furthermore, various other
implementations, e.g., with PGAS [14] or hybrid approaches
[15], exist.

For a finer granularity, benchmarks that give individual
results for several operational classes can be used. An example
is the OpenMP micro-benchmark suite [16], [17] that gives a
developer a measure of how well basic constructs of OpenMP
[18] map to a given system. If a developer knows important
parameters that mainly determine the overall performance of an
application in this programming model, he is able to estimate
how well his own application will perform on the system using
these basic constructs.

In [19], Treibig et al. presented the likwid-bench micro-
benchmark tool as part of the performance monitoring and
benchmark suite likwid [20]. This benchmark tool works on an
assembler level measuring streaming loop kernels. It consists
of several default benchmarks and offers the possibility to add
custom bemchmarks. The default benchmarks cover memory
copy, load and memory bandwith. In [21], Hofmann et al. used
the likwid-bench tool along with the performance counter
tool of likwid, to give detailed insights on the current Intel
Haswell CPUs. For this purpose, micro-benchmarks for the
current instruction set of Haswell CPUs, e.g., fused multiply
add (FMA), where added.

Lemeire et al. used micro-benchmarks and a modified
roofline model to characterize current GPUs [22]. These bench-
marks were tailored to address the specific architecture of
GPUs. The benchmarks were implemented in OpenCL and
results of a AMD Cayman GPU and a Nvidia Maxwell GPU
where presented in the publication.

Other micro-benchmark suites, which aim for a finer granu-
larity are proposed in [23], [24], [25]. These benchmark suites
are based on OpenCL. Here, OpenCL is used to compare
memory-related issues, low level floating point operations
and real life applications on different hardware architectures,
including accelerators.

Directly related to the memory performance are the well-
known Stream benchmark for memory bandwidth [26] and
papers that work on an even finer granularity taking coherence
protocols in certain architectures into account [7], [27], [28].

III. CURRENT HARDWARE ARCHITECTURES
This section gives a very brief overview on current HPC

processor architectures and memory technology. It is parti-
tioned into sections on mainstream HPC processor architec-
tures, HPC accelerator architectures and memory technologies.

A. Processor Architectures
We concentrate on the Intel Xeon EP line of current HPC

relevant processors, as these processors are used in nearly all

new systems in the HPC computer Top500 list [8]. Intel’s
recent micro-architectures are Sandy Bridge EP (SB), and
its successor Ivy Bridge EP (IB). The lastest change in the
architecture appeared late 2014 in the Haswell EP processors
(HW). A detailed description of the architectures is given in
the manufacturer’s related literature [29].

Processors nowadays have several cores. In HPC clusters,
multiprocessor nodes with 2 processors are often used. Keep-
ing multiple core-private caches coherent is usually done in
the hardware by cache coherence protocols. Keeping caches
coherent costs latency, bandwidth and may also influence an
architecture’s scalability [7], [28].

B. Accelerator Architectures
Computations of certain application classes can be ac-

celerated using special attached processors. Nvidia graphic
processors (GPU) and Intel Many Integrated Core processors
(MIC) of the Xeon Phi family are currently predominant in
HPC [8].

A Nvidia GPU has a hierarchical design (CUDA archi-
tecture [30]) that differs from that of common CPUs. The
execution units (SE, Streaming Processors) are organized in
multiprocessors, called Streaming Multi-Processors (SM or
SMX), and a GPU has several such multiprocessors. For
example, the Kepler family of GPUs has up to 15 SMX and
192 SE per SMX, resulting in a total of 2880 SE in the largest
device configuration. These execution units are always used by
a group of 32 threads, called a warp. Such an architecture leads
to several aspects that have to be respected in performance
critical programs, e.g., coalesced memory access and thread
divergence [4], [31].

An Intel Xeon Phi coprocessor [32] consists of multiple
CPU-like cores. The current generation Xeon Phi Knights
Corner (KNC) has between 57 and 61 such cores, which are
connected via a bi-directional ring bus. To achieve good per-
formance on a Xeon Phi, the application must use parallelism
as well as vectorization. In [33], requirements for vectorization
are specified for the usage of the Intel compiler, e.g., no jumps
and branches in a loop.

Recent accelerators (i.e., GPU as well as Xeon Phi) are plu-
gin cards connected to the host through a PCI Express (PCIe)
adapter. This adapter is often a severe bottleneck, because the
transfer rate through a PCIe connection is significantly lower
(8 GB/s for PCIe 2.0 x16 and 16 GB/s for PCIe 3.0 x16) than,
for example, memory transfer rates in a host system.

C. Memory Technologies
Memory Technologies are optimized for different aspects.

DDR3 / DDR4 RAM, which is used in CPU-based systems, is
optimized for a short latency time. However, GDDR5 memory,
which is used in accelerators, is optimized for bandwidth.
This difference is important, as the performance of accelerators
mainly comes from Single Instruction Multiple Data (SIMD)
parallelism [34], where the same instruction is applied con-
currently to multiple data items. These data items have to be
fed to the functional units in parallel, asking for high main
memory bandwidth.

All processors discussed here, including recent GPUs, use
caches to speed up memory accesses. While GPUs currently
have at most a 2 level cache hierarchy, CPUs use 3 levels of
caches with increasing sizes and latencies per level. Caches
are only useful if data accesses initiated by the program
instructions obey spatial or temporal locality [34].
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TABLE I. OVERVIEW OF THE MICRO-BENCHMARKS.

