
266

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Open Source Software and Some Licensing Implications to Consider

Iryna Lishchuk

Institut für Rechtsinformatik

Leibniz Universität Hannover

Hannover, Germany

e-mail: lishchuk@iri.uni-hannover.de

Abstract — As more and more areas of science make use of

open source software, legal research seeks to reconcile various

open source licenses (OSS) (which may be used in a single

research project) and explores solutions to allow exploitation of

software outcomes in a license-compliant way. In this paper,

we consider some licensing implications of open source licenses

along with solutions on how to distribute software

developments in a license compatible way. The steps

undertaken in course of defining a license and checking license

compatibility are demonstrated by a case study.

Keywords - open source software; free software; open source

licensing; copyleft.

I. INTRODUCTION

As previously discussed in the paper “Licensing
Implications of the Use of Open Source Software in
Research Projects”, presented at INFOCOMP 2016 [1], the
use of open source software in IT-projects may produce
licensing implications. Such implications may in turn
interfere with the plans of the developer on the potential
exploitation of newly developed software. However, as we
found out and describe below, some potentially risky legal
issues can be avoided a priori by applying the basic
knowledge of license terms and managing the use of
dependencies in a legally and technically skillful way. We
describe in simple terms the basic ideas and principles of free
and open source software (FOSS) and suggest some
guidelines, which should help a developer to make such uses
of OSS, which would go in line with the exploitation plans
of the developer and the license terms.

Some key areas of computing, such as
Apple/Linux/GNU, Google/Android/Linux, rely on open
source software. There are numerous platforms and players
in the market of OSS, which offer their tools “open source”,
but dictate their own rules for using their developments.
Well-known examples are the Apache Software Foundation
(ASF) and the Apache http server; the Mozilla Foundation,
whose browser Firefox makes strong competition to Google
Chrome and Microsoft Internet Explorer; the Free Software
Foundation with its benchmarking GNU project. The
bringing of such innovative products to the market enriches
the software development community and helps solving
various technical problems. On the other hand, binding the
use of such products within the rules of the platforms may
also cause legal challenges for the developers, who try to
combine products of several platforms in one project.

Many research projects use the potential of OSS and
contribute to the open source movement as well. One

example is the EU FP7 CHIC project in the area of health
informatics (full title “Computational Horizons In Cancer
(CHIC): Developing Meta- and Hyper-Multiscale Models
and Repositories for In Silico Oncology” [2]). CHIC is
engaged in “the development of clinical trial driven tools,
services and infrastructures that will support the creation of
multiscale cancer hypermodels (integrative models)” [2]. In
the course of this, it makes use of OSS. For example, the
hypermodelling framework VPH-HF relies on an open
source domain-independent workflow management system
Taverna [3], while an open source finite element solver,
FEBio, is used in biomechanical and diffusion modeling [4].

CHIC also explores the possibility of releasing the
project outcomes “open source” as well. This is part of a
wider trend in all areas of scientific research, in which OSS
is becoming increasingly popular. However, while the use of
OSS may benefit the conduct of the project and promote its
outcomes, it may at times limit the exploitation options.

In this paper, we look into the licensing implications
associated with the use of OSS and open sourcing the project
outcomes. Also, we seek to suggest solutions on how
licensing implications (and incompatibility risks) may best
be managed. The rest of this paper is organized as follows.
Section II describes the notion of FOSS and elaborates on
the license requirements for software distribution. Section III
addresses peculiarities of the set of GNU General Public
Licenses (GPL) and points up some specific aspects
stemming from the use of GPL software. In Section IV, we
consider some instruments for solving license
incompatibility issues. The article concludes by way of a
case study in Section V, showing how the use of OSS may
impact on future licensing of software outcomes.

II. FREE AND OPEN SOURCE SOFTWARE

Open source software is not simply a popular term, but it

has its own definition and criteria, which we describe below.

A. Open Source Software

According to the Open Source Initiative (OSI), “Open

source doesn't just mean access to the source code. The

distribution terms of open-source software must comply

with the following criteria…” [5]. These requirements

normally dictate distribution of a program: either in source

form (a script written in one or another programming

language, such as C
++

, Java, Python, etc.) or as a compiled

executable, i.e., object code (“a binary code, simply a

concatenation of “0”‘s and “1”‘s.” [6]).

The basic requirements of OSS are as follows:

267

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1. Free Redistribution. The license may not restrict
distributing a program as part of an aggregate software
distribution and/or may not require license fees.

2. Source Code. The license must allow distribution
of the program both in source code and in compiled form.
By distribution in object code, the source code should also
be accessible at a charge not exceeding the cost of copying
(download from Internet at no charge).

3. Derived Works. The license must allow
modifications and creation of derivative works and
distribution of such works under the same license terms.

4. Integrity of The Author's Source Code. The license
may require derivative works and modification to be
distinguishable from original, such as by a version number
or by name.

5. No Discrimination Against Persons or Groups.
6. No Discrimination Against Fields of Endeavor.
7. Distribution of License. The license terms apply to

all subsequent users without the need to conclude individual
license agreements.

8. License Must Not Be Specific to a Product. The
license may not be dependent on any software distribution.

9. License Must Not Restrict Other Software. The
license must not place restrictions on other programs
distributed with the open source program (e.g., on the same
medium).

10. License Must Be Technology-Neutral. The license
may not be pre-defined for a specific technology [5].

There are currently more than 70 open source licenses,
which can be categorized according to the license terms.

B. Free Software

One category is free software, which also has its own

criteria. As defined by the Free Software Foundation (FSF),

a program is free software, if the user (referred to as “you”)

has the four essential freedoms:
1. “The freedom to run the program as you wish, for

any purpose (freedom 0).
2. The freedom to study how the program works, and

change it so it does your computing as you wish (freedom
1). Access to the source code is a precondition for this.

3. The freedom to redistribute copies so you can help
your neighbor (freedom 2).

4. The freedom to distribute copies of your modified
versions to others (freedom 3). By doing this you can give
the whole community a chance to benefit from your
changes. Access to the source code is a precondition for
this.” [7].

The GPL, in its different versions, is a true carrier of

these freedoms and GPL software (when distributed in a

GPL compliant way) is normally free. The licenses, which

qualify as free software licenses are defined by the FSF [8].

