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Abstract—Cognitive radio spectrum is traditionally divided into
two spaces. Black space is reserved to primary users trans-
missions and secondary users are able to transmit in white
space. To get more capacity, black space has been divided into
black and grey spaces. Grey space includes interfering signals
coming from primary and other secondary users, so the need
for interference suppression has grown. Novel applications like
Internet of Things generate narrowband interfering signals. In
this paper, the performance of the forward consecutive mean
excision algorithm (FCME) method is studied in the presence of
narrowband interfering signals. In addition, the extension of the
FCME method called the localization algorithm based on double-
thresholding (LAD) method that uses three thresholds is proposed
to be used for both narrowband interference suppression and
intended signal detection. Both Long Term Evolution (LTE)
signal simulations and real-world LTE and Wireless Local Area
Network (WLAN) signal measurements were used to verify the
usability of the methods in future cognitive radio applications.

Keywords–interference suppression; signal detection; grey zone;
cognitive radio; measurements.

I. INTRODUCTION
Heavily used spectrum calls for new technologies and in-

novations. Novel applications and signals like Long Term Evo-
lution (LTE) generate novel interfering environments like dis-
cussed in COCORA 2016 [1]. Cognitive radio (CR) [2][3][4]
[5][6][7] offers possibility to effective spectrum usage allowing
secondary users (SU) to transmit at unreserved frequencies
if they guarantee that primary users (PU) transmissions are
not disturbed. Earlier, spectrum was divided into two zones
(spaces): black and white zone. As black zone was fully
reserved to PUs and off limits to secondary users, their
transmission was allowed in white zones where there were
no PU transmissions. The problem in this classification is that
if the spectrum is not totally unused, secondary users are not
able to transmit. Thus, the spectrum usage is not as efficient
as it could be. Instead, spectra can be divided into three zones:
white, grey (or gray) and black zone [8]. In this model, the
SU transmission is allowed in white and grey spaces, as black
spaces are reserved for PUs.

Cognitive radio has several novel applications. Long Term
Evolution Advanced (LTE-A) is a 4G mobile communica-

tion technology [9]. LTE for M2M communication (LTE-M)
exploits cognitive radio technology and utilizes flexible and
intelligent spectrum usage. Its focus is on high capacity. LTE-
A enables one of the newest topics called Wide Area Internet
of Things (IoT) [10], where sensors, systems and other smart
devices are connected to Internet. Therein, long-range commu-
nication, long battery life and minimal amount of data, as well
as narrow bandwidth are key issues. IoT (or, widely thinking,
Network of Things, NoT [11]) is already here. However, there
are several problems and challenges. Many IoT devices use
already overcrowded unlicensed bands. Another possibility is
to use operated mobile communication networks but it wastes
financial/frequency resources and technologies like 3G and
LTE do not support IoT directly. Secondly, radio networks
come more and more complex. Self-organized networks (SON)
[12] form a key to manage complex IoT networks. One of the
existing SON solutions is LTE standard. However, SON has no
intelligent learning aka cognitivity. Cognitive IoT (CIoT) term
has been proposed to highlight required intelligence [13][14].
CIoT can be considered to be a technological revolution that
brings a new era of communication, connectivity and comput-
ing. It has been predicted that by 2020, there are billions of
connected devices in the world [15]. Thus, cognitivity is really
needed.

As cognitive radio technology offers more efficient spec-
trum use, there are many challenges. One of those is that
the cognitive world is an interference-intensive environment.
Especially in-band interfering signals cause problems. There
are three main types of interference in CR: from SU to PU
(SU-PU interference), from PU to SU (PU-SU interference),
and interference among SUs (SU-SU interference) [16][17].
The basic idea in CR is that SU must not interfere PUs,
so there should not be SU-PU interference. Instead, SU may
be interfered by PUs or other SUs. When there are multiple
PUs and SUs with different applications and technologies,
cumulative interference is a problematic task [18]. In grey
spaces, there is interference from PU (and possible other SU)
transmissions. It is efficient to mitigate unknown interference
in order to achieve higher capacity. Therefore, interference
suppression (IS) methods are needed.
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It is crystal clear that when operating in real-world with
mobile devices and varying environment, computational com-
plexity is one of the key issues. Fast and reliable as well as
cost-effective, powersave and adaptive methods are needed.
Thus, it is beneficial if one method does several operations. In
this paper, a transform domain IS method called the forward
consecutive mean excision (FCME) algorithm [19][20] is used
for interfering signal suppression (IS) in cognitive radio ap-
plications [1]. Its extension called the localization algorithm
based on double-thresholding (LAD) method [21][22] can be
used for intended signal detection. Both the methods detect
all kind of signals regardless of their modulation types. The
difference is that the LAD method is more accurate and,
thus, suitable for detection. Thus, the extended LAD method
that uses three thresholds is proposed to be used for both
interference suppression and intended signal detection. The
FCME algorithm and the LAD method are blind constant false
alarm rate (CFAR) -type methods that are able to find all
kind of relatively narrowband (RNB) signals in all kind of
environments and in all kind of frequency areas. Here, RNB
means that the suppressed signal is narrowband with respect
to the studied bandwidth. The wider the studied band is the
wider the suppressed signal can be.