Identifier Benchmark Category Application
B1 Memory read latency Memory access Single-thread latency to main memory
B2 Memory bandwidth Memory access Bandwidth to main memory
B3 Atomic update Synchronization Multi-threaded atomic update of a shared scalar variable
B4 Barrier Synchronization Barrier operation of n threads
B5 Reduction Synchronization Parallel reduction of n values to a single value
B6 Communication Communication Data transfer bandwidth to/from an accelerator through PCI Express
B7 DGEMM Computation Parallel dense matrix multiply (compute-bound)
B8 SPMV Computation Sparse matrix multiplied with a dense vector (memory-bound)

IV. PROPOSED MICRO-BENCHMARKS
We propose a set of 8 micro-benchmarks to determine

performance critical parameters in single-node parallel HPC
systems. Table I gives an overview of these benchmarks.
Each single benchmark tests one specific aspect of a hardware
architecture or parallel runtime system on that hardware. These
aspects are performance critical for certain application classes.
One or a combination of these parameters usually defines the
performance bounds of the compute-intensive parts of an appli-
cation. In real-life applications, it is possible that a combination
of these parameters occurs with different factors/weights. It is
up to the developer to use his knowledge of the application
to weight these factors correctly. If the application is truly
dominated by one of these parameters, the developers has an
indication whether an architecture would be suitable for this
application.

The presented set of micro-benchmarks were implemented
in C with OpenMP for the use with Intel processors (including
KNC). However, the OpenMP implementation could also be
used for other shared memory architectures as well, such as
Power 8, ARM, or AMD Processors. Moreover, widely used
C compilers such as the Intel icc or the GNU gcc support
this programming approach. Recently, the GNU gcc added
support for OpenMP 4.0 constructs, which makes it possible
to address future Intel Xeon Phi processors as well. For the
usage with Nvidia accelerators, the commonly used CUDA
programming approach was chosen, as this is the programming
model delivering the best performance on these GPUs. Porting
the CUDA implementation, for example, to OpenCL should
be straightforward, because both programming platforms have
similar concepts, although the syntax is quite different.

In the following, we describe the individual benchmarks
and our reasons for using them.

A. Memory Performance
Memory accesses are often the main performance bottle-

neck in applications, for example in an iterative solver working
on large sparse matrices [3] or graph processing [35]. The key
performance parameters for memory performance are memory
latency and memory bandwidth. An indicator of a latency-
bound application are many accesses to different small data
items (that are not cached). An indicator of a bandwidth-bound
application kernel is a program kernel with low computational
density, i.e., the ratio of the number of operations performed
on data compared to the number of bytes that need to be
transferred for that data is low.

1) Memory Read Latency (B1): Read latency can be deter-
mined by single threaded pointer chasing, i.e., a repeated read
operation of type ptr = *ptr with a properly setup pointer
table. If all accessed addresses are within an address space of
size S (without associativity collisions in the cache) and S is

smaller than the cache size, then all accesses can be stored in
this cache.

2) Memory Bandwidth (B2): The Stream benchmark [26]
is commonly used to measure main memory bandwidth. We
adapted this freely available benchmark for the Xeon Phi using
the OpenMP target construct [18] and for graphic processors
using CUDA programming constructs [36], i.e., both are used
in accerelator mode called from a host.

B. Synchronization Performance
Synchronization between execution units (threads, pro-

cesses, etc.) is necessary at certain points during the program
execution to ensure parallel program correctness. However,
synchronization is often a very performance critical operation
[37], because it requires serialization, e.g., atomic updates,
or overall agreement, e.g., a barrier between the execution
units. Moreover, reduction operations are another important
and performance critical type of synchronization in real life
parallel applications.

1) Atomic Updates (B3): In our atomic update benchmark,
all participating threads perform an atomic increment operation
on a single, scalar, shared, integer variable in parallel. As a side
note, this operation also modifies the variable. Consequently,
the coherence protocol initiates a cache line invalidation/update
in a cache coherent multi-cache based system. The atomic
increment operation is repeated by each thread many times
during the benchmark. The benchmark then gives the time of
one such operation performed by one thread. This operation is
realized by the OpenMP atomic construct on the CPU/Xeon
Phi and a Cuda atomic add operation on the GPU.

2) Barrier (B4): In the barrier benchmark, a barrier op-
eration is carried out repeatedly. For multiprocessors, the
benchmark uses an OpenMP barrier pragma inside a parallel
region. For the Xeon Phi, this program kernel is surrounded
by a target region. The CUDA execution model [36] does
not support a barrier synchronization between all threads as
such, because this would violate the basic concept of warp
independence. In CUDA, a program with global steps is im-
plemented using a sequence of multiple kernels. Therefore, the
closest adequate comparison to a barrier is the kernel launch
time (with an empty kernel), with the ensuing synchronization
waiting for the kernel finalization.

3) Reduction (B5): In the reduction benchmark, a vector
with n elements of type double is reduced to one double
value summing up all vector elements. For a reduction, partial
sums must be summed up in a synchronized way, which is
additional work compared to a sequential implementation and
needs some serialization between parallel entities. The program
for the multiprocessors uses the OpenMP reduction clause in
a parallel for-loop. On multiprocessor systems, the vector is
initialized in parallel, such that parts of the vector are split over
different Non-Uniform Memory Access [34] (NUMA) nodes
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TABLE II. SELECTED HARDWARE PARAMETERS OF THE SYSTEMS USED.

