
177

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Falsification of Java Assertions Using Automatic Test-Case Generators

Rafael Caballero Manuel Montenegro
Universidad Complutense, Facultad de Informática

Madrid, Spain
email: {rafacr,mmontene}@ucm.es

Herbert Kuchen Vincent von Hof
University of Münster, ERCIS, Münster, Germany

email: {kuchen,vincent.von.hof}@wi.uni-muenster.de

Abstract—We present a technique for the static generation of test-
cases falsifying Java assertions. Our framework receives as input
a Java program including assertions and instruments the code in
order to detect whether the assertion conditions are met by every
direct and indirect method call within a certain depth level. Then,
any automated test-case generator can be used to look for input
examples that falsify the conditions. The transformation ensures
that the value obtained for the test-case inputs represents a path
of method calls that ends with a violation of some assertion. Our
technique deals with Java features such as object encapsulation
and inheritance, and can be seen has a compromise between the
usual but too late detection of an assertion violation at runtime
and an often too expensive complete analysis based on a model
checker.

Keywords–assertion; automatic test-case generation; program
transformation; inheritance.

I. INTRODUCTION

The goal of this paper is to present a source-to-source
program transformation useful for the static generation of
test-cases falsifying Java assertions. In a previous paper [1],
we addressed the same goal with a simpler approach which,
however, could lead to a combinatorial explosion in the gen-
erated program. In this paper, we overcome this problem by
introducing a data type containing the aforementioned path of
method calls in case of assertion violation.

Using assertions is nowadays a common programming
practice and especially in the case of what is known as
’programming by contract’ [2], [3], where they can be used,
e.g., to formulate pre- and postconditions of methods as well as
invariants of loops. Assertions in Java [4] are used for finding
errors in an implementation at run-time during the test-phase
of the development phase. If the condition in an assert
statement is evaluated to false during program execution, an
AssertionException is thrown.

During the same phase, testers often use automated test-
case generators to obtain test suites that help to find errors in
the program. The goal of our work is to use these same au-
tomated test-case generators for detecting assertion violations.
However, finding an input for a method m() that falsifies some
assertion in the body of m() is not enough. For instance, in
the case of preconditions it is important to observe whether the
methods calling m() ensure that the call arguments satisfy the

precondition, which is the source of the assertion falsification
can be an indirect call (if in the body of method m1 there is a
call to m2, then we say that m1 calls m2 directly. When m2

calls m3 directly and m1 calls m2 directly or indirectly, we say
that m1 calls m3 indirectly). Our technique considers indirect
calls up to a fixed level of indirection, allowing checking the
assertions in the context of the whole program.

In order to fulfill these goals we propose a technique
based on a source-to-source transformation that converts the
assertions into if statements and changes the return type
of methods to represent the path of calls leading to an
assertion violation as well as the normal results of the original
program. Converting the assertions into a program control-flow
statement is very useful for white-box, path-oriented test-case
generators, which determine the program paths leading to some
selected statement and then generate input data to traverse such
a path (see [5] for a recent survey on the different types of
test-case generators). Thus, our transformation allows this kind
of generators to include the assertion conditions into the sets
of paths to be covered.

The next section discusses related approaches. Section
III presents a running example and introduces some basic
concepts. Section IV presents the program transformation,
while Section V sketches a possible solution to the problem
of inheritance. Section VI shows by means of experiments
how two existing white-box, path-oriented test-case generators
benefit from this transformation. Finally, Section VII presents
our conclusions.

II. RELATED WORK

The most common technique for checking program asser-
tions is model-checking [6]. It is worth observing that, in
contrast to model checking, automated test-case generators are
not complete and thus our proposal may miss possible assertion
violations. However, our experiments show that the technique
described in this paper performs quite well in practice and
is helpful either in situations where model checking cannot be
applied, or as a first approach during program development be-
fore using model checking [7]. The overhead of an automated
test-case generator is smaller than for full model checking,
since data and/or control coverage criteria known from testing
are used as a heuristic to reduce the search space.

178

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The origins of our idea can be traced back to the work
[8], which has given rise to the so called assertion-based
software testing technique. In particular, this work can be
included in what has been called testability transformation [9],
which aims to improve the ability of a given test generation
method to generate test cases for the original program. An
important difference of our proposal with respect to other
works such as [10] is that instead of developing a specific
test-case generator we propose a simple transformation that
allows general purpose test-case generators to look for input
data invalidating assertions.

In [1], we took another transformation-based approach to
assertion falsification, in which methods containing assertions
were transformed to return a boolean value indicating whether
an assertion is violated. In the case of a method with sev-
eral assertions, the transformation generates as many boolean
methods as constraints exist in the corresponding method’s
body, so each method reports the violation of its corresponding
assertion. If we want to catch assertion violations obtained
through a given sequence of method calls, the transformation
shown in [1] generates as many methods as sequences of
method calls up to a maximum level of indirection given by
the user. However, this could cause an exponential growth in
the number of generated methods w.r.t. the indirection level. In
this paper, we overcome this problem by defining a type that
contains the path leading to an assertion violation, so the test
case generator can report assertion violations through different
paths by using a single transformed method. An extended
abstract of this approach can be found in [11].