First, future cognitive radio applications and interference
environment in cognitive radios are considered. Focus is on IS
in SU receiver interfered by PUs and other SUs. A scenario
that clarifies the interference environment is presented and
IS methods are discussed. The FCME algorithm and LAD
methods are presented and those feasibilities are considered.
Simulations for LTE-signals are used to verify the performance
of the extended LAD method that uses three thresholds. Mea-
surement results for LTE and Wireless Local Area Network
(WLAN) signals are used to verify the performance of the
FCME IS method.

This paper is organized as follows. The state of art is
discussed in Section II. Section III focuses on interference
environment in cognitive radios as Section IV considers in-
terference suppression. The FCME algorithm and the LAD
method are presented and their feasibility is considered in
Section V. Simulation and measurement results are presented
in Section VI. Conclusions are drawn in Section VII.

II. STATE OF THE ART

Future applications that use cognitive approach include,
for example, LTE-A and cognitive IoT [23][24]. LTE-A is
an advanced version of LTE. Therein, orthogonal Frequency
Division Multiplex (OFDM) signal is used. In OFDM systems,
data is divided between several closely spaced carriers. LTE
downlink uses OFDM signal as uplink uses Single Carrier
Frequency Division Multiple Access (SC-FDMA). Downlink
signal has more power than uplink signal. Thus, its interference
distance is larger than uplink signals. OFDM offers high data
bandwidths and tolerance to interference. As LTE uses 6
bandwidths up to 20 MHz, LTE-A may offer even 100 MHz
bandwidth. LTE-A offers about three times greater spectrum
efficiency when compared to LTE. In addition, some kind
of cognitive characteristics are expected [25][26][27]. RNB
interfering signals exist especially at grey zones. This calls
for IS.

In the network ecosystem, it is expected that cognitive
IoT [28][29] will be the next ’big’ thing to focus on. Wide-

area IoT is a network of nodes like sensors and it offers
connections between/to/from systems and smart devices (i.e.,
objects) [10][30]. Cognitive IoT enables objects to learn, think
and understand both the physical and social world. Connected
objects are intelligent and autonomous and they are able to
interact with environment and networks so that the amount of
human intervention is minimized. Basically, a human cognition
process is integrated into IoT system design. Technically,
CIoT operates as a transparent bridge between the social and
physical world. The radio platform in CIoT devices should be
efficient, simple, agile and have low power. CIoT has several
advantages, including time, money and effort saving while
resource efficiency is increased. It offers adaptable and simple
automated systems. CIoT will consist of numerous heteroge-
neous, interconnected, embedded and intelligent devices that
will generate a huge amount of data. The long-range (even tens
of kilometers) connection of nodes via cellular connections is
expected. Data sent by nodes is minimal and transmissions may
seldom occur. Thus, there is no need to use wide bandwidths
for a transmission. This saves power consumption but also
spectrum resources.

Proposed technologies include, e.g., LoRa (’long range’)
[31], Neul (’cloud’ in English) [32], Global System for Mobile
(GSM), SigFox [33], and LTE-M [34]. As Neul is able to
operate in bands below 1 GHz and LoRa as well as SigFox
operate in ISM band, LTE-M operates in LTE frequencies. In
SigFox, messages are 100 Hz wide. In Neul, 180 kHz band is
needed. A common thing is that the ultra-narrowband (UNB)
signals are proposed to be used. For example, LTE-M (BW
1.4 MHz) and narrowband IoT (NB-IoT) in LTE bands (BW
200 kHz) are studied. In LTE-M, maximum transmit power is
of the order of 20 dBm. In the Third-Generation Partnership
Project’s (3GPP) Radio Access Network Plenary Meeting 69,
it was decided to standardize narrowband IoT [35][36]. Most
of those technologies are on the phase of development. In any
case, it is expected that the amount of narrowband signals is
growing. Thus, IS is required, especially when it is operated
in mobile bands.