Parameter Processor Systems Accelerator Systems
Architecture SB IB HW KNC M2050 (Fermi) K20m (Kepler) K80 (2×Kepler)4

Clock [GHz] (with TurboBoost) 2.6 (3.3) 2.7 (3.5) 2.6 (3.6) 1.053 1.15 0.706 0.560 (0.875)
Peak double prec. perf.1[GFlops]; 1 proc. 20.8 21.6 33.17 16.8 - - -
Peak double prec. perf.1[GFlops]; all proc. 332.8 518.4 929 1010.8 515 1170 2× 935
Theor. memory bandwidth [GB/s]2 102.4 119.4 136 320 148 208 2×240
Main memory size [GB] 128 256 128 8 3 5 2×12
Degree of parallelism 3 32 48 56 240 448 2496 2×2496
1 In relation to baseclock
2 ECC off for accelerators
3 Including hyperthreads
4 We used only one of the two processors

in a NUMA system. Such a distribution is performed internally
by the operating system following the parallel memory access
pattern. As CUDA does not provide reduction operations itself,
the open source (CUDA-based) Thrust library [38] of Nvidia
is used for this benchmark on the GPU systems.

C. Communication Performance (B6)
In the communication benchmark, we measure the transfer

rate of a certain amount of data between a host and an
accelerator device over PCI Express. This measurement is
carried out for both directions (input data from the host to the
accelerator and result data from the accelerator to the host).

D. Programming Kernels
For many scientific application fields, linear algebra oper-

ations are building blocks and often belong to the most time-
consuming parts of a program. Depending on the problem
origin, dense or sparse matrices occur. Operations on dense
or sparse matrices stress different parts of a system. The
following two evaluation benchmarks cover both matrix types
and stress, therefore, different parts of a system. These are
both performance limiting for many applications, also outside
linear algebra.

1) Compute-bound application kernel – DGEMM (B7):
For dense matrix multiply with a high computational density,
many techniques are known (and applied inside optimized
library functions) that allow this operation to be run near the
peak floating point performance. Consequently, if implemented
adequatly, dense matrix multiply evaluates in essence the float-
ing point capability of a core/processor/multiprocessor system.
This operation has been well researched and is implemented
efficiently in the BLAS library [39] and vendor optimized
libraries such as the Intel MKL [40] and Nvidia cuBLAS [41].

2) Memory-bound application kernel – SPMV (B8): In
contrast, a sparse matrix multiplied with a dense vector
(SPMV) stresses almost only the memory system, as it has
a low computational density. The operation is available for
multiple storage formats [3] and is, at least for larger ma-
trices, memory bandwidth limited and not compute bound.
SPMV is also available in the vendor optimized libraries Intel
MKL [40] and Nvidia cuSPARSE [42], both with a small
selection of supported storage formats for the sparse matrix.
The CSR format [3] is a general format with good/reasonable
performance characteristics for many sparse matrices on CPU-
based systems. For appropriate matrices (that have a small
and ideally constant number of non-zero elements per row),
the ELL format is a favorable storage format on GPUs [43].
This difference is related to the different memory systems
of CPU-multiprocessors and GPU systems. Nevertheless, in
this benchmark we are not interested in the best possible

performance for a specific matrix. We are more interested in
relating the performance of different systems for this type of
operation in a more general way.

V. EXPERIMENTAL SETUP
In this section, we specify the parallel system test envi-

ronment where the benchmarks were applied. Additionally, we
discuss the bencmark parameter settings, because performance
can be a parameterized function, e.g., dependent on the number
of used threads or data items.

A. Test Environment
The used systems include the three latest generations of

Intel server processors: Sandy Bridge-EP (SB), Ivy Bridge-
EP (IB) and Haswell-EP (HW). All of the systems are 2-way
NUMA multiprocessor systems with 2-way hyperthreading
per processor. As representatives for accelerators the Intel
Xeon Phi Knights Corner (KNC), with 4-way hyperthreading,
as a many-core architecture and three most recent Nvidia
GPU architechtures (M2050, K20m, K80) were examined. The
tested accelerators use PCIe 2 x16 for KNC, M2050 and K20m
(both Nvidia GPUs) and PCIe 3 x16 for the Nvidia K80 GPU.
The new Nvidia K80 consists of two Kepler GPUs, which work
as two single devices and have to be programmed seperately.
Only one of the GPUs was used to perform the benchmarks.
Table II summarizes key hardware parameters of the systems
used.

B. Test Parameters
The benchmark tests were executed with the following

parameter settings:
• Memory latency (B1): Variable size of the pointer table

with a single threaded run.
• Memory bandwidth (B2): a) Fixed large vector size

of STREAM_ARRAY_SIZE=40000000 and a repeat factor
of NTIMES=1000 (all systems). b) Same, but different
thread mapping (CPUs, KNC).

• Atomic update (B3): a) Variable number of threads
according to the systems used (all systems). b) Same,
but different thread mapping (CPUs, KNC).

• Barrier (B4): a) Variable number of threads accord-
ing to the systems used (all systems). b) Same, but
different thread mapping (CPUs, KNC).

• Reduction (B5): a) Variable vector size with a full
parallel run. b) Variable thread number with fixed
vector size and different thread mappings (CPUs,
KNC).