III. CONDITIONS, ASSERTIONS, AND AUTOMATED
TEST-CASE GENERATION

Java assertions allow the programmer to ensure that the
program, if executed with the right options, fulfils certain
restrictions at runtime. They can be used to formulate, e.g.,
preconditions and postconditions of methods and invariants of
loops. As an example, let us consider the code in Figs. 1 and
2, which introduces two Java classes:

• Sqrt includes a method sqrt that computes the
square root based on Newton’s algorithm. The method
uses an assertion, which ensures that the computation
makes progress. However, the method contains an error:
the statement a1 = a+r/a/2.0; should be a1 =
(a+r/a)/2.0;. This error provokes a violation of the
assertion for any input value different from 0.0.

• Circle represents a circle with its radius as only
attribute. The constructor specifies that the radius
must be nonnegative. There is also a static method
Circle.ofArea for building a Circle given its
area. Besides checking whether the area is nonnegative,
this method calls Sqrt.sqrt to compute a square root
in order to obtain the radius.

Thus, Circle.ofArea will raise an assertion exception
if the area is negative, but it may also raise an exception even
when the area is nonnegative, due to the aforementioned error
in Sqrt.sqrt.

public class Circle {
private double radius;

public Circle(double radius) {
assert radius >= 0;
this.radius = radius;

}

public double getRadius() {
return radius;

}

public static Circle ofArea(double area) {
assert area >= 0;
return new Circle(

Sqrt.sqrt(area / Math.PI)
);

}
}

Figure 1: Class Circle.

Our idea is to use a test-case generator to detect possible
violations of these assertions. A test-case generator is typically
based on some heuristic, which reduces its search space
dramatically. Often it tries to achieve a high coverage of the
control and/or data flow. In the sqrt example in Fig. 2, the
tool would try to find test cases covering all edges in the
control-flow graph and all so-called def-use chains, i.e., pairs
of program locations, where a value is defined and where this
value is used. E.g., in method sqrt the def-use chains for
variable a1 are (ignoring the assertion) the following pairs of
line numbers: (5,8), (9,11), (9,8), and (9,13).

There are mainly two approaches to test-case generation
[5]. One approach is to generate test inputs metaheuristically,
i.e., search-based with hill climbing or genetic algorithms,
which often involve randomizing components (see [12] for
an overview). Another approach is to symbolically execute
the code (see, e.g., [13], [14], [15]). Inputs are handled as
logic variables and at each branching of the control flow, a
constraint is added to some constraint store. A solution of
the accumulated constraints corresponds to a test case leading
to the considered path through the code. Backtracking is
often applied in order to consider alternative paths through
the code. Some test-case generators offer hybrid approaches
combining search-based techniques and symbolic computation,
e.g., EvoSuite [16], CUTE [17], and DART [18].

EvoSuite generates test-cases also for code with assert
conditions. However, its search-based approach does not al-
ways generate test cases exposing assertion violations. In
particular, it has difficulties with indirect calls such as the
assertion in Sqrt.sqrt after a call from Circle.ofArea.
A reason is that EvoSuite does not model the call stack. Thus,
the test-cases generated by EvoSuite for Circle.ofArea
only expose one of the two possible violations, namely the
one related to a negative area.

179

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 public class Sqrt {
2 public static final double eps = 0.00001;
3

4 public double sqrt(double r) {
5 double a, a1 = r + eps;
6

7 do {
8 a = a1;
9 a1 = a+r/a/2.0; //erroneous!

10 assert a == 1.0 || (a1 > 1.0 ? a1 < a : a1 > a);
11 } while (Math.abs(a - a1) >= eps);
12

13 return a1;
14 }
15 }

a1 = a+r/a/2.0

a1 = r+eps

a=a1

abs(a−a1)>=eps?
y

n

return a1

Figure 2: Java method sqrt and its corresponding control-flow graph.

There are other test-data generators such as JPet [19] that
do not consider assert statements and thus cannot generate
test-cases for them. In the sequel, we present the program
transformation that allows both EvoSuite and JPet to detect
both possible assertion violations.

IV. PROGRAM TRANSFORMATION

We start defining the subset of Java considered in this work.
Then, we shall define an auxiliary transformation step that
flattens the input program, so it can be subsequently handled
by the main transformation algorithm.

A. Java Syntax

In order to simplify this presentation we limit ourselves
to the subset of Java defined in Table I. This subset is
inspired by the work of [20]. Symbols e, e1, . . . , indicate
arbitrary expressions, b, b1 . . . , indicate blocks, and s, s1,
. . . , indicate statements. Observe that we assume that variable
declarations are introduced at the beginning of blocks, although
for simplicity we often omit the block delimiters ‘{’ and ‘}’. A
Java method is defined by its name, a sequence of arguments
with their types, a result type, and a body defined by a block.
The table also indicates whether the construction is considered
an expression and/or a statement.