C. Free Software and Copyleft

The mission of free software is to provide users with

these essential freedoms. This mission is achieved in a way

that not only the original author, who licenses his program

under a free license first, but also the subsequent developers,

who make modifications to such free program, are bound to

release their modified versions in the same “free” way.

Maintaining and passing on these freedoms for

subsequent software distributions are usually achieved by

the so called copyleft. “Copyleft is a general method for

making a program (or other work) free, and requiring all

modified and extended versions of the program to be free as

well.” [9]. A copyleft license usually requires that modified

versions be distributed under the same terms. This

distinguishes copyleft from non-copyleft licenses: copyleft

licenses pass identical license terms on to derivative works,

while non-copyleft licenses govern the distribution of the

original code only.

D. Licensing Implications on Software Distribution

From the whole spectrum of FOSS licenses, mostly the
free licenses with copyleft may produce licensing
implications on software exploitation. The other free licenses
without copyleft are, in contrast, rather flexible, providing
for a wider variety of exploitation options, subject to rather
simple terms: acknowledgement of the original developer
and replication of a license notice and disclaimer of
warranties.

Such more relaxed non-copyleft licenses usually allow
the code to be run, modified, distributed as standalone and/or
as part of another software distribution, either in source form
and/or as a binary executable, under condition that the
license terms for distribution of the original code are met.
Among the popular non-copyleft licenses are: the Apache
License [10], the MIT License [11], the BSD 3-Clause
License [12], to name but a few. “Code, created under these
licenses, or derived from such code, may “go “closed” and
developments can be made under that proprietary license,
which are lost to the open source community.” [13].

The conditions for distributing the original code under
these non-copyleft licenses are rather simple. The basic
rationale is to keep the originally licensed code under the
original license (irrespective whether it is distributed as
standalone or as part of software package) and to inform
subsequent users that the code is used and the use of that
code is governed by its license. The basic principle, which,
generally, not only these, but all open source licenses follow,
is that the use of the original code and its authors should be
acknowledged. For instance, the MIT license requires that
“copyright notice and this permission notice shall be
included in all copies or substantial portions of the
Software” [11]. The easiest way to fulfill this license
requirement is to keep all copyright and license notices
found in the original code intact. By this, the copyright
notice, the program license with disclaimer stay replicated
(maintained) throughout the whole re-distribution chain.

Failure to do so may, on the one hand, compromise the
ability of the developer to enforce his own copyright in parts
of the code, which he wrote himself, and, on the other hand,
put him at risk of becoming an object of cease and desist
action or a lawsuit [13].

268

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. Copyleft Licenses

At the same time though, the free licenses with copyleft,

in promoting the four essential freedoms to the users, may

take away the developer´s freedom to decide on licensing of

his own software, by pre-determining a license choice for

him. While supporters of free software speak about copyleft

as protecting the rights, some developers, affected by the

copyleft against their will, tend to refer “to the risk of

“viral” license terms that reach out to infect their own,

separately developed software and of improper market

leverage and misuse of copyright to control the works of

other people.” [14].

The GPL Version 2 (GPL v2) [15] and Version 3 (GPL

v3) [16] are examples of free licenses with strong copyleft.

GPL copyleft looks as follows. GPL v2, in Section 1, allows

the user “to copy and distribute verbatim copies of the

Program's source code… in any medium” under the terms

of GPL, requiring replication of the copyright and license

notice with disclaimer and supply of the license text. In

Section 2, the GPL license allows modifying the program,

“thus forming a work based on the Program, and copy and

distribute such modifications or work under the terms of

Section 1 above”, i.e., under GPL itself. In doing so, it

implies that a developer may distribute his own

developments, only if he licenses under GPL. In some cases,

this binding rule may place the developer in a dilemma:

either to license under GPL or not to license at all.
A more positive aspect of GPL is that at times it may be

rather flexible. In particular, not all modes of using a GPL
program create a modified version and not all models of
software distribution are necessarily affected by GPL.

III. GPL AND GPL COPYLEFT

Among the decisive factors whether software is affected

by GPL copyleft are: the mode, in which software uses a

GPL program, the version and wording of the applicable

GPL license, and the method of how software will be

distributed.

A. Mode of Use

The mode of use essentially determines whether a

development qualifies as “a work based on a GPL

program” or not. If because of using a GPL program,

software qualifies as a derivative work, i.e., a“work based

on the Program”, then according to the terms of GPL it

shall go under GPL [15]. Otherwise, if a program is not a

modified version of GPL, then there is no binding reason for

it to go under GPL.

In this regard, not all uses of a GPL program will

automatically produce a derivative work. For example,

developing a software using the Linux operating system, or

creating a piece of software designed to run on Java or

Linux (licensed under GPL v2 [17]) does not affect

licensing of this software (unless it is intended to be

included into the Linux distribution as a Linux kernel

module). Also, calculating algorithms by means of a GPL

licensed R (a free software environment for statistical

computing and graphics [18]) in the course of developing a

software model does not affect licensing of a model, since

the model is not running against the GPL code.

Even so, a distinctive feature of GPL is that, in contrast

to the majority of other open source licenses, which do not

regard linking as creating a modified version (e.g., Mozilla

Public License [19], Apache License [10]), the GPL license

considers linking, both static and dynamic, as making a

derivative work. Following the FSF interpretation criteria,

“Linking a GPL covered work statically or dynamically with

other modules is making a combined work based on the

GPL covered work. Thus, the terms and conditions of the

GNU General Public License cover the whole combination”

[20]. This is interpretation of GPL license by the FSF and

this position is arguable. When testing whether linking

programs produces a GPL-derivative, the technical aspects

of modification, dependency, interaction, distribution

medium and location (allocation) must be taken into account

[21].