• Communication (B6): a) Variable size of the trans-
ferred data (accelerators). b) Pinned and unpinned host
memory (GPUs).
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Figure 1. Strategies for thread mapping on CPUs. In this example 6 threads
are mapped onto 2 processors with 4 cores each. Numbers in boxes are the
thread numbers.

• DGEMM (B7): a) Variable matrix size with a full
parallel run (all systems). b) Fixed matrix size with
a variable number of threads (CPUs, KNC).

• SPMV (B8): Fixed test matrix according to the SPE10
problem [44]. a) SPMV implementation of MKL resp.
cuSPARSE of CSR (all systems). b) Own implementa-
tion of ELL kernel with different thread mapping, ELL
implementation of cuSPARSE (CPUs/KNC, GPUs).

C. Thread Mappings
Thread mapping/binding can be an important aspect achiev-

ing good performance. A thread mapping defines how appli-
cation threads are mapped to hardware units, e.g., processor
sockets, cores in a multi-core CPU, hardware threads in a
hyperthreaded core. On a GPU, the definition of a grid size and
block size defines a 1D-3D partitioning of the application data
space (e.g., a 2D picture) to the hardware units. Thread map-
ping influences load balance, coherence issues, data locality
and more.

Basic mapping strategies on a CPU-based system are (see
Figure 1 for an example):

• Compact: keep consecutive threads as close as pos-
sible in the hardware, e.g., to exploit data locality
between threads in a shared cache. Cores are filled
up one by one with software threads.

• Scattered: spread threads to as many processors as
possible in the hardware, e.g., to exploit as much
memory bandwidth as possible from different CPU
sockets in a NUMA system. If thread i was placed at
processor p, then thread i+ 1 is placed at processor
p+1 with a wrapping at the last processor. This means
that all processors and the corresponding memory
bandwidth is utilized if at least as many software
threads are available as processors.

• Balanced: similar to scattered. Utilize as much pro-
cessors as possible but fill nearby threads to the same
core. This is a combination of locality utilization
(nearby threads are mapped to the same processor
with a unified last level cache for all cores on that
processor) and memory bandwidth allocation (use as
many processors as possible).

OpenMP defines appropriate environment variables to in-
fluence thread mapping strategies [18]. With the Intel icc com-
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Figure 2. Memory latency results, absolute time.
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Figure 3. Memory latency results, relative cycles.

piler this can be accomplished by using the KMP AFFINITY
variable. This variable can be set to either compact or scattered
(or balanced for KNC only) [45]. The names of the strategies
are therefore different in OpenMP and the Intel specific
KMP AFFINITY variable, but the meaning is more or less
the same.

On GPUs the programming model is different to a CPU
programming model. A thread mapping is done by specify-
ing grid and block sizes. Different to a CPU-based system
where usually a 1:1 mapping of software to hardware threads
is established, on a GPU many more software threads are
generated than hardware parallelism is available, with the aim
to hide memory latency. If a hardware thread is blocked by a
memory read operation, another runnable thread gets scheduled
by the hardware scheduler to make the read latency tolerable.
Specifying grid and block sizes partitions the space of software
thread into up to 3 dimensions and these partition units get
scheduled by the hardware scheduler on a GPU. While the
thread mapping done by a programmer on CPU-based systems
is optional, the thread partitioning on a GPU is an important
part of GPU programming.

VI. RESULTS
In this section, we discuss the main results of applying our

proposed benchmarks to the different types of architectures
described in Section V. We concentrate on the interesting

81

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0

50

100

150

200

250

1 10 100

M
em

or
y

ba
nd

w
id

th
[G

B
/s

]

Number of threads
SB
IB

HW
KNC

M2050
K20m

K80

Figure 4. Memory bandwidth results.

50

100

150

200

250

300

SB IB HW KNC M2050 K20 K80

10
20
30
40
50
60
70
80
90
100

M
em

or
y

ba
nd

w
id

th
[G

B
/s

]

E
ffi

ci
en

cy
[%

]

Device
Best [GB/s]

Theor. [GB/s]
Efficiency [%]

Figure 5. Memory bandwidth best results.

aspects of the results. When performance data is plotted as
a function of the number of threads, it is meant as number
of thread blocks for GPUs, because the usage model for
graphic processors differs from a multiprocessor system, as
explained before. On GPUs, usually all stream processors of
such a processor are used (with even more concurrency in the
application to hide latencies) instead of specifying the exact
number of threads, as it is usually done on a CPU.

A. Memory Read Latency (B1)
Figure 2 shows the results for the memory latency with

an access stride of 256 byte in absolute times. Figure 3
shows these results in cycles relative to the respective base
CPU/GPU clock. Clearly visible for all systems are the levels
of the same latency induced by cache sizes of the different
cache levels and the huge difference to a main memory
access (the last step to the right). If only absolute times
are considered, all accelerators have higher latencies than the
processor architectures and the GPU-based Nvidia accelerators
are slower than a CPU-based KNC. Moreover, there seems to
be hardly any improvement between GPU generations. But, if
relative latencies are considered, the GPUs improve over the
generations quite significantly, as the base clock is much lower
while the parallelism is higher. Related to relative cycles, the
newest K80 outperforms the KNC and even gets close to the
CPUs in access to the global/main memory.
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Figure 6. Memory bandwidth results on KNC, different thread mapping
(balanced is nearly the same as scattered).
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The different cache levels show that the measurements on
the M2050 and K80 GPUs have three different levels in access
time, which can be explained by the L1/L2 caches and accesses
to the main memory. On the K20m, only two levels of similar
access times are visible. This is induced by different versions
of the Kepler architecture in the K20m and the K80. The K20m
does not cache global memory accesses in the L1 cache, but
the newer generation K80 does.