III. INTERFERENCE ENVIRONMENT IN CR
The received discrete-time signal is assumed to be of form

r(n) =
m∑
i=1

si(n) +

p∑
j=1

ij(n) + η, n ∈ Z, (1)

where si(n) is the ith intended (relatively) narrowband signal,
ij(n) is the jth unknown (relatively) narrowband interfering
signal, m is the number of intended signals, p is the number of
interfering signals, and η is a complex additive white Gaussian
noise (AWGN) with variance σ2

η . Here, relatively narrowband
signal means that the joint bandwidth of the intended and
interfering signal(s) is less than 80% of the total bandwidth,
so the FCME method is able to operate [19].

In modern CR, the spectrum is divided into three zones
- white, grey and black. In Figure 1, zone classification is
presented. It is assumed that PU-SU distance is >y km in the
white zone, <x km in the black zone, and in the grey zone it
holds that x km <PU-SU-distance <y km [37]. It means that if
SU is more than y km from the PU, SU is allowed to transmit.
If SU is closer than y km but further than x km from the PU,
SU may be able to transmit with low power. Spectrum sensing
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Figure 1: White, grey and black zones.

is required before transmission and there are interfering signals
so IS is needed to ensure SU transmissions. If PU-SU distance
is less than x km, SU transmission is not allowed.

Interference environment differs between the zones. White
space contains only noise. Therein, the noise is most com-
monly additive white Gaussian (AWGN) noise at the receiver’s
front-end, and man-made noise. This is related to the used fre-
quency band. Grey space contains interfering signals within the
noise, which causes challenges. Grey space is occupied by PU
(and possible other SU) signals with low to medium power that
means interference with low to medium power. IS is required
especially is this zone. Black space includes communications
signals, possible interfering signals, and noise. In black space,
there are PU signals with high power and SUs have no access.

There must be some rules that enable SUs to transmit in
grey zone without causing any harm to PUs. According to [38],
SU can transmit at the same time as PU if the limit of inter-
ference temperature at the desired receiver is not reached. In
[3], it is considered the maximum amount of interference that
a receiver is able to tolerate, i.e., an interference temperature
model. This can be used when studying interference from SU
to PU network. In [39], primary radio network (PRN) defines
some interference margin. This can be done based on channel
conditions and target performance metric. Interference margin
is broadcasted to the cognitive radio network. In any case, the
maximum transmit power of SUs is limited.

In our scenario presented in Figure 2, it is assumed that
we have one PU base station (BS), several PU mobile stations
and several SUs. SU terminals form microcells. Part or all of
SUs are mobile and part of SUs may be intelligent devices
or sensors (i.e., IoT). Between SUs, weak signal powers are
needed for a transmission. One microcell can consist of, for
example, devices in an office room. They can use the same or
different signal types than PU. For example, in the office room
case, WLAN can be used. Between the intelligent devices
(IoT), UNB signals are used. It is assumed that SUs operate
at grey zone, so IS is required to ensure the quality of SU
transmissions.

SUs measure signals transmitted by PU base stations and
estimate relative distance to them. Using this information,
SUs know whether their short range communication will
cause harmful interference to the PU base station. To enable
secondary transmissions under continuous interference caused
by the PU base station this interference is attenuated by IS.

The secondary access point knows the locations of PU
terminals or SUs measure the power levels of the signals

Figure 2: Scenario with one macrocell and two microcells.

coming from PU mobile terminals in the uplink. If it is
assumed that SUs know the locations of PUs, SUs do not
interfere with PUs. If SUs do not know PUs locations, their
transmission is allowed when received PU signal power is
below some predetermined threshold. If the level of the power
coming from a certain primary terminal is small, it is assumed
that secondary transmission generates negligible interference
towards primary terminal. However, it may happen that SUs
don’t sense closely spaced silent PUs.