The controversy Android v Linux [22] illustrates how

Google avoided licensing of Android under GPL because

the mode, in which it used Linux stayed beyond the scope of

Linux GPL license. This case concerned the Android

operating system, which relies on the GPL licensed Linux

kernel and which was ultimately licensed under the Apache

License. Android is an operating system, primarily used by

mobile phones. It was developed by Google and consists of

the Linux kernel, some non-free libraries, a Java platform

and some applications. Despite the fact that Android uses

the Linux kernel, licensed under GPL v2, Android itself was

licensed under Apache License 2.0. “To combine Linux with

code under the Apache 2.0 license would be a copyright

infringement, since GPL version 2 and Apache 2.0 are

incompatible” [22]. However, the fact that the Linux kernel

remains a separate program within Android, with its source

code under GPL v2, and the Android programs

communicate with the kernel via system calls clarified the

licensing issue. Software communicating with Linux via

system calls is expressly removed from the scope of

derivative works, affected by GPL copyleft. A note, added

to the GPL license terms of Linux by Linus Torvalds, makes

this explicit:

“NOTE! This copyright does *not* cover user programs

that use kernel services by normal system calls - this is

merely considered normal use of the kernel, and does *not*

fall under the heading of "derived work". Also note that the

GPL below is copyrighted by the Free Software Foundation,

but the instance of code that it refers to (the linux kernel) is

copyrighted by me and others who actually wrote it.” [17].

Examples of normal system calls are: fork(), exec(),

wait(), open(), socket(), etc. [22]. Such system calls operate

within the kernel space and interact with the user programs

in the user space [23]. Taking into consideration these

technical details, “Google has complied with the

269

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

requirements of the GNU General Public License for Linux,

but the Apache license on the rest of Android does not

require source release.” [22]. In fact, the source code for

Android was ultimately released. However, in the view of

the FSF, even the use of Linux kernel and release of the

Android source code do not make Android free software. As

commented by Richard Stallman [22], Android comes up

with some non-free libraries, proprietary Google

applications, proprietary firmware and drivers. Android

deprives the users of the freedom to modify apps, install and

run their own modified software and leaves the users with

no choice except to accept versions approved by Google.

What is most interesting, that the Android code, which has

been made available, is insufficient to run the device. All in

all, in opinion of Richard Stallman, these “faults”

undermine the philosophy of free software [22].

B. GPL Weak Copyleft and Linking Exceptions

Another factor that determines whether a development is

subject to GPL copyleft is the form of GPL license used.

Some GPL licenses have so-called weak copyleft.

Examples are the GNU Library or "Lesser" General Public

License, Version 2.1 (LGPL-2.1) [24] and Version 3.0

(LGPL-3.0) [25].

By the use of these licenses, a program or an application,

which merely links to a LGPL program or library (without

modifying it), does not necessarily have to be licensed under

LGPL. As LGPL-2.1 explains, “A program that contains no

derivative of any portion of the Library, but is designed to

work with the Library by being compiled or linked with it, is

called a "work that uses the Library". Such a work, in

isolation, is not a derivative work of the Library, and

therefore falls outside the scope of this License.” [24].

LGPL allows combining external programs with a LGPL

licensed library and distributing combined works under the

terms at the choice of the developer. What LGPL requires is

that the LGPL licensed library stay under LGPL and license

of the combined work allow “modification of the work for

the customer's own use and reverse engineering for

debugging such modifications” [24].

Some practical consequences of how a switch from

LGPL to GPL in one software product may affect

exploitation and usability of another software product are

demonstrated by the dispute that arose between MySQL and

PHP [21].

PHP is a popular general-purpose scripting language that

is especially suited to web development [26]. PHP was

developed by the Zend company and licensed under the

PHP license, which is not compatible with GPL [27]. PHP is

widely used and distributed with MySQL in web

applications, such as in the LAMP system (standing for:

Linux, Apache, MySQL and PHP), which is used for

building dynamic web sites and web applications [28].

MySQL is the world's most popular open source database,

originally developed by MySQL AB, then acquired by Sun

Microsystems in 2008, and finally by Oracle in 2010 [29].

In 2004, MySQL AB decided to switch the MySQL

libraries from LGPL to GPL v2. That is when the

controversy arose. The PHP developers responded by

disabling an extension in PHP 5 to MySQL. If PHP was

thus unable to operate with MySQL, the consequences for

the open source community, which widely relied on PHP for

building web applications with MySQL, would be serious

[21]. To resolve the conflict, MySQL AB came up with a

FOSS license exception (initially called the FLOSS License

Exception). The FOSS license exception allowed developers

of FOSS applications to include MySQL Client Libraries

(also referred to as "MySQL Drivers" or "MySQL

Connectors") within their FOSS applications and distribute

such applications together with GPL licensed MySQL

Drivers under the terms of a FOSS license, even if such

other FOSS license were incompatible with the GPL [30].

A similar exception may be found in GPL license text of

the programming language Java. Java is licensed under GPL

v2 with ClassPath Exception [31]. ClassPath is a classic

GPL linking exception based on permission of the copyright

holder. The goal was to allow free software implementations

of the standard class library for the programming language

Java [21]. It consists of the following statement attached to

the Java GPL license text: “As a special exception, the

copyright holders of this library give you permission to link

this library with independent modules to produce an

executable, regardless of the license terms of these

independent modules, and to copy and distribute the

resulting executable under terms of your choice, provided

that you also meet, for each linked independent module, the

terms and conditions of the license of that module. An

independent module is a module which is not derived from

or based on this library.” [31].

As we explore further in Section IV, a developer may be

motivated to add such linking exceptions to solve GPL-

incompatibility issues, which can arise if a GPL program is

supposed to run against GPL incompatible programs or

libraries. Such linking exception may also allow certain uses

of GPL software in software developments, which are not

necessarily licensed in a GPL compatible way.

C. Mode of Distribution

Thirdly, the mode of distribution, namely: whether a

component is distributed packaged with a GPL dependency

or without it, may matter for the application of GPL.

According to the first criterion of OSS, which says that a

license must permit distribution of a program either as

standalone or as part of “an aggregate software distribution

containing programs from several different sources” [5], the

GPL license allows distributing GPL software “as a

component of an aggregate software”. As interpreted by the

FSF, “mere aggregation of another work not based on the

Program with the Program (or with a work based on the

Program) on a volume of a storage or distribution medium

does not bring the other work under the scope of this

License” [33]. Such an “aggregate” may be composed of a

270

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

number of separate programs, placed and distributed

together on the same medium, e.g., USB. [33].

The core legal issue here is of differentiating an

“aggregate” from other “modified versions” based on GPL

software. “Where's the line between two separate programs,

and one program with two parts? This is a legal question,

which ultimately judges will decide.” [33]. In the view of

the FSF, the deciding factor is the mechanism of

communication (exec, pipes, rpc, function calls within a

shared address space, etc.) and the semantics of the

communication (what kinds of information are exchanged).