On the CPU-based systems, the curves show first the
smaller L1 and L2 caches, then the larger L3 cache and finally,
in a fourth step, the access to the main memory. Access to
the L1, L2, L3 caches is very fast, for L1 and L2 even
on KNC. Altogether the processor systems still outperform
the accelerators in latency time, although newer accelerator
generations have improved (relatively). Therefore, applications
that are already latency bound have a severe problem on
accelerator systems if they cannot hide this latency, e.g., by
allowing many read requests to be open at the same time.

B. Memory Bandwidth (B2)
The memory bandwidth performance is shown in Figure 4

as a function of used threads. For the processor systems, the de-
fault thread scheduling was used here. For graphic processors,
the usage model is different to that of a multiprocessor system,
because usually all stream processors of such a processor are
used instead of specifying the exact number of threads. The
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performance number(s) for GPUs are therefore given as a
dashed line with all stream processors used. In contrast to
the results on latency, the accelerators perform better than the
CPU systems. A summary and comparison to the theoretical
bandwidth is given in Figure 5. It is noteable that the KNC
performs relativly poorly here. Its measured bandwidth is
comparable to the Haswell CPUs and the older Nvidia Fermi
GPUs. Moreover, the KNC is not able to reach its theoretical
bandwidth at all, though it has by far the highest theoretical
bandwidth of all tested systems. For the CPUs, the efficiency
within one similar microarchitecture (Sandy Bridge and Ivy
Bridge) stays the same. A gain in performance is achieved
with the new Haswell microarchitecture.

Figure 6 shows the bandwidth test for the KNC with
different thread mapping in OpenMP. A significant difference
can be observed when different thread mappings are used.
If the compact thread mapping is used (same as in Figure
6), bandwith increases steadily with an increasing number of
threads. The performance drops with the last four threads,
because, at this point, the last core with its four hardware
threads is used in the application, but that core is busy
waiting for operating system tasks (communication with the
host system).

When a scattered or balanced thread mapping is used, the
impact of the four hardware threads per core can be seen. The
performance increases until all cores are evenly utilized (one
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Figure 10. Atomic results CPU, different thread mapping.
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Figure 11. Barrier results.

thread per core). Then, as soon as one core gets a second
thread, the performance drops and increases again steadily.
Again, the impact of the operating system core can be seen
when all available threads of the KNC are used.

In Figure 7, similar to the KNC, changing the thread
mapping for processor systems shows differences between
compact and scattered thread mapping. When using a compact
thread mapping on all three CPU architectures, the effect
when the second CPU socket gets populated with threads
is clearly visible. When only one socket is used, bandwith
increases slowly to a point of saturation. Then, when the
second socket is used, bandwith increases dramatically. This
behavior is different to the KNC compact thread mapping,
where a steady increase can be observed. This can be explained
by the different layout of the memory connection in KNC
(ring-bus) and the CPUs (cc-NUMA).

For the scattered thread mapping, the Ivy Bridge system
behaves differently to the other CPU systems, because this
node could not be used exclusively in our tests (some system
services were active). For the Sandy Bridge and Haswell,
results show similar behavior. First the bandwith increases
steadily but oscilates. With an odd number of threads, the
bandwith drops, and with an even number of threads, the
bandwith rises again, because here the memory channels of
both CPUs can be used evenly. Moreover, the overall bandwith
drops when hyperthreads get used. This effect can be clearly
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Figure 13. Barrier results on CPUs, different thread mapping.

seen for Sandy Bridge with the strong drop in the curve.
For the Haswell system, that drop is not as strong, but still
the bandwidth decreases steadily from the point hyperthreads
where are used. Furthermore, the bandwith drops even below
the level of compact thread mapping at a certain point.

C. Atomic Updates (B3)
Figure 8 shows the performance results of the atomic

operation on the different systems. On the multiprocessor
systems, time increases linearly, proportional to the number of
competing threads in use. Because the performance numbers
show the normalized time for one operation of one thread,
there is an increase in time per operation with the number of
threads. This increase can be explained by the coherence and
synchronization protocol, which is run by the processors/cores
to ensure coherence and atomicity of such an operation. With
more competing threads involved, the overhead increases [35].
For all three GPU systems, the time is constant, which can be
explained by the use of the single unified L2 cache and the
weak memory model without memory coherence. Moreover,
the performance improvement for atomic operations from
Fermi (M2050) to Kepler (K20m, K80) is clearly visible in
this figure. For the KNC with compact thread mapping, quite
large fluctuations can be observed (note the logscale of the
plot).

Figure 9 shows the atomic benchmark for KNC with
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different thread mappings. When scattered and balanced thread
mapping is used, the fluctuations become smaller, but the
performance change with an increasing number of threads is
still fairly unsteady. An explanation for this could be the ring
bus of the KNC. The cache of all cores in the KNC have to be
kept coherent via this ringbus. Moreover, from the time when
one core is populated with all four hardware threads, the time
for an atomic update increases significantly.