The table shows that some expression e can contain subex-
pression e′. A position p in an expression e is represented by a
sequence of natural numbers that identifies a subexpression of
e. The notation e|p denotes the subexpression of e found at po-
sition p. For instance, given e ≡ (new C(4,5)).m(6,7),
we have e|1.2 = (new C(4,5))|2 = 5, since e is a method
call, the position 1 stands for its first subexpression e′ ≡ new
C(4,5) and the second subexpression of e′ is 5. Given two
positions p, p′ of the same expression, we say the p < p′ if p
is a prefix of p′ or if p <LEX p′ with <LEX the lexicographic
order. For instance, 1 < 1.2 < 2 < 2.1 (1 prefix of 1.2,
1.2 <LEX 2, and 2 prefix of 2.1).

Last statement in ofArea method, in which the leftmost
innermost call is underlined:

return new
Circle(Sqrt.sqrt(area / Math.PI));

After extracting the Sqrt.sqrt call:

double sqrtResult;
sqrtResult = Sqrt.sqrt(area / Math.PI);
return new Circle(sqrtResult);

After extracting the constructor call:

double sqrtResult;
sqrtResult = Sqrt.sqrt(area / Math.PI);
Circle circleResult;
circleResult = new Circle(sqrtResult);
return circleResult;

Figure 3: Flattening an expression.

For the sake of simplicity we consider the application of a
constructor (via the new operator) as a method call. A method
call that does not include properly another method call as
subexpression is called innermost. Let e be an expression and
e′ = e|p an innermost method call. Then, e′ is called leftmost
if every innermost method call e′′ = e|p′ , with p 6= p′ verifies
p < p′.

In the statement example in Fig. 3 the underlined expression
is a leftmost innermost method call. The idea behind this con-
cept is that a leftmost innermost expression can be evaluated
in advance because it is not part of another method call and it
does not depend on other method calls of the same expression
due to the Java evaluation order.

180

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I: Java subset.

Description Syntax Expr. Stat.
creation of new objects new C(e1, ...,en) yes no
casting (C) e yes no
literal values k yes no
binary operation e1 op e2 yes no
variable access varName yes no
attribute access e.x yes no
method call e.M(e1,...,en) yes(∗) yes(∗∗)
variable assignment vaName = e no yes
attribute assignment e.x = e no yes
conditional statements if(e) b1 else b2 no yes
while loop while(e1) b no yes
catching blocks try b1 catch(C V) b2 no yes
return statements return e no yes
assertions assert e no yes
block {s1;...; sn;} no yes
block with local variable declaration {T V; s1; ...; sn} no yes

(*) Method calls are expressions if their return type is different from void
(**) Method calls are statements if they are not contained in another expression

The minimal statement of an expression e is a statement s
that contains e and there is no statement s′ such that s contains
s′ and s′ contains e.

Observe that in Table I neither variable nor field assignments
are allowed as part of expressions. This corresponds to the
following assumption:

Assumption 1: All the assignments in the program are state-
ments.
Using assignments as part of expressions is usually considered
a bad programming practice, as the evaluation of those ex-
pressions introduces side effects, namely the modification the
variables in scope. Anyway, it is possible to eliminate these
expressions by introducing auxiliary variables. For instance,
given the following program:

int sum = 0;
int x;
while ((x = next()) != -1) {
sum += x;

}

The subexpression x = next() can be factored out as
follows:

int sum = 0;
int x;
x = next();
while (x != -1) {
sum += x;
x = next();

}

We omit the corresponding transformation for the sake of

simplicity.

B. Flattening

Before applying the transformation, the Java program needs
to be flattened. The idea of this step is to extract each nested
method call and assign its result to a new variable without
affecting the Java evaluation order.

Algorithm 1 (Flattening expressions): Let B be the body of
a method and let e ≡ o.M(es) be an expression in B such
that:

1) e is a leftmost-innermost method call, and M is a user
defined method

2) e is not the right-hand side of a variable assignment
3) e is not a statement

Let T be the type of e. Finally, let s be the minimal statement
associated with e and let V be a new variable name. Then, the
following case distinction applies:

1) s is a while statement, that is s ≡while(e1) {e2}.
In this case e is a subexpression of e1, and the flattening
of e is obtained replacing s by:

{
T V ;
V = e;
while (e1[e 7→ V]) {

e2;
V = e;

}
}

181

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where the notation e1[e 7→ V] stands for the replace-
ment of e by V in e1.

2) s is not a while statement.
Then, the flattening of s is defined as

{
T V ;
V = e;
s[e 7→ V];

}

This process is repeated recursively, until no method call
needs to be transformed. Then, the program obtained is called
the flattened version of P and is represented by PF in the rest
of the paper. The second part of Fig. 3 shows the flattening
of the last statement of the function Circle.ofArea in our
running example.

C. Program Transformation

The idea of the following program transformation is to
instrument the code in order to obtain special output values
that represent possible violations of assertion conditions.