So, including the modules into one executable file or

running modules “linked together in a shared address

space” would most likely mean “combining them into one

program”. By contrast, when “pipes, sockets and command-

line arguments” are used for communication, “the modules

normally are separate programs” [33].

These observations bring us to the following

conclusions. Distributing an independent program together

with a GPL program on one medium, so that the programs

do not communicate with each other, does not spread the

GPL of one program to the other programs. Equally,

distributing a program, which has a GPL dependency,

separately and instructing the user to download that GPL

dependency for himself would release a program from the

requirement to go under GPL. However, distributing a

program packaged with a GPL dependency would require

licensing the whole software package under GPL, unless

exceptions apply.

D. Commercial Distribution

In contrast to the open source licenses, which allow the

code to go “closed” (as proprietary software “lost to the

open source community” [13]), GPL is aimed to preserve

software developments open for the development

community. For this reason, GPL does not allow “burying”

GPL code in proprietary software products. Against this

principle, licensing GPL software in a proprietary way and

charging royalties is not admissible.

Alternative exploitation options for GPL components,

though, remain. One of these may be to charge fees for

distribution of copies, running from the network server as

“Software as a Service” or providing a warranty for a fee.

For instance, when a GPL program is distributed from the

site, fees for distributing copies can be charged. However,

“the fee to download source may not be greater than the fee

to download the binary” [34].

Offering warranty protection and additional liabilities

would be another exploitation option. In this regard, GPL

allows providing warranties, but requires that such provision

must be evidenced in writing, i.e., by signing an agreement.

A negative aspect here is that by providing warranties a

developer accepts additional liability for the bugs, caused by

his predecessors, and assumes “the cost of all necessary

servicing, repair and correction” [16] for the whole

program, including modules provided by other developers.

Nonetheless, the business model of servicing GPL software

has proven to be quite successful, as the Ubuntu [35] and

other similar projects, which distribute and provide services

for Linux/GNU software, demonstrate.

At the same time, the open source requirement and

royalty free licensing of GPL software are not very

convenient for some business models. In this regard,

businesses, which are not comfortable with GPL (or, to be

more exact, with licensing their software developments

under GPL), may on occasion be tempted to test the

boundaries of what uses of GPL software are still controlled

under the GPL license [36]. This has given rise to a number

of lawsuits, involving allegations of improper

circumvention of GPL license requirements, one of which

we consider in more detail below.

E. GPL and Copyright Relevant Actions

The case in question is Oracle America, Inc. v. Google
Inc., C 10-03561 WHA [37]. The case dealt with a question
in how far Google´s use of Java´s API violated Oracle´
copyright in Java.

Java is a powerful object oriented programming
language, developed by Sun Microsystems, first released in
1996, and acquired by Oracle in 2010. Java is a popular
programming language and makes an integral part of many
contemporary software. Between 2006 and 2007 Java
migrated to GPL v2 and continued under GPL v2, when it
was acquired by Oracle in 2010. Java was designed to run
on different operating systems and makes use of Java virtual
machine for that. “Programs written in Java are compiled
into machine language, but it is a machine language for a
computer that doesn’t really exist. This so-called “virtual”
computer is known as the Java virtual machine” [38].

Java created a number of pre-written programs, called
“methods”, which invoke different functions, such as
retrieving the cosine of an angle. These methods are
grouped into “classes” and organised into “packages”.
Software developers can access and make use of those
classes through the Java APIs [37]. In 2008 Java APIs had
166 “packages”, split into more than six hundred “classes”,
all divided into six thousand “methods”.

A very popular Java project is the Open JDK project
[39]. Open JDK was released under GPL v2 license with the
ClassPath exception. However, the package, which was
involved in the dispute, was Java ME phone platform
development (known as PhoneMe [40]). The package

PhoneMe) did not contain the ClassPath exception. Google

built its Android platform for the smartphones using the
Java language. The GPL v2 license was inconvenient for
Android's business model. So, apparently, Google used the
syntax of the relevant Java APIs and the Java virtual
machine techniques, but with its own virtual machine called
the Dalvik [41] and with its own implementations of class
libraries [21]. According to Oracle, Google “utilized the
same 37 sets of functionalities in the new Android system
callable by the same names as used in Java” [37].

By doing that, Google wrote its own implementations of
the methods and classes, which it needed. The only one

271

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

substantial element, which Google copied from Java into
Android was the names and headers of 37 API packages in
question. Such copying of the headers amounted to
replication of the structure, sequence and organization of
Java APIs. Oracle claimed copyright infringement, and
Google defended with fair use, arguing that Java is an open
solution (which Oracle did not dispute) and there was no
literal copying of the Java code.

In fact, 9 lines of Java code were copied verbatim into
Android, but those 9 lines related to a Java function of 3179
lines called Range Check [37]. The judge assessed such
copying as accidental and not substantial enough to qualify
for copyright violation.

As regards the structure of Java APIs, the district court
qualified the headers and method names in Java APIs as
non-copyrightable, referring to the interpretation criteria of
the US Copyright Office: “Even if a name, title, or short
phrase is novel or distinctive or lends itself to a play on
words, it cannot be protected by copyright.” [42].

In terms of the copying of the declarations and
duplicating the command structure of Java APIs, the court
found that the command structure of Java APIs amounts to a
method of operation – a material not subject to copyright in
the US [42]. In Java programming, the specific declarations
in the Java APIs designate a method. A method can be
implemented in different ways, but is invoked by that
specific declaration only. The command format, used to call
the methods in Java, reads:

“java.package.Class.method().”
Here, a formula “a = java.package.Class.method()” sets

the field “a”, which is equal to the return of the method
called. For example, the following call would call the
method from Java:

“int a = java.lang.Math.max (2, 3)”
This command line would instruct the computer to fetch

“the max method under the Math class in the java.lang
package, input “2” and “3” as arguments, and then return
a “3,” which would then be set as the value of “a.” [37].

As interpreted by the district court judge, in Java, each
symbol in a command structure is more than a simple name
- each symbol carries a task to invoke a pre-assigned
function.