Figure 10 shows the results for changing the thread map-
ping for processor systems. The curves show the same linear
behavior for compact and for scattered thread mapping.

D. Barrier (B4)
Figure 11 illustrates performance results of the barrier test

with the default thread mapping. The barrier synchronization
on the KNC shows a similar behavior to that on the multipro-
cessor systems with a linear increase with the number of used
threads. Using the last core on KNC and on multiprocessors
shows a large performance degradation. Again this can be
explained by operating system tasks that perturb the (global)
barrier operation, if the last available hardware thread is used.

For the Nvidia accelerators, the number of threads in the
figure represents the number of used thread blocks (with 1024
threads per block used). The figure shows that the kernel
launch time is nearly constant and equal for M2050, K20m
and K80. Further, it does not depend on the number of blocks.
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Figure 17. Communication performance results, pinned memory.

The impact of different thread mappings for the KNC can
be seen in Figure 12. The compact strategy is faster compared
to scatter, because threads on the same core are synchronized
faster than between cores. Therefore, utilizing as few cores as
possible for a fixed thread count is the fastest strategy.

Figure 13 shows that, for the multiprocessor systems, the
barrier operation is faster with few threads if the compact
thread mapping is used (using less cores utilizing the hyper-
threads on these cores) compared to the scatter strategy. When
all threads are used, the performance is invariant of the thread
mapping strategy.

E. Reduction (B5)
For the reduction test, Figure 14 shows the parallel run

time using all available parallelism on each system with an
increasing vector size. The M2050 card was limited by the
available memory size, thus the largest vector size used on
other systems could not be used on this system. The GPUs
are slower than the multiprocessors for a smaller number of
elements, and they are faster than the multiprocessors for large
vectors, which corresponds to the usage model of GPUs.

In Figure 15, the results for the multiprocessors with
varying thread numbers and different thread mappings are
shown. Here, a sufficiently large vector with 109 elements was
chosen. The figure shows that scattered thread mapping has
a better overall performance than compact thread mapping.
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Figure 18. Communication performance results, unpinned memory.
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For a compact thread mapping, the time for the reduction
decreases faster when the second CPU socket is used and
both memory channels get used. However, times for compact
and scattered thread mapping are equal when all threads are
used. Furthermore, for scattered thread mapping, the effect of
hyperthreads can be seen in the jumps of the execution time.

Figure 16 shows the results for a variable number of
threads with a fixed vector size of 8×108 on KNC. Again the
compact thread mapping shows an overall weaker performance
than the scattered thread mapping due to memory bandwidth
requirements. For a scattered thread mapping, the effect of
the 4-way hyperthreading can be seen in the jumps of the
execution time, too. Similar to the multiprocessors, compact
and scattered thread mapping have equal results when all
threads are used.

F. Communication Host-Device (B6)
For the communication benchmark experiments, the data

transfer from the host to the device and back from the device
to the host was considered. Moreover, we differentiated on
the GPUs for the communication to/from a GPU between
pinned and unpinned host memory. For GPUs, it is explicitly
possible to allocate page-locked memory on the host using
CUDA functions [36].

Figures 17 and 18 show data transfer rates in GB/s from
the host to the attached accelerator and vice versa for pinned
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Figure 20. DGEMM results, single threaded.
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Figure 21. DGEMM results, full parallel.

and unppined memory. For KNC there is no such distinction.
The figures show that, for a reasonably large data size, the
communication links are used efficiently on the KNC, the
theoretical data transfer rate of 8 GB/s for PCIe 2.0 minus
protocol overhead can nearly be reached. Figure 17 shows that
this is also true for the K20m and M2020 GPUs, when pinned
memory is used. Here, the K20m and the M2050 perform
similarly in data transfer to the device. For the transfer back
from the accelerator to the host, there is a performance drop
on the M2050, which reaches only approx. 5 GB/s instead
of nearly 7 GB/s as on the other accelerators. The lower
bandwidth seems to be a problem with our combination of
host system and accelerator card.

On the K20m, the transfer from the device performs
slightly better than to the device. For the K80, the transfer
rate to and from the device is the same for larger data sizes,
but this value does not reach the theoretical limit for the PCIe
3. Perhaps this limit could be reached if both GPUs of the
K80 are utilized (as explained, we used only one of them).
Moreover, for smaller data sizes, again transfer rates from the
K80 are better than to the K80. The difference between host
to device and device to host bandwidth for the GPUs could be
due to the Direct Memory Access (DMA) initiator. When the
DMA is initiated from the CPU, it has a better performance.

Figure 18 shows that not using pinned memory for GPUs
deteriorates the transfer rate. The K20m and M2050 have
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Figure 22. DGEMM best results, full parallel.
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Figure 23. DGEMM results, thread number variable, n=5000.

almost completely lower transfer rates than the KNC and do
not reach the theoretical limit at all. Moreover, in contrast to
pinned memory, transfer rates from and to these GPUs show
nearly the same behavior. The K80 is able to reach the pinned
memory transfer rates only for larger data sizes.

Figure 19 summarizes the best communication results of
the acclerators. It clarifies that there is only a minor difference
between communication to or from the device. But there is
a quite large difference in transfer rates between pinned and
unpinned memory on GPUs.