In our case, the instrumented methods employ the class
MayBe<T> of Fig. 5. The overall idea is that a method
returning a value of type T in the original code returns a value
of type MayBe<T> in the instrumented code. MayBe<T>
is in fact an abstract class with two subclasses, Value<T>
and CondError<T> (Fig. 4). Value<T> represents a value
with the same type as in the original code, and it is used
via method MayBe.createValue whenever no assertion
violation has been found. If an assertion condition is not
satisfied, a CondError<T> value is returned. There are two
possibilities:

• The assertion is in the same method. Suppose it is
the i-th assertion in the body of the method fol-
lowing the textual order. In this case, the method
returns MayBe.generateError(name, i); with
name the method name. The purpose of method
generateError is to create a new CondError<T>
object. Observe that the constructor of CondError<T>
receives as parameter a Call object. This object rep-
resents the point where a condition is not verified, and
it is defined by the parameters already mentioned: the
name of the method, and the position i.

• The method detects that an assertion violation has
occurred indirectly through the i-th method call in
its body. Then, the method needs to extend the
call path and propagate the error. This is done us-
ing a call propagateError(name, i, error),
where error is the value to propagate. In Fig. 4
we can observe that the corresponding constructor of
CondError<T> adds the new call to the path, repre-
sented in our implementation by a list.

The transformation takes as parameters a program P and a
parameter not discussed so far: the level of the transformation.

public static class Value<T>
extends MayBe<T> {

private T value;

public Value(T value) {
this.value = value;

}

@Override
public boolean isValue() {
return true;

}

@Override
public T getValue() {
return value;

}
}

public static class CondError<T>
extends MayBe<T> {

private List<Call> callStack;

public CondError(Call newElement) {
this.callStack = new ArrayList<Call>();
this.callStack.add(newElement);

}

public <S> CondError(Call newElement,
CondError<S> other) {

this.callStack =
new ArrayList<Call>(other.callStack);

this.callStack.add(newElement);
}

public List<Call> getCallStack() {
return callStack;

}

@Override
public boolean isValue() {
return false;

}

@Override
public T getValue() {
return null;

}
}

Figure 4: Classes Value<T> and CondError<T>.

182

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

public abstract class MayBe<T> {

public static class Value<T> extends MayBe<T> {//→ Fig. 4}

public static class CondError<T> extends MayBe<T> {//→ Fig. 4}

// did the method return a normal value (no violation)?
abstract public boolean isValue();

// value returned by the method.
abstract public T getValue();

// called if no condition violation detected. Return same value as before the instrumentation.
public static <K> MayBe<K> createValue(K value) {
return new Value<K>(value);

}

// called if an assert condition is not verified.
public static <T> MayBe<T> generateError(String method, int position) {
return new CondError<T>(new Call(method, position));

}

// calls another method whose assertion is not satisfied.
public static <T,S> MayBe<T> propagateError(String method, int position, MayBe<S> error){
return new CondError<T>(new Call(method, position), (CondError<S>) error);

}
}

Figure 5: Class MayBe<T>: New result type for instrumented methods.

This parameter is determined by the user and indicates the
maximum depth of the instrumentation. If level = 0 then only
the methods including assertions are instrumented. This means
that the tests will be obtained independently of the method calls
performed in the rest of the program. If level = 1, then all the
methods that include a call to a method with assertions are
also instrumented, checking if there is an indirect condition
violation and thus a propagation of the error is required.
Greater values for level enable more levels of indirection, and
thus allow to find errors occurring in a more specific program
context.

The algorithm can be summarized as follows:
Algorithm 2:

Input: P , a Java Program verifying Assumption 1 (all the
assignments in the program are statements), and an integer
level ≥ 0.
Output: a transformed program PT

1) Flatten P delivering PF as explained in Section IV-B.
2) Make a copy of each of the methods to instrument by

replacing the result type by MayBe, as described in
Algorithm 3. Call the new program PC .

3) Replace assertions in PC by new code that generates an
error if the assertion condition is not met, as explained
in Algorithm 4. This produces a new program P0 and
a list of methods L0.

4) For k = 1 to level : apply Algorithm 5 to P , Pk−1,

and Lk−1. Call the resulting program Pk and list Lk,
respectively.

5) Apply your favourite automatic test-data generator to
obtain test cases for the methods in Llevel with re-
spect to Plevel . Look for the test cases that produce
CondError values. Executing the test case with re-
spect to the original program P produces an assertion
violation and thus the associated exception displays the
trace of method calls that lead to the error, which cor-
reponds to the path contained within the CondError
object.

Now we need to introduce algorithms 3, 4, and 5.
We assume as convention that it is possible to generate a

new method name M ′ and a new attribute name MA given
a method name M . Moreover, we assume that the mapping
between ‘old’ and ‘new’ names is one-to-one, which allows to
extract name M both from M ′ and from MA.

Algorithm 3:
Input: flat Java program PF verifying Assumption 1.
Output: transformed program PCopy with copies of the methods.

1) Let PCopy := PF .
2) For each method (not constructor) C.M in PF with

result type T :
a) Include in class C of PCopy a new method C.M ′

with the same body and arguments as C.M , but
with return type MayBe<T>

183

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

b) Replace each statement

return e;

in the body of C.M by

return MayBe.createValue(e);

3) For each constructor C.M in PF :
a) Include in the definition of class C of program

PCopy a new static attribute MA:

static MayBe<C> MA;

b) Create a new method C.M ′ as a copy of C.M
with the same arguments args as the definition
of C.M , but with return type MayBe<C> and
body:

MayBe<C> result=null;
MA = null;
C constResult = new C(args);

// if no assertion has
// been falsified
if (MA != null)
result = MA;

else
result =

MayBe.createValue(constResult);
return result;

Algorithm 3 copies the class methods, generating new
methods M ′ for checking the assertions. This is done because
we prefer to modify a copy of the method in order to ensure
that the change does not affect the rest of the program. Method
M ′ returns the same value as M wrapped by a MayBe object.