Considering that for using Java class methods software
developers need to replicate the Java declarations, the judge
qualified the command structure of Java APIs as a method
of operation – a functional element essential for
interoperability, not subject to the US Copyright Act. This
position was based on the merger doctrine and non-
copyrightability of structures dictated by efficiency: “...
When there is only one way to express an idea or function,
then everyone is free to do so and no one can monopolize
that expression.” [37].

However, on appeal, the Federal Circuit Court reversed
that ruling [43]. The appellate court found the declaring
code and the structure, sequence and organization of
packages in Java APIs were entitled to be protected by
copyright.

The appellate court supported its decision by the
argument that Java programmers were not limited in the

way they could arrange the 37 Java API packages at issue
and had a choice to organize these API packages in other
ways. For instance, instead of using the command format
“java.package.Class.method()”: language – package – class
– method, the same method could be called by the format:
method – class – package – language. By making a decision
to arrange the declarations in Java in this way and by having
also other choices, the programmers were not prevented by
the factor of efficiency, which would preclude copyright.
Rather, the programmers had a scope to exercise their
creation, which they, in view of the court, exercised, indeed.
This creation, realized in sequencing the Java APIs,
amounted to a copyrightable expression. Against these
considerations, the court concluded that, “the structure,
sequence, and organization of the 37 Java API packages at
issue are entitled to copyright protection.” [43].

Google argued fair use and petitioned the US Supreme
Court to hear the case. The US Supreme Court, referring to
the opinion of the US Solicitor General, denied the petition.
In the result, a new district court trial began. On 26 of May
2016 the district court jury found that Google´s Android did
not infringe Oracle copyrights, because Google´s re-
implementation of 37 Java APIs in question amounted to
and was protected by fair use. According to a Google
spokesperson, "Today's verdict that Android makes fair use
of Java APIs represents a win for the Android ecosystem, for
the Java programming community, and for software
developers who rely on open and free programming
languages to build innovative consumer products." [44].

This lawsuit, although not concerning the GPL license
directly, sheds some light on very important questions of
software copyright: free use of Java APIs, copyrightability
of interfaces and an attempt “to control APIs with copyright
law” and counter-balance between copyrights and "fair use"
[44]. As established in this case, the APIs, although
elements responsible for interoperability, can be protected
by copyrights (at least in the opinion of one court of
appeals); the APIs, although protected by copyright, may be
reused in other software systems, if such re-use is covered
by fair use of open and free programming languages, like
Java.

Another conclusion, which may be drawn from this
litigation, is that copying structure, sequence and
organization of someone else’s GPL program or APIs, and
in the process making a GPL program and a newly
developed program compatible with each other, may be not
the best solution to avoid GPL copyleft. Such copying may,
under some circumstances and unless exempted by “fair
use” doctrine, infringe third party copyright and lead to
litigation and associated financial costs, which might be
spared if compliance with GPL had been observed.

Also, as may be observed, although the programming
languages, which comprise ideas and principles, may not be
subject of copyright, at least not in the EU [45], Java is an
object oriented programming language, which tested this
assumption under the US law and has passed the
copyrightability test [21].

272

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. MANAGING LICENSE INCOMPATIBILITY

In this section, we consider some examples and practices

of managing license incompatibility issues.

A. Exceptions and Permissions

There are about 70 open source licenses and some of

them are incompatible with each other in some respect [46].

The FSF made an attempt to analyze open source licenses

on compatibility with GPL and published the list of GPL-

compatible and GPL-incompatible licenses on the FSF

website [8]. Also, compatibility checks and the lists of

compatible and non-compatible licenses have been

identified by the Apache Software Foundation [47], the

Mozilla Foundation [48], etc.

The FSF developments are powerful software and are

very popular with the software development community. By

that, the specifics of GPL license often causes license

incompatibility issues. The reason for this is the position of

FSF to consider linking as creating a derivative work:

“Linking a GPL covered work statically or dynamically with

other modules is making a combined work based on the

GPL covered work. Thus, the terms and conditions of the

GNU General Public License cover the whole combination”

[20]. In contrast, in terms of Apache License, Version 2.0,

“Derivative Works shall not include works that remain

separable from, or merely link (or bind by name) to the

interfaces of, the Work and Derivative Works thereof” [10].

Also, Mozilla Public License, Version 2.0 (MPL 2.0), which

has a weak copyleft, allows “programs using MPL-licensed

code to be statically linked to and distributed as part of a

larger proprietary piece of software, which would not

generally be possible under the terms of stronger copyleft

licenses.” [48].

However, what approach should a developer adopt, who

intends to release his program under GPL, but uses GPL-

incompatible dependencies, modules or libraries linking to

his code? In this situation, the FSF recommends the

developers to provide a permission to do so. The appropriate

examples are: systems call exception added by Linus

Torvalds to the GPL license terms for Linux [17] or GNU

ClassPath exception, aimed at allowing free software

implementations of the standard class libraries for Java [31].

For GPL v3, the FSF advises adding the linking

permission by making use of Section 7 GPL v3 “Additional

permissions”. Section 7 GPL v3 allows adding terms that

supplement the terms of GPL license by making exceptions

from one or more of its conditions [16]. For adding a linking

permission to the GPL v3 license text, the FSF advises

developers to insert the following text after the GPL license

notice:

“Additional permission under GNU GPL version 3

section 7. If you modify this Program, or any covered work,

by linking or combining it with [name of library] (or a

modified version of that library), containing parts covered

by the terms of [name of library's license], the licensors of

this Program grant you additional permission to convey the

resulting work. {Corresponding Source for a non-source

form of such a combination shall include the source code

for the parts of [name of library] used as well as that of the

covered work.}” [32]. If a developer does not want

everybody to distribute source for the GPL-incompatible

libraries, he should remove the text in brackets or otherwise

remove the brackets.

In GPL v2, a developer may add his own exception to

the license terms. The FSF recommends the following

notice for that:

“In addition, as a special exception, the copyright

holders of [name of your program] give you permission to

combine [name of your program] with free software

programs or libraries that are released under the GNU

LGPL and with code included in the standard release of

[name of library] under the [name of library's license] (or

modified versions of such code, with unchanged license).

You may copy and distribute such a system following the

terms of the GNU GPL for [name of your program] and the

licenses of the other code concerned{, provided that you

include the source code of that other code when and as the

GNU GPL requires distribution of source code}.” [32].