Let us consider microcell 1 in Figure 2. There are one SU
transmitter SU TX1 and four terminals SU i, i = 1, · · · , 4. In
addition to the intended signal from SU TX1, SU 1 receives
the noise η, SU 2 receives PU downlink (PU BS) signal and
the noise η, SU 3 receives PU downlink (PU BS) and PU
uplink (PU 1) signals and the noise η, and SU 4 receives PU
downlink (PU BS) signal, signal from other microcell’s SU,
and the noise η. That is, we get from (1) that

r1(n) = s(n) + η, (2)

r2(n) = s(n) + i2(n) + η, (3)

r3(n) = s(n) +

2∑
j=1

ij(n) + η, (4)

r4(n) = s(n) +

3∑
j=2

ij(n) + η, (5)

where i1(n) is PU 1, i2(n) is PU BS and i3(n) is other SU. For
example, if it is assumed that PUs are in the LTE-A network
and SUs use WLAN signals, receiver SU 2 has to suppress
OFDM signal, receiver SU 3 has to suppress OFDM and SC-
FDMA signals, and receiver SU 4 has to suppress OFDM and
WLAN signals.

In addition, interfering and communication (intended) sig-
nals have to be separated from each other. The receiver has to
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know what signals are interfering signals to be suppressed and
what signals are of interest. In an ideal situation, detected and
interfering signals have distinct characteristics. However, this is
not always the situation. An easy way to separate an interfering
signal from the intended signal is to use different bandwidths.
For example, in LTE networks, it is known that there are 6
different signal bandwidths between 1.4 and 20 MHz that are
used [9]. Especially if a different signal type is used, it is easy
to separate interfering signals from our information signal. It
can also be assumed that interfering signal has higher power
than the desired signal. However, this consideration is out of
the scope of this paper.

IV. INTERFERENCE SUPPRESSION

Interference suppression exploits the characteristics of
desired/interfering signal by filtering the received signal
[40]. After 1970, IS techniques have been widely studied.
IS techniques include, for example, filters, cyclostationar-
ity, transform-domain methods like wavelets and short-time
Fourier transform (STFT), high order statistics, spatial process-
ing like beamforming and joint detection/multiuser detection
[41]. Filter-based IS is performed in the time domain. Those
can be further divided into linear and nonlinear methods. Opti-
mal filter (Wiener filter) can be defined only if the interference
and signal of interest are known by their Power Spectral Den-
sities (PSDs), which is only possible when they are stationary.
Usually, the signal, the interference or both are nonstationary,
so adaptive filtering is the alternative capable of tracking their
characteristics. Linear predictive filters can be made adaptive
using, for example, the least mean square (LMS) algorithm. In
filter-based IS, both computational complexity and hardware
costs are low but co-channel interference cannot be suppressed,
and no interference with similar waveforms to signals can
be suppressed. Cyclostationarity based IS has low hardware
complexity but medium computational complexity. This may
cause challenges in real-time low-power applications.

In transform domain IS [42], signal is suppressed in
frequency or in some other transform domain (like fractional
Fourier transform). Usually, frequency domain is used, so
signal is transformed using the Fourier transform. Computa-
tional complexity is medium, but transform domain IS cannot
be used when interference and signal-of-interest have the
same kind of waveforms and spectral power concentration.
However, waveform design may be used. Transform domain
IS has low hardware complexity. High-order statistics based IS
is computationally complex, and multiple antennas/samplers
are needed, so its hardware cost is high and computational
complexity too. In beamforming, co-channel interference as
well as interference with similar waveforms to the signal of
interest can be suppressed, but because of multiple antennas,
the hardware cost is high. Its computational complexity is
medium.

The less about the interfering signal characteristics is
known, the more demanding the IS task will be. As most of
the IS methods need some information about the suppressed
signals and/or noise, there are some methods that are able to
operate blindly [19]. Blind IS methods do not need any a priori
information about the interfering signals, their modulations or
other characteristics. Also, the noise level can be unknown, so
it has to be estimated. Blind IS methods are well suited for
demanding and varying environments.

V. THE FCME AND THE LAD METHODS

The adaptively operating FCME method [19] was orig-
inally proposed for impulsive IS in the time domain. It
was noticed later that the method is practical also in the
frequency domain [20]. Earlier, the FCME method has mainly
been studied against sinusoidal and impulsive signals that are
narrowband ones. The computational complexity of the FCME
method is N log2(N) due to the sorting [20]. Analysis of the
FCME method has been presented in [20].