Observe that in the case of constructors we cannot modify
the output type because it is implicit. Instead, we include a
new attribute MA, used by the constructor, to communicate
any violation of an assertion. The new method is a wrapper
that calls the constructor, which will have been transformed in
order to assign a non-null value to MA in case of an assertion
violation (see Algorithm 4). Then, the method checks whether
there has been an assertion violation in the constructor (that
is whether MA != null holds) and returns the new value
as output result. If, on the contrary, MA is null then no
assertion violation has taken place in the constructor and the
newly built object is returned wrapped by a MayBe object.

In our running example, assume we want to instrument the
methods Sqrt.sqrt, Circle.ofArea, and the construc-
tor of Circle. A copy of each of these methods would be
generated by Algorithm 3. The new fields and methods are
shown in Figure 6. Notice that the condition circleM !=
null in CircleCopy will never hold, since the current
Circle constructor does not alter the circleM variable.
We will change the code of the Circle constructor in the
following algorithms.

Inside Sqrt class:

public MayBe<Double> sqrtCopy(double value) {
... // same body as sqrt except the last
... // return statement
return Maybe.createValue(a1);

}

Inside Circle class:

private static MayBe<Circle> circleM;

public MayBe<Circle> CircleCopy(double radius)
{
MayBe<Circle> result = null;
circleM = null;
Circle constResult = new Circle(radius);

if (circleM != null) {
result = circleM;

} else {
result = Maybe.createValue(constResult);

}
return result;

}

public static MayBe<Circle> ofAreaCopy(double
area) {

assert area >= 0;
double sqrtResult;
sqrtResult = Sqrt.sqrt(area / Math.PI);
Circle circleResult;
circleResult = new Circle(sqrtResult);
return MayBe.createValue(circleResult);

}

Figure 6: New methods and fields generated after duplication.

The next step or the transformation handles assert viola-
tions in the body of methods:

Algorithm 4:
Input: PCopy obtained from the previous algorithm.
Output: – P0, a transformed program

– L0, a list of methods in the transformed program

1) Let P0 := PCopy , L0 := []
2) For each method C.M containing an assertion:

a) Let L0 := [C.M ′|L0], being M ′ the new method
name obtained from M .

b) If C.M is a method with return type T , not
a constructor, replace in C.M ′ each statement
assert exp; by:

if (!exp) return
MayBe.generateError("C.M", i);

with i the ordinal of the assertion counting the
assertions in the method body in textual order.

184

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

c) If C.M is a constructor, replace in C.M each
statement assert exp; by:

if (!exp) MA =
MayBe.generateError("C.M", i);

with i as in the case of a non-constructor.

In our running example, we get L0 = [Sqrt.sqrtCopy,
Circle.CircleCopy, Circle.ofAreaCopy], which
are the new names introduced by our transformation for the
methods with assertions. In Sqrt.sqrtCopy the assert
statement would be replaced by the following,

...
if (!(a == 1.0 ||

(a1 > 1.0 ? a1 < a : a1 > a)))
return MayBe.generateError("sqrt", 1);

...

whereas in Circle the transformation would affect the con-
structor and the ofAreaCopy method:

public Circle(double radius) {
if (!(radius >= 0)) {

circleM = MayBe.generateError("Circle", 1);
return;

}
this.radius = radius;

}

public static MayBe<Circle> ofAreaCopy(double
area) {

if (!(area >= 0))
return MayBe.generateError("ofArea", 1);

...
}

Finally, the last transformation focuses on indirect calls. The
input list L contains the names of all the new methods already
included in the program. If L contains a method call C.M ′,
then the algorithm looks for methods D.L that include calls
of the form C.M(args). The call is replaced by a call to
C.M ′ and the new value is returned. A technical detail is that
in the new iteration we keep the input methods that have no
more calls, although they do not reach the level of indirection
required. The level must be understood as a maximum.

Algorithm 5:
Input: – P , a Java flat Program verifying Assumption 1

– Pk−1, the program obtained in the previous phase
– A list Lk−1 of method names in Pk−1

Output: – Pk, a transformed program
– Lk, a list of methods in the Pk

1) Let Pk := Pk−1, Lk := Lk−1
2) For each method D.L in P including a call x = C.M

with C.M such that C.M ′ is in Lk−1:
a) Let i be the ordinal of the method call in the

method body and y a new variable name’

public class Sqrt {
public static final double eps = 0.000001;

public static double sqrt(double r) { ... }

public static MayBe<Double> sqrtCopy(double
r) {

double a, a1 = 1.0;
a = a1;
a1 = a+r/a/2.0;
double aux = Math.abs(a-a1);
while (aux >= eps) {
a = a1;
a1 = a+r/a/2.0;
if (!(a == 1.0 ||