By this, the FSF notes that people who make modified

versions of a program, licensed with a linking exception, are

not obliged to grant this special exception for their modified

versions. GPL v2 allows licensing a modified version

without this exception. However, when such exception is

added to the GPL license text, it allows the release of a

modified version, which carries forward this exception [32].

However, only an original developer, who creates a

program from scratch and owns copyrights in it, may add

such permission. This would be the case when a developer

does programming as a hobby or in his spare time. At the

same time, when a developer writes a program in the

employment relation, then, according to the work-for-hire

doctrine, a developer is the author and owns moral rights in

the program (such as a right to be named as the author),

however, economic or exploitation rights in the program

(such as to distribute or license) pass to the employer [45].

This principle may, however, be derogated from by the

contract. On the other hand, when a developer writes a

program as a freelance, then, unless the contract foresees

otherwise, software copyright would pass to the developer.

In case of doubt, it is advisable to check the contractual

basis or consult a lawyer.

It may also be said that although such a linking

exception may be added and would be valid for a program,

which a programmer creates by himself, it would not apply

to the parts of other GPL-covered programs. If a developer

intends to use parts of other GPL licensed programs in his

code, a developer cannot authorize this exception for them

and needs to get the approval of the copyright holders of

those programs [32].

B. License Upgrade

License upgrade may be considered and suggested as

273

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

another option for dealing with license incompatibility. It

may be considered, if such upgrade is provided for by the

license. This may be explained by the fact that in the

process of open source movement, some licenses, issued in

initial versions, underwent changes, were adapted and

became more flexible and compatible with the other open

source licenses.

Examples of license upgrades, which provided for a

better license compatibility, include: upgrade of MPL 1.1 to

MPL 2.0, Apache 1.1 to Apache 2.0, GPL v2 to GPL v3,

BSD original to BSD 3-Clause, etc.

Thus, for instance, whereas the original Mozilla Public

License was incompatible with GPL, MPL 2.0 provides an

indirect compatibility with GNU GPL version 2.0, the GNU

LGPL version 2.1, the GNU AGPL version 3, and all later

versions of those licenses. Section 3.3 MPL 2.0 gives a

permission to combine software, covered by these GPL

licenses, with MPL software and distribute a combined

work under a GPL license, but requires to leave the MPL

code under MPL [8]. In any case, it is advisable to check the

MPL license notices, before making a GPL-MPL-combined

work. This is also important, given that developers, who

release their software under MPL, may opt out of the GPL-

compatibility by listing GPL licenses in Exhibit B

“Incompatible With Secondary Licenses”, declaring in this

way that MPL code is not compatible with the GPL or

AGPL. Although software originally released under earlier

versions of MPL may be brought to compatibility with GPL

by upgrade or dual licensing under MPL 2.0, the software,

which is only available under the previous MPL versions,

will remain GPL-incompatible. Also, whereas the original

BSD license because of its advertising clause was

recognized as GPL-incompatible, a modified BSD 3-Clause

License complies with GPL [8].

Although GNU GPL accepts BSD 3-Clause License as a

lax permissive license, the FSF rather supports Apache v2.

Apache v2 has been recognized by the FSF as free software

license and compatible with GPL v3. Therefore, Apache v2

programs may be included into GPL v3 projects. However,

this compatibility works in one direction only: Apache

v2→GPL v3 and does not work vice versa [50]. Thus,

software under GNU GPL licenses, including: GPL, LGPL,

GPL with exceptions may not be used in Apache products.

In opinion of the Apache software foundation, “the licenses

are incompatible in one direction only, and it is a result of

ASF's licensing philosophy and the GPL v3 authors'

interpretation of copyright law” [50].

V. CASE STUDY

In this paper, we have considered some licensing

implications, which may arise by the use of open source

software. We conclude by way of a case study, showing

how the use of OSS may affect licensing of a project

component.

In this example, let us consider licensing of a repository

for computational models. The repository links, by calling

the object code, to the database architecture MySQL,

licensed under GPL v2 [51], and a web application Django,

licensed under BSD 3-Clause License [52].

We may identify the future (downstream) licensing

options for the repository in the following way. GPL v2

considers, “linking a GPL covered work statically or

dynamically with other modules making a combined work

based on the GPL covered work. Thus, GNU GPL will cover

the whole combination” [20]. In terms of GPL, a repository,

which links to GPL MySQL, qualifies as a work based on a

GPL program.

Assuming the repository is distributed packaged with

MySQL, then, in order to be compliant with GPL license,

the repository must go under GPL as well. BSD 3-Clause

License is a lax software license, compatible with GPL [8].

GPL permits BSD programs in GPL software. Hence, no

incompatibility issues with the BSD licensed Django arise.

Section 9 GPL v2, applicable to MySQL, allows a work to

be licensed under GPL v2 or any later version. This means,

a repository, as a work based on GPL v2 MySQL, may go

under GPL v3. Hence, GPL v3 has been identified as a

license for this repository. The license requirements for

distribution are considered next.

 A repository may be distributed in source code and/or in

object code. Distribution in object code must be supported

by either: (a) source code; (b) an offer to provide source

code (valid for 3 years); (c) an offer to access source code

free of charge; or (d) by peer-to-peer transmission –

information where to obtain the source code. If the

repository is provided as “Software as a service”, so that the

users can interact with it via a network without having a

possibility to download the code, release of the source code

is not required.

In distributing this repository under GPL v3, the

developer must include into each source file, or (in case of

distribution in an object code) attach to each copy: a

copyright notice, a GPL v3 license notice with the

disclaimer of warranty and include the GPL v3 license text.

If the repository has interactive user interfaces, each must

display a copyright and license notice, disclaimer of

warranty and instructions on how to view the license.

Django and MySQL, as incorporated into software

distribution, remain under BSD and GPL v2, respectively.

Here the BSD and GPL v2 license terms for distribution

must be observed. This means, all copyright and license

notices in the Django and MySQL code files must be

reserved. For Django, a copyright notice, the license notice

and disclaimer shall be retained in the source files or

reproduced, if Django is re-distributed in object code [12].

Distribution of MySQL should be accompanied by a

copyright notice, license notices and disclaimer of warranty;

recipients should receive a copy of the GPL v2 license. For

MySQL, distributed in object code, the source code should

be accessible, either directly, or through instructions on how

to get it.