The FCME method adapts according to the noise level,
so no information about the noise level is required. Because
the noise is used as a basis of calculation, there is no need
for information about the suppressed signals. Even though
it is assumed in the calculation that the noise is Gaussian,
the FCME method operates even if the noise is not purely
Gaussian [20]. In fact, it is sufficient that the noise differs
from the signal. When it is assumed that the noise is Gaussian,
x2 (=the energy of samples) has a chi-squared distribution
with two degrees of freedom. Thus, the used IS threshold is
calculated using [19]

Th = −ln(PFA,DES)x2 = TCMEx2, (6)

where TCME = −ln(PFA,DES) is the used pre-determined
threshold parameter [20], PFA,DES is the desired false alarm
rate used in constant false alarm rate (CFAR) methods,

x2 =
1

Q

Q∑
i=1

|xi|2 (7)

denotes the average sample mean, and Q is the size of the
set. For example, when it is selected that PFA,DES = 0.1
(=10% of the samples are above the threshold in the noise-
only case), the threshold parameter TCME = −ln(0.1) = 2.3.
In cognitive radio related applications, controlling PFA,DES is
important, because PFA,DES is directly related to the loss of
spectral opportunities and caused interference [20]. Selection
of proper PFA,DES values is discussed more detailed in [20].
The FCME method rearranges the frequency-domain samples
in an ascending order according to the sample energy, selects
10% of the smallest samples to form the set Q, and calculates
the mean of Q. After that, (6) is used to calculate the first
threshold. Then, Q is updated to include all the samples below
the threshold, a new mean is calculated, and a new threshold
is computed. This is continued until there are no new samples
below the threshold. Finally, samples above the threshold are
from interfering signal(s) and suppressed.

The FCME algorithm is blind and it is independent of
modulation methods, signal types and amounts of signals. It
can be used in all frequency areas, from kHz to GHz. The
only requirements are that (1) the signal(s) can not cover the
whole bandwidth under consideration, and (2) the signal(s)
are above the noise level. The first requirement means that the
FCME method can be used against RNB signals. For example,
10 MHz signal is wideband when the studied bandwidth is
that 10 MHz, but RNB when the studied bandwidth is, e.g.,
100 MHz. In fact, it is enough that the interfering signal does
not cover more than 80% of the studied bandwidth. However,
the narrower the interference is, the better the FCME method
operates [43].

The LAD method [21] uses two FCME-thresholds in order
to enhance the detection capability of the FCME method
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Figure 3: Detection difference between the FCME and LAD
methods. The LAD method finds one signal, as FCME finds
five.

Figure 4: The LAD and LAD ACC methods.

[20]. One threshold is enough for interference suppressing, but
causes problems in intended signal detection. If the threshold
is too low, too much are detected. Instead, if the threshold is
too high, not all the intended signals are detected. In the LAD
method, the FCME algorithm is run twice with two different
threshold parameters

TCME1 = −ln(PFA,DES1) (8)

and
TCME2 = −ln(PFA,DES2) (9)

in order to get two thresholds,

Tu = TCME1x2j (10)

and
Tl = TCME2x2l . (11)

Selection of proper values of PFA,DES1 and PFA,DES2 is
presented in [20] and in references therein. Usually, TCME1 =
13.81 (PFA,DES1 = 10−4) and TCME2 = 2.66 (PFA,DES2 =
0.07) are used [20].

After having two thresholds, a clustering is performed.
Therein, adjacent samples above the lower threshold are
grouped to form a cluster. If the largest element of that cluster
exceeds the upper threshold, the cluster is accepted and decided
to correspond a signal. Otherwise the cluster is rejected and
decided to contain only noise samples. The detection difference
between the FCME and LAD methods is illustrated in Figure 3.
There is one raised cosine binary phase shift keying (RC-
BPSK) signal whose bandwidth is 20% of the total bandwidth
and signal-to-noise ratio (SNR) is 10 dB. The LAD method is
able to find one signal. Instead, the FCME algorithm finds 5
signals if the upper threshold is used. If the FCME algorithm
uses some other lower threshold, it still finds at least 5 signals
because of the fluctuation of the signal.