G. DGEMM (B7)
In Figure 20, the results for a single threaded run with

variable matrix dimension of the DGEMM benchmark are dis-
played. Here the GPUs are omitted, because a single threaded
run does not correspond to the GPU usage model. It can be
seen that, for an increasing matrix size, the perfomance quickly
saturates.

The KNC has by far the weakest single thread performance
of all CPU-like systems, because the single CPUs in the
KNC have a rather limited performance compared to the other
multiprocessors used. Moreover, Sandy Bridge and Ivy Bridge
show nearly the same performance because they have more or
less the same microarchitecture. The Ivy Bridge performs only
a little bit better because of its higher clock. Finally, it can be
seen that the new Haswell shows the best performance, twice
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Figure 24. DGEMM on HW, thread number variable.
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Figure 25. SpMV results, CSR format.

the performance of the older systems.
Subsequently, Figure 21 displays the results of the

DGEMM benchmark for a full parallel run (now GPUs in-
cluded) with variable matrix size. Again, on all systems, the
perfomance rises quickly and reaches saturation for sufficently
large matices. As one would expect, the K80 shows the
highest performance, because it has the highest theoretical
performance.

Figure 22 summarizes the performance results for the
dense matrix multiply operation. Here, only the best perfor-
mance over all matrix sizes is given. Moreover, the theoretical
(base) performance and the efficiency (performance divided
by theoretical (base) performance) for each system are shown.
As expected, the operation has better performance on the
accelerators due to their better raw floating point performance,
which can be utilized in a DGEMM operation. It can be seen
that, on the majority of the processor systems, almost peak
performance is reached. The Haswell processor even shows
better performance than the given theoretical peak performance
in Table II (related to the base clock). This can be explained
by the intelligent turbo boost and temporal overclocking of
these processors. Moreover, the Haswell processors are the
first CPUs that reach (nearly) one Teraflop performance. That
makes them comparable to even recent accelerators. Haswell
outperforms the older Fermi architechture and the KNC, which
does not reach its theoretical performance at all. The Haswell
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Figure 26. SpMV results, ELL format.
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results for matrix multiply are on nearly the same level as the
recent Kepler K20m GPU and are only clearly beaten by the
new Kepler K80 (with one GPU used). The K80 also shows
better performance than its given theoretical peak performance
based on the base clock. Again, this can be explained by the
use of turboboost.

Furthermore, the number of threads on the CPU systems
and KNC were varied for a dense matrix with a fixed size
(n = 5,000) that is large enough to reach the compute perfor-
mance limit. The results for that configuration are shown in
Figure 23. For the KNC, the performance increases linearly
(logscale used) until all threads are used. However, for all
CPU systems, the performance increases linearly until a certain
point (hyperthreads come into use) and then remains at that
level. In Figure 24, this is shown for the Haswell architecture.
Here, without the logscale, one can clearly see the linear
increase in performance. Moreover, the figure clearly shows
that the stagnation begins when hyperthreads are used. For the
KNC this is different. Here, the hyperthreads have to be used
to achieve performance [32].

H. SPMV (B8)
Figures 25 and 26 show the results for the SPMV bench-

mark using the CSR format and the ELL format, respectively.
For the multiprocessors and the KNC, the number of threads
was varied. For the GPUs the cuSPARSE library was used,

87

International Journal on Advances in Systems and Measurements, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0.001

0.01

0.1

1

1 10 100

Ti
m

e
[s

]

Number of threads
CSR compact

CSR scatter
CSR balanced
ELL compact

ELL scatter
ELL balanced

CSR MKL

Figure 28. SpMV on KNC, CSR and ELL, different thread mapping.

consequently, the parallelism could not be explicitly controlled.
Hence, in all SPMV figures, the GPU results are presented as
a dashed line. In Figure 25, the results for the CSR format
using the MKL and the cuSPARSE library are shown, because
it is assumed that these highly optimized vendor libraries can
achieve the best performance for the particular architectures.
Overall, it can be seen that, for the test matrix in CSR format,
the KNC shows the weakest performance, the Haswell CPU
can compete with the older M2050 and K20m and the K80
shows the best performance. For the multiprocessors, it can
be seen that the execution time first declines, but then rises
again after a certain point (details see below). For the KNC,
the execution time decreases steadily until all cores are used,
again when the last core gets utilized there is a jump in the
execution time because of the operating system administration.

Figure 26 shows the results for the ELL matrix format that
is supposed to be a more suitable format for GPUs compared
to the CSR format [43]. For the test matrix, this can indeed be
verified, because here all GPU systems show relatively better
performance than the multiprocessor systems and the KNC,
which again has the weakest performance. Moreover, even the
absolute execution times show an improvement for the GPUs
and a degradation for the multiprocessors and the KNC. For the
multiprocessors and KNC, the results of the scattered thread
mapping are shown because this performed better on these
system (again, for details see below).

As a summary, in Figure 27 only the best results for a
system and a format are given. All GPU systems perform
well, compared to the multiprocessors and KNC. The K20m
performs around 26% faster than the M2050 using the ELL
format. The low performance improvement of the K20m can
be explained by the fact that the SPMV operation is memory
bound and the memory bandwidth of the K20m is only around
25% higher compared to the M2050. Similar relations apply
for K20m and K80. Surprisingly, the KNC shows the weakest
performance in this test although this card has the highest
nominal memory bandwidth of all used systems. The low
performance is related to the bandwidth results, where the
KNC reached only half of its peak memory bandwidth.