At the same time, as we described above, MySQL GPL

274

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

v2 will spread its copyleft effect upon the repository only, if

the repository is distributed packaged with GPL-covered

MySQL. On the other hand, if the repository is distributed

separately from MySQL with clear instructions to the user

to download and install MySQL on the user´s machine

separately, licensing of the repository will not be affected

and the repository may go under its own license. A user,

who runs GPL covered MySQL when using the repository,

will not be affected by GPL either, because GPL v2 does

not consider running a GPL program as producing a license

relevant action. According to GPL v2, “Activities other than

copying, distribution and modification are not covered by

this License; they are outside its scope. The act of running

the Program is not restricted, and the output from the

Program is covered only if its contents constitute a work

based on the Program (independent of having been made by

running the Program). Whether that is true depends on what

the Program does.” [15].
As this case study suggests, licensing software under

copyleft licenses, such as GPL, may be a preferred option for
keeping the project components open for the software
development community. By contrast, the use of
dependencies under copyleft licenses will not be suitable for
business models, pursuing commercial purposes. If
commercial distribution is intended, use of dependencies
under lax permissive licenses, such as BSD 3-Clause
License, Apache v2 or MIT License would suit these
interests better.

VI. CONCLUSIONS

In this paper, we considered the spectrum of FOSS

licenses, identified essential criteria of different categories

of open source licenses, such as free software and copyleft,

and tested different uses of software against license terms.

The three categories of licenses were distinguished:

a) Non-copyleft licenses, examples: Apache and BSD.

The use of non-copyleft licenses, in principle, does not

cause serious licensing implications, except that the license

terms for the distribution of the original code must be

observed. The best mode to come to terms with this is to

keep all license notices in the original code files intact. The

modification and distribution of such software as part of

other software and under different license terms is generally

allowed, as long as the original code stays under its license.

b) Licenses with weak copyleft, examples: LGPL and

MPL. These licenses require that modifications should go

under the same license, but programs, which merely link to

the code with weak copyleft are released from this

obligation. Therefore, linking an application to a program

with weak copyleft does not bring an application under the

same license terms and, in general, should not limit the

licensing options for an application. Distribution of the

original code is governed by the original license.

c) Copyleft licenses, example: GPL. GPL requires that

modified versions should go under the same license terms

and also spreads this requirement to the programs, which

merely link to a GPL-program. When testing whether

linking programs produces a modified version of GPL-

software, the technical aspects of modification, dependency,

interaction, distribution medium and location (allocation)

must be taken into account. The distribution of programs,

developed with the use of or from GPL-software should

normally follow the GPL license terms and pass on the same

rights and obligations to subsequent licensees. Commercial

uses of GPL software are restricted.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
FP7/2007-2013 under grant agreement No 600841. Particular
credit is given to Luis Enriquez A. for his insightful Master
Thesis “Dynamic Linked Libraries: Paradigms of the GPL
license in contemporary software”, which was of great help
in doing the research.

REFERENCES

[1] I. Lishchuk, “Licensing Implications of the Use of Open
Source Software in Research Projects,” in Proc. INFOCOMP
2016, The Sixth International Conference on Advanced
Communications and Computation, Valencia, Spain, 22-26
May, 2016, ISBN: 978-1-61208-478-7, pp. 18-23.

[2] CHIC, Project, <http://chic-vph.eu/project/> [retrieved: 23
November 2016].

[3] D. Tartarini et al., “The VPH Hypermodelling Framework for
Cancer Multiscale Models in the Clinical Practice”, In G.
Stamatakos and D. Dionysiou (Eds): Proc. 2014 6th Int. Adv.
Res. Workshop on In Silico Oncology and Cancer
Investigation – The CHIC Project Workshop (IARWISOCI),
Athens, Greece, Nov.3-4, 2014
(www.6thiarwisoci.iccs.ntua.gr), pp.61-64. (open-access
version), ISBN: 978-618-80348-1-5.

[4] F. Rikhtegar, E. Kolokotroni, G. Stamatakos, and P. Büchler,
“A Model of Tumor Growth Coupling a Cellular Biomodel
with Biomechanical Simulations”, In G. Stamatakos and D.
Dionysiou (Eds): Proc. 2014 6th Int. Adv. Res. Workshop on
In Silico Oncology and Cancer Investigation – The CHIC
Project Workshop (IARWISOCI), Athens, Greece, Nov.3-4,
2014 (www.6thiarwisoci.iccs.ntua.gr), pp.43-46. (open-access
version), ISBN: 978-618-80348-1-5.

[5] Open Source Initiative, Open Source Definition,
<http://opensource.org/osd> [retrieved: 23 November 2016].

[6] Whelan Associates Inc. v. Jaslow Dental Laboratory, Inc., et
al, U.S. Court of Appeals, Third Circuit, November 4, 1986,
797 F.2d 1222, 230 USPQ 481.

[7] GNU Operating System, The Free Software Definition,
<http://www.gnu.org/philosophy/free-sw.en.html> [retrieved:
23 November 2016].

[8] GNU Operating System, Various Licenses and Comments
about Them, <http://www.gnu.org/licenses/license-
list.en.html> [retrieved: 23 November 2016].

[9] GNU Operating System, What is Copyleft?,
<http://www.gnu.org/licenses/copyleft.en.html> [retrieved: 23
November 2016].

[10] OSI, Licenses by Name, Apache License, Version 2.0,
<http://opensource.org/licenses/Apache-2.0> [retrieved: 6
April, 2016].

[11] OSI, Licenses by Name, The MIT License (MIT),
<http://opensource.org/licenses/MIT> [retrieved: 23
November 2016].

275

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] OSI, Licenses by Name, The BSD 3-Clause License,
<http://opensource.org/licenses/BSD-3-Clause> [retrieved: 23
November 2016].

[13] A. St. Laurent, “Understanding Open Source and Free
Software Licensing,” O´Reilly, 1 Edition, 2004.

[14] R. Nimmer, “Legal Issues in Open Source and Free Software
Distribution,” adapted from Chapter 11 in Raymond T.
Nimmer, The Law of Computer Technology, 1997, 2005
Supp.