The LAD method with adjacent cluster combining (ACC)
[44] enhances the performance of the LAD method. Therein,
if two or more accepted clusters are separated by at most p
samples below the lower threshold, the accepted clusters are
combined together to form one signal. The value of p is, for
example, 1, 2 or 3 [20]. This enhances the correctly detected
number of signals as well as bandwidth estimation accuracy
of the LAD method [22]. In Figure 4, there are two RC-BPSK
signals whose bandwidths are 5 and 8% of the total bandwidth.
SNRs are 5 and 4 dB. The LAD method finds four signals, as
the LAD ACC method finds two signals.

When considering IS, the LAD lower threshold may be
too low thus suppressing too much. In addition, the LAD
upper threshold may be too high thus suppressing too less.
This problem can be solved when extending the LAD method
include three thresholds instead of two. Then, the FCME
algorithm is run three times with three values of PFA,DES to
get three thresholds: the lowest one is the LAD lower threshold
Tl, the highest one is the LAD upper threshold Tu, and the
threshold in the middle Tm is the threshold used in the IS.
Note, that the LAD method corresponds the FCME algorithm
when PFA,DES1 = PFA,DES2(= PFA,DES3).

When both IS and detection are performed, it is possible
to perform
(a) both IS and detection at the same time,
(b) first IS and then detection, or
(c) use IS only for detecting interfering signal(s).
Case (a) saves some time because the algorithm is run only
once. IS part can be done using only one (Tu, Tm or Tl) or
both the thresholds (Tu and Tl). In case (b), IS uses only one
threshold (Tu, Tm or Tl) as detection uses both the thresholds
(Tu and Tl). Case (c) can be used when the interference
situation is mapped, so only one (Tu, Tm or Tl) or both the
thresholds (Tu or Tl) can be used. In the latter case, interfering
signal characteristics can also be estimated.

VI. SIMULATIONS AND MEASUREMENTS

In this paper, both simulations and real-life measurements
are considered.

A. Simulations
The IS and signal detection ability of the extended LAD

method that uses three thresholds was studied using MATLAB
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Figure 5: Received signals at receiver. Intended signal and PU-
SU interference, T=time and f=frequency.
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Figure 6: One intended 16-QAM signal and one interfering
16-QAM signal. SNR=15 dB, SIR=12 dB.

simulations. In the simulations the focus was on the last 100
meters at IoT network. There was a total of N devices, which
were uniformly and independently deployed in a 2-dimensional
circular plane with plane radius R. This deployment results
in a 2-D Poisson point distribution of devices. After the
network was formed the devices were assumed to be static. The
noise was additive white Gaussian noise (AWGN). The signals
and the noise were assumed to be uncorrelated. Here, 16-
quadrature amplitude modulation (QAM) signal that transmits
4 bits per symbol was used. It is one of the modulation
types used in LTE. There were 1024 samples and fast Fourier
transformation (FFT) was used. In the simulations, IS and
detection were performed at the same time. IS was performed
using one threshold Tm = 6.9, as detection was performed
using two LAD thresholds Tu = 9.21 and Tl = 2.3. SNR is
the ratio of intended signal energy to noise power, as signal-to-
interference ratio (SIR) is the ratio of intended signal energy
to interfering signal energy.

The first situation is like (3), i.e., there is PU-SU in-
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Figure 7: One intended 16-QAM signal and one interfering
16-QAM signal. After interference suppression and detection.
SNR=15 dB, SIR=12 dB.
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Figure 8: One intended 16-QAM signal and one interfering
16-QAM signal. SNR=12 dB, SIR=15 dB.

terference (Figure 5). Thus, the received signal is of form
r2(n) = s(n) + i2(n) + η, where s(n) and i2(n) are both
16-QAM signals. Now, s(n) is intended signal (red arrow)
as i2(n) is interfering signal from PU (blue arrow). Their
bandwidth covers about 30% of the total bandwidth. In Fig-
ure 6, SNR=15 dB and SIR=12 dB, so intended signal is
stronger than interfering signal. Figure 7 shows the situation
after interference suppression and signal detection. In Figure 8,
SNR=12 dB and SIR=15 dB more, so intended signal is weaker
than interfering signal. The situation after signal detection and
IS is illustrated in Figure 9. It can be said that both the methods
perform well.