(a1 > 1.0 ? a1 < a : a1 > a)))
return MayBe.generateError("sqrt", 1);

aux = Math.abs(a - a1);
}
return MayBe.createValue(a1);

}
}

Figure 7: Sqrt class after transformation.

b) If C.M ′ is in Lk, then remove it from Lk.
c) Let Lk := [D.L′|Lk]
d) If D.L is a method of type T , not a constructor

then replace in D.M ′ the selected call to x =
C.M by:

MayBe<T> y = C.M ′;
if (!y.isValue()) return

MayBe.propagateError("D.L", i, y);
x = y.getValue();

e) If D.L is a constructor, then let x′ be a new
variable name. Replace in the constructor D.L
the selected call to x = C.M by:

MayBe<T> y = C.M ′;
if (!y.isValue()) MA =

MayBe.propagateError("D.L", i, y);
x = y.getValue();

where MA is the static variable associated to the
constructor and introduced in Algorithm 3.

In our example, we have L1 = L0 since the only indirect call
to a method in L0 is by means of Circle.ofAreaCopy,
but the latter is already in the list. In fact, Lk = L0 for every
k > 0.

The transformation of our running example can be found in
Figs. 7 and 8. It can be observed that in practice the methods
not related directly nor indirectly to an assertion do not need
to be modified. This is the case of the getRadius method.

185

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

public class Circle {
private double radius;
private static MayBe<Circle> circleM;

public Circle(double radius) {
if (!(radius >= 0)) {
circleM =
MayBe.generateError("Circle", 1);

return;
}
this.radius = radius;

}

public MayBe<Circle> CircleCopy(double
radius)

{
MayBe<Circle> result = null;
circleM = null;
Circle constResult = new Circle(radius);

if (circleM != null) {
result = circleM;

} else {
result = Maybe.createValue(constResult);

}
return result;

}

public double getRadius() {
return radius;

}

public static Circle ofArea(double area) {
...

}

public static MayBe<Circle>
ofAreaCopy(double area) {

if (!(area >= 0))
return MayBe.generateError("ofArea", 1);

MayBe<Double> sqrtResultM;
sqrtResultM = Sqrt.sqrtCopy(area /

Math.PI);
if (!sqrtResultM.isValue())
return MayBe.propagateError("ofArea", 2,

sqrtResultM);
double sqrtResult = sqrtResultM.getValue();

MayBe<Circle> circleResultM;
circleResultM = CircleCopy(sqrtResult);
if (!circleResultM.isValue()) {
return MayBe.propagateError("ofArea", 3,

circleResultM);
}
Circle circleResult =

circleResultM.getValue();
return MayBe.createValue(circleResult);

}
}

Figure 8: Circle class after transformation.

Class A
int m()

Class B
@Override int m()

Class C
@Override int m()

Class D

Class E Class F
@Override int m()

Figure 9: Inheritance example.

V. INHERITANCE

Inheritance poses a new interesting challenge to our pro-
posal. Consider the hierarchy shown in Fig. 9, in which we
assume that the implementation of m() in B contains an
assertion, and hence, it is transformed according to Algorithm
4. If there are neither assertions nor calls to B.m() in the
remaining classes of the hierarchy, it seems that there is
no further transformations to apply. However, assume the
following method:

public int foo(A a) {
return a.m();

}

If we have the call foo(new B(..)) then it becomes
apparent that foo() can raise an assertion due to dynamic
dispatching, because the call a.m() corresponds in this
context to a call to B.m(). Thus, in order to detect this
possible assertion violation, foo() needs to be transformed
by introducing a fooCopy() method containing a call to
a.mCopy() in its body. In turn, this implies that class A must
contain a method mCopy() as well. Therefore, we create a
method mCopy() in A with the following implementation:

public MayBe<Integer> mCopy() {
return MayBe.createValue(m());

}

which wraps the result of m() into a MayBe value. This
wrapper implementation must be replicated in classes C and F
as well, since they also override m().

In general, whenever we create a copy of a method C.M , we
have to create a copy method with the wrapper implementation
in the class where M is defined for the first time in the class
hierarchy, and in each descendant C ′ of C overriding M unless
there is another class between C and C ′ in the hierarchy which

186

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II: Detecting assertion violations.

EvoSuite JPet
Method Total P PT P PT

Circle.ofArea 2 1 2 0 2
BloodDonor.canGiveBlood 2 0 2 0 2
TestTree.insertAndFind 2 0 2 0 2
Kruskal 1 1 1 0 1
Numeric.foo 2 1 2 0 2
TestLibrary.test* 5 0 5 0 5
MergeSort.TestMergeSort 2 0 1 0 1
java.util.logging.* 5 0 2 - -

also overrides M , or C ′ already has a copy M ′ of the method
M (e.g., because C ′.M contains another assertion). In the
example of Fig. 9, this means that we need to create additional
mCopy() methods in classes A, C, and F.

An obvious limitation is when we introduce an assertion
in methods defined in a library class such as Object (for
instance, when overriding method toString), since we
cannot introduce new methods in these classes. Fortunately,
introducing assertions when overriding library methods is quite
unusual. A possible improvement, still under development, is
to look in advance for polymorphic calls. For instance, maybe
method foo() is never called with arguments of type C in
the program and there is no need of transforming this class.