We investigated further the weak performance of the KNC.
Figure 28 shows results on the KNC for the CSR and ELL
format. Here a rather simple own OpenMP implementation
with different thread mappings was used and performance
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Figure 29. SpMV results on HW, CSR and ELL, different thread mapping.

compared to the Intel MKL version. The figure shows that our
own CSR version with all thread mappings performs better
than the Intel MKL version.

Figure 29 shows detailed results for the Haswell multipro-
cessor. Here the SPMV using CSR and ELL with different
thread mapping and the implementation of the MKL for the
CSR format are compared. The CSR format has an overall bet-
ter performance for this matrix on the Haswell multiprocessors
than the ELL format. Again, the curve for the execution time of
the scattered kernels has jumps due to the use of hyperthreads.

Once more it should be pointed out that, as a common
representative of memory bandwidth-bound application ker-
nels, the SPMV benchmark should give a rather general view
on these architectures. For detailed insights on computing
techniques and further formats for sparse matrices see, for
example, [3], [4], [43].

VII. DISCUSSION
Characteristics of the examined architectures could be

revealed using the proposed benchmarks. Additionally, the
effect of different thread mappings for CPU based architectures
was shown.

For memory latency, GPUs are still behind CPU-based
systems in absolute times, but newer GPUs gain performance
in terms of relative clock cycles, alleviating the effects of
latency. However, on GPUs, latency time (and clock rate) is
traded against parallelism, which follows the usage model of
GPUs.

For the memory bandwidth benchmark, GPUs outperform
multiprocessor systems and also the KNC. Moreover, the KNC
shows a fairly weak memory bandwidth in practice, although
it has the highest theoretical memory bandwidth. If on CPUs
and KNC not all available hardware threads are used, scattered
thread mapping should be used, to utilize as much bandwidth
as possible.

For the atomic operations, it was shown that the strong
cache coherence model in CPU based systems is disadvante-
geous for the performance of that operation. This is especially
true for the current MIC architechture of the KNC, where a lot
of caches have to be kept coherent. The weak cache coherence
of CUDA has clear performance advantages here.

Barrier operations are usually used to separate different
program stages. The kernel launch time on a GPU (comparable
to such a use) is independent of the number of used threads
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blocks. This is different on CPUs where the number threads
and thread mapping have an impact on the performance of a
barrier. The more threads, the longer the time for the barrier
operation. But here a compact thread mapping is better for
barrier operations if not all available hardware threads are used.

For the reduction operation, for a small amount of data,
CPU-based systems with fast L1/L2 caches and a low latency
have an advantage compared to GPUs. For a large amount of
data, GPUs with the higher bandwidth outperform the CPUs.

For the communication between a host and an accelerator,
it was shown that, for GPUs, pinned memory should be used to
achieve good transfer rates. The accelerators generally reached
their respective theoretical transfer rates via the PCI Bus for
sufficiently large data packages. However, these PCI transfer
rates of at most 8/16 GB/s (2nd/3rd generation PCIe) are still
far behind memory transfer times of approx. 100 GB/s on
two socket CPU systems. Therefore, the PCIe is still a severe
bottleneck for accelerators. Particularly, the transfer of a small
amount of data shows only low transfer rates. Consequently,
the number of transfer packages should be reduced. Instead of
many small transfers, a few large transfers should be preferred.
Additionally, an asynchronous transfer should be used to hide
the latency of such an operation. These aspects mean that
accelerators are not appropiate for kernels that depend a lot
on such a communication.

The DGEMM benchmark reached (near) peak floating
performance on all systems, when it was executed with enough
parallelism and sufficiently large matrices. For same gener-
ations, GPUs show a performance improvement compared
to CPUs based on their better raw performance. On CPUs,
DGEMM computations do not benefit from the use of hyper-
threads due to way hyperthreads work (see, for example, [46]).

Generally, memory bandwidth-bound kernels such as the
SPMV are far from reaching peak floating point performance
on a system. However, these operations can benefit from the
high memory bandwith of recent accelerators, especially on
GPUs. The KNC shows severe problems here. This result
reflects the result of the memory bandwith benchmark, where
the KNC showed a weak performance, too.

VIII. CONCLUSIONS
This paper introduced a set of benchmarks to determine

important performance parameters of single-node parallel sys-
tems. One or a combination of these parameters are often
performance limiting in parallel applications. The benchmarks
can easily be ported to other architectures.

The benchmarks were applied to systems of the same basic
architecture but different processor generations (Intel Haswell,
Ivy Brige, Sandy Bridge) as well as to different architectures
(CPU, two different accelerator architectures).

It was shown that some parameters (e.g., the memory-
related ones) show fairly different performance characteristics
between the systems, qualifying or disqualifying a system for
certain application classes. In contrast, all systems showed
similar behavior for compute-dense problems reaching near-
peak floating point performance, which is reasonably compara-
ble between accelerators and latest generation multiprocessors.
Due to design decisions in the processor architecture, graphic
processors show a remarkable performance on some synchro-
nization operations, operations that often limit the parallel
performance.

For certain application classes, additional performance pa-
rameters might be important where appropriate benchmarks
could be developed as well. This paper discussed only single-
node parameters. An extension of this work would be to
include cluster architectures, i.e., multiple-node architectures.
Further investigation could include also the impact of different
programming models such as OpenACC or OpenCL instead of
CUDA on a GPU.
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