Next, r4(n) = s(n) +
∑3
j=2 ij(n) + η like in (5). Now

6

International Journal on Advances in Telecommunications, vol 10 no 1 & 2, year 2017, http://www.iariajournals.org/telecommunications/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0 1 2 3 4 5 6 7 109

Frequency [Hz]

0

1

2

3

4

5

6

7
S

ig
na

l P
ow

er
 [W

at
t]

10-12

Suppressed signal

Detected signal

Interfering 16-QAM signal
Intended 16-QAM signal

Figure 9: One intended 16-QAM signal and one interfering
16-QAM signal. After interference suppression and detection.
SNR=12 dB, SIR=15 dB.

Figure 10: Received signals at receiver. Intended signal, PU-
SU and SU-SU interference, T=time and f=frequency.

there are two suppressed signals: one is from PU and one is
from other SU so there is both PU-SU and SU-SU interference
(Figure 10). Now, s(n) is intended signal (red arrow), i2(n)
is interfering signal from PU (blue arrow), and i3(n) is inter-
fering signal from other SU (green arrow). Their bandwidth
covers about 45% of the total bandwidth. In Figure 11, all the
thresholds Tu, Tl and Tm are presented. As the intended signal
is detected using theresholds Tu and Tl, the IS is performed
using threshold Tm. As can be seen, all the signals are found
and both the interfering signals are suppressed.

B. Measurements
The IS performance of the FCME method against RNB

signals was studied using real-world wireless data. The re-
sults are based on real-life measurements. Measurements were
performed using spectrum analyzer Agilent E4446 [45] (Fig-
ure 12). Three types of signals were studied, namely the
LTE uplink, LTE downlink, and WLAN signals. All those
signals are commonly used wireless signals. Both LTE1800
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Figure 11: One intended 16-QAM signal and two interfering
16-QAM signals. Interference suppression (Tm) and detection
(Tu and Tl) thresholds. SNR=15 dB, SIR=12 dB.

Figure 12: Agilent E4446. LTE1800 network downlink signals.

network frequencies and WLAN signals were measured at
the University of Oulu, Finland. IS was performed using the
FCME method with threshold parameter 4.6, i.e., desired false
alarm rate PFA,DES = 1% = 0.01 [20].

LTE1800 network operates at 2 × 75 MHz band so that
uplink is on 1.710− 1.785 GHz and downlink is on 1.805−
1.880 GHz [46]. LTE downlink uses OFDM signal as uplink
uses SC-FDMA. LTE assumes a small nominal guard band
(10% of the band, excluding 1.4 MHz case).

One measurement at 1.7− 1.9 GHz containing 1000 time
domain sweeps and 1601 frequency domain points is seen in
Figure 13. Therein, yellow means strong signal power (=signal)
as green means weaker signal power (=noise). Therein, only
downlink signaling is present. Downlink signals have larger
interference distance than uplink signals. Interfering signals
cover about 30% of the studied bandwidth. In Figure 14,
situation after the FCME IS is presented. Therein, yellow
means strong signal power as white means no signal power.
It can be seen that the signals (white) have been suppressed
and the noise is now dominant (yellow). On uplink signal
frequencies where no signals are present (600 first frequency
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Figure 13: LTE1800 network frequencies. Spectrogram of
downlink signals present.

Figure 14: LTE1800 network frequencies. Spectrogram of
suppressed downlink signals. The FCME method was used.

domain samples), average noise value is −99 dBm before and
after IS.

In Figure 15, first line (sweep) of the previous case is
presented more closely. The FCME thresholds after two cases
are presented. In the first case, the FCME is calculated using
frequencies 1.8 − 1.9 GHz (downlink). Interfering signals
cover about 60% of the studied bandwidth. The threshold is
−89 dBm (upper line). In the second case, the threshold is
calculated using both uplink and downlink frequencies 1.7−1.9
GHz when there is no uplink signals (like case in Figure 13),
i.e., SU is so far away from PU that only downlink signals are
present. Interfering signals cover about 30% of the studied
bandwidth. In that case, the threshold is −91 dBm (lower
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Figure 15: IS using the FCME method for LTE downlink sig-
nals. Upper threshold when the FCME calculated on 1.8−1.9
GHz, lower threshold (dashed line) when the FCME calculated
on 1.7− 1.9 GHz