VI. EXPERIMENTS

We observed the effects of the transformation by means
of experiments, including the running example shown above,
the implementation of the binary tree data structure, Kruskal’s
algorithm, the computation of the mergesort method, a con-
structed example with nested if-statements called Numeric, an
example representing a blood donation scenario BloodDonor
and two bigger examples, namely a self devised Library sys-
tem, which allows customers to lend and return books and the
6500 lines of code of the package java.util.logging of the Java
Development Kit 6 (JDK). In all the cases, the transformation
has been applied with level infinite, i.e., application of the
transformation until a fixed point is reached. In the next step,
we have evaluated the examples with different test-case genera-
tors with and without our level=1 program transformation.
We have developed a prototype that performs this transfor-
mation automatically. It can be found at https://github.com/
wwu-ucm/assert-transformer, whereas the aforementioned ex-
amples can be found at https://github.com/wwu-ucm/examples.

We have used two test-case generators, JPet and EvoSuite,
for exposing possible assertion violations. First of all, we can
note that our approach works. In our experiments, all but one
possible assertion violation could be detected. Moreover, we
can note that our program transformation typically improves
the detection rate, as can be seen in Table II. In this table,
column Total displays for each example the number of pos-
sible assertion violations that can be raised for the method.
Column P shows the number of detected assertion viola-
tions using the test-case generator and the original program,
while column PT displays the number of detected assertion

violations after applying the transformation. For instance, in
our running example, Circle.getRadius can raise the
two assertion violations explained in Section III. Without
the transformation, only one assertion violation is found by
EvoSuite. With the transformation, EvoSuite correctly detects
both assertion violations. For JPet no test cases are created for
java.util.logging, since JPet does not support library
method calls. Notice that JPet cannot find any assertion vi-
olation without our transformation, since it does not support
assertions. Thus, our transformation is essential for tools, that
do not support assertions, such as jPet. An improvement in the
assertion violation detection rate is observed for all examples.

Additionally, tools that already support assertions to some
degree benefit from our program transformation, since it makes
the control flow more explicit than the usual assertion-violation
exceptions. This helps the test-case generators to reach a
higher coverage, as can be seen in Table III. The dashes in
the JPet row indicate that JPet does not support assertions
and hence cannot be used to detect assertion violations in
the untransformed program. Our program transformation often
only requires a few seconds and even for larger programs such
as the JDK 6 logging package the transformation finishes in
18.2 seconds. The runtime of our analysis depends on the
employed test-case generator and the considered example. It
can range from a few seconds to several minutes.

VII. CONCLUSIONS

We have presented an approach to use test-case generators
for exposing possible assertion violations in Java programs.
Our approach is a compromise between the usual detection
of assertion violations at runtime and the use of a full model
checker. Since test-case generators are guided by heuristics
such as control- and data-flow coverage, they have to consider
a much smaller search space than a model checker and can
hence deliver results much more quickly. If the coverage is
high, the analysis is nevertheless quite accurate and useful in
practice; in particular, in situations where a model checker
would require too much time. We tried to use the model
checker Java Pathfinder [21] to our examples, but we had to
give up, since this tool was too time consuming or stopped
because of a lack of memory.

Additionally, we have developed a program transformation
that replaces assertions by computations, which explicitly
propagate violation information through an ordinary computa-
tion involving nested method calls. The result of a computation
is encapsulated in an object. The type of this object indicates
whether the computation was successful or whether it caused
an assertion violation. In case of a violation, our transformation
makes the control flow more explicit than the usual assertion-
violation exceptions. This helps the test-case generators to
reach a higher coverage of the code and enables more asser-
tion violations to be exposed and detected. Additionally, the
transformation allows to use test-case generators such as JPet,
which do not support assertions.

We have presented some experimental results demonstrating
that our approach helps indeed to expose assertion violations

187

International Journal on Advances in Systems and Measurements, vol 9 no 3 & 4, year 2016, http://www.iariajournals.org/systems_and_measurements/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III: Control and data-flow coverage in percent.

Binary Blood Kruskal Library MergeSort Numeric StdDev Circle
Tree Donor

P PT P PT P PT P PT P PT P PT P PT P PT

EvoSuite 90 95 83 91 95 100 63 92 82 82 76 82 71 71 80 100
JPet – 89 – 99 – 49 – 20 – 87 – 82 – 74 – 100

and that our program transformation improves the detection
rate.

Although our approach accounts for the call path that leads
to an assertion violation, this path is represented as a chain
of object references, so some test case generators might not
be able to recreate it in their generated tests. We are studying
an alternative transformation that represents the call path in
terms of basic Java data types. Another subject of future work
is to use the information provided by a dependency graph of
method calls in order to determine the maximum call depth
level where the transformation can be applied.

ACKNOWLEDGMENT

This work has been supported by the German Aca-
demic Exchange Service (DAAD, 2014 Competitive call
Ref. 57049954), the Spanish MINECO project CAVI-
ART (TIN2013-44742-C4-3-R), Madrid regional project N-
GREENS Software-CM (S2013/ICE-2731) and UCM grant
GR3/14-910502.