[15] GNU General Public License, Version 2 (GPL-2.0),
<http://opensource.org/licenses/GPL-2.0> [retrieved: 23
November 2016].

[16] GNU General Public License, Version 3 (GPL-3.0),
<http://opensource.org/licenses/GPL-3.0> [retrieved: 23
November 2016].

[17] The Linux Kernel Archives,
<https://www.kernel.org/pub/linux/kernel/COPYING>
[retrieved: 23 November 2016].

[18] The R Project for Statistical Computing, R Licenses,
<https://www.r-project.org/Licenses/> [retrieved: 23
November 2016].

[19] Mozilla, MPL 2.0 FAQ, <https://www.mozilla.org/en-
US/MPL/2.0/FAQ/> [retrieved: 26 November 2016].

[20] GNU Operating System, Frequently Asked Questions about
the GNU Licenses, <http://www.gnu.org/licenses/gpl-
faq#GPLStaticVsDynamic> [retrieved: 26 November 2016].

[21] L. Enriquez, “Dynamic Linked Libraries: Paradigms of the
GPL license in contemporary software,” EULISP Master
Thesis, 2013.

[22] R. Stallman, “Android and Users' Freedom,” first published in
The Guardian, <http://www.gnu.org/philosophy/android-and-
users-freedom.en.html> [retrieved: 26 November 2016].

[23] H. Kroat, “Linux kernel in a nutshell,” O’Reilly, United
States, 2007.

[24] Open Source Initiative, Licenses by Name, The GNU Lesser
General Public License, version 2.1 (LGPL-2.1),
<http://opensource.org/licenses/LGPL-2.1> [retrieved: 26
November 2016].

[25] Open Source Initiative, Licenses by Name, The GNU Lesser
General Public License, version 3.0 (LGPL-3.0),
<http://opensource.org/licenses/LGPL-3.0> [retrieved: 26
November 2016].

[26] The PHP Group, <http://php.net/> [retrieved: 26 November
2016].

[27] OSI, Licenses by Name, The PHP License 3.0 (PHP-3.0),
<https://opensource.org/licenses/PHP-3.0> [retrieved: 26
November 2016].

[28] Building a LAMP Server, <http://www.lamphowto.com/>
[retrieved: 26 November 2016].

[29] Oracle, Products and Services, MySQL, Overview,
<http://www.oracle.com/us/products/mysql/overview/index.ht
ml> [retrieved: 26 November 2016].

[30] MySQL, FOSS License Exception,
<https://www.mysql.de/about/legal/licensing/foss-
exception//> [retrieved: 26 November 2016].

[31] GNU Operating System, GNU Classpath,
<http://www.gnu.org/software/classpath/license.html>
[retrieved: 26 November 2016].

[32] GNU Operating System, Frequently Asked Questions about
the GNU Licenses, <http://www.gnu.org/licenses/gpl-
faq#GPLIncompatibleLibs> [retrieved: 26 November 2016].

[33] GNU Operating System, Frequently Asked Questions about
the GNU Licenses, <http://www.gnu.org/licenses/gpl-
faq#MereAggregation> [retrieved: 26 November 2016].

[34] GNU Operating System, Frequently Asked Questions about
the GNU Licenses, <https://www.gnu.org/licenses/gpl-
faq.html#DoesTheGPLAllowDownloadFee> [retrieved: 26
November 2016].

[35] Ubuntu, <http://www.ubuntu.com/> [retrieved: 26 November
2016].

[36] Software Freedom Conservancy, Conservancy Announces
Funding for GPL Compliance Lawsuit, VMware sued in
Hamburg, Germany court for failure to comply with the GPL
on Linux
<https://sfconservancy.org/news/2015/mar/05/vmware-
lawsuit/> [retrieved: 26 November 2016].

[37] U.S. District Court for the Northern District of California,
Ruling of 31 May 2012, Case C 10-03561 WHA, Oracle
America, Inc., v. Google Inc.

[38] E. David, “Introduction to Programming using Java,” Hobart
and William Smith Colleges, 1996.

[39] Java.net, JDK Project, <https://jdk7.java.net/> [retrieved: 26
November 2016].

[40] Java ME phone platform development,
<http://java.net/projects/phoneme> [retrieved: 26 November
2016].

[41] B. Cheng and B. Buzbee, “A JIT Compiler for Android's
Dalvik VM,” May 2010, pp.5-14, <www.android-app-
developer.co.uk> [retrieved: 26 November 2016]

[42] U.S. Copyright Office, Circular 34; “Copyright Protection
‘Not Available for Names, Titles or Short Phrases”, rev.
January 2012.

[43] U.S. Court of Appeals for the Federal Circuit, Ruling of 09
May 2014, Oracle America, Inc., v. Google Inc., Appeals
from the United States District Court for the Northern District
of California in No. 10-CV-3561.

[44] J. Mullin, “Google beats Oracle—Android makes “fair use”
of Java APIs,” Ars Technica, 26 May 2016,
<http://arstechnica.com/tech-policy/2016/05/google-wins-
trial-against-oracle-as-jury-finds-android-is-fair-use/>
[retrieved: 26 November 2016].

[45] Directive 2009/24/EC of the European Parliament and of the
Council of 23 April 2009 on the legal protection of computer
programs, Official Journal of the European Union (OJEU), L
111/16 – 111/22, 5 May 2009.

[46] D.Rowland, U.Kohl, A.Charlesworth, “Information
Technology Law”, 4th edition, Routledge, TaylorFrancis
Group, 2012, p. 412 et seq.

[47] The Apache Software Foundation, ASF Legal Previously
Asked Questions,
<http://www.apache.org/legal/resolved.html> [retrieved: 26
November 2016].

[48] Mozilla, MPL 2.0 FAQ, <https://www.mozilla.org/en-
US/MPL/2.0/FAQ/> [retrieved: 26 November 2016].

[49] GNU Operating System, Various Licenses and Comments
about Them, BSD original license

[50] The Apache Software Foundation, GPL-Compatibility,
<http://www.apache.org/licenses/GPL-compatibility.html>
[retrieved: 26 November 2016].

[51] MySQL, MySQL Workbench,
<http://www.mysql.com/products/workbench/> [retrieved: 26
November 2016].

[52] Django, Documentation,
<https://docs.djangoproject.com/en/1.9/> [retrieved: 26
November 2016].