REFERENCES

[1] R. Caballero, M. Montenegro, H. Kuchen, and V. von Hof, “Automatic
falsification of Java assertions,” in Proceedings of the 7th International
Conference in Advances in System Testing and Validation Lifecycle
(VALID 2015), T. Kanstren and B. Gersbeck-Schierholz, Eds. IARIA,
2015, pp. 36–41.

[2] B. Meyer, Object-oriented Software Construction (2Nd Ed.), 2nd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1997.

[3] R. Mitchell, J. McKim, and B. Meyer, Design by Contract, by Example.
Redwood City, CA, USA: Addison Wesley Longman Publishing Co.,
Inc., 2002.

[4] Oracle, “Programming With Assertions,”
http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.
html, Retrieved: 8 January 2017.

[5] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,
M. Harman, M. J. Harrold, and P. McMinn, “An orchestrated survey
on automated software test case generation,” Journal of Systems and
Software, vol. 86, no. 8, August 2013, pp. 1978–2001.

[6] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model checking
programs,” Automated Software Engineering, vol. 10, no. 2, 2003, pp.
203–232.

[7] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Softw. Test. Verif. Reliab., vol. 22, no. 5, Aug.
2012, pp. 297–312. [Online]. Available: http://dx.doi.org/10.1002/stvr.
456

[8] B. Korel and A. M. Al-Yami, “Assertion-oriented automated test data
generation,” in Proceedings of the 18th International Conference on
Software Engineering, ser. ICSE ’96. Washington, DC, USA: IEEE
Computer Society, 1996, pp. 71–80.

[9] M. Harman, A. Baresel, D. Binkley, R. Hierons, L. Hu, B. Korel,
P. McMinn, and M. Roper, “Testability transformation program trans-
formation to improve testability,” in Formal Methods and Testing,
ser. Lecture Notes in Computer Science, R. Hierons, J. Bowen, and
M. Harman, Eds. Springer Berlin Heidelberg, 2008, vol. 4949, pp.
320–344.

[10] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated testing
based on Java predicates,” SIGSOFT Softw. Eng. Notes, vol. 27, no. 4,
Jul. 2002, pp. 123–133.

[11] R. Caballero, M. Montenegro, H. Kuchen, and V. von Hof, “Checking
java assertions using automated test-case generation,” in Proceedings of
the 25th International Symposium on Logic-Based Program Synthesis
and Transformation (LOPSTR), ser. Lecture Notes in Computer Sci-
ence, M. Falaschi, Ed., vol. 9527. Springer International Publishing,
2015, pp. 221–226.

[12] P. McQuinn, “Search-based software test data generation: A survey,”
Software Testing, Verification and Reliability, vol. 14, no. 2, 2004, pp.
105–156.

[13] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, no. 7, 1976, pp. 385–394. [Online]. Available:
http://doi.acm.org/10.1145/360248.360252

[14] M. Gómez-Zamalloa, E. Albert, and G. Puebla, “Test case generation
for object-oriented imperative languages in CLP,” TPLP, vol. 10, no.
4-6, 2010, pp. 659–674. [Online]. Available: http://dx.doi.org/10.1017/
S1471068410000347

[15] M. Ernsting, T. A. Majchrzak, and H. Kuchen, “Dynamic solution
of linear constraints for test case generation,” in Sixth International
Symposium on Theoretical Aspects of Software Engineering, TASE
2012, Beijing, China, 2012, pp. 271–274. [Online]. Available:
http://dx.doi.org/10.1109/TASE.2012.39

[16] J. P. Galeotti, G. Fraser, and A. Arcuri, “Improving search-based test
suite generation with dynamic symbolic execution,” in IEEE Interna-
tional Symposium on Software Reliability Engineering (ISSRE). IEEE,
2013, pp. 360–369.

[17] K. Sen, D. Marinov, and G. Agha, “CUTE: A concolic unit
testing engine for C,” in Proceedings of the 10th European
Software Engineering Conference, ser. ESEC/FSE-13. New York,
NY, USA: ACM, 2005, pp. 263–272. [Online]. Available: http:
//doi.acm.org/10.1145/1081706.1081750

[18] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” in Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation,
Chicago, IL, USA, June 12-15, 2005, 2005, pp. 213–223. [Online].
Available: http://doi.acm.org/10.1145/1065010.1065036

[19] E. Albert, I. Cabanas, A. Flores-Montoya, M. Gómez-Zamalloa, and
S. Gutierrez, “jPET: An automatic test-case generator for Java,” in 18th
Working Conference on Reverse Engineering, WCRE 2011, Limerick,
Ireland, October 17-20, 2011, 2011, pp. 441–442.

[20] G. Klein and T. Nipkow, “A machine-checked model for a Java-like
language, virtual machine and compiler,” vol. 28, no. 4, 2006, pp. 619–
695.

[21] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda, “Model
checking programs,” Autom. Softw. Eng., vol. 10, no. 2, 2003, pp. 203–
232. [Online]. Available: http://dx.doi.org/10.1023/A:1022920129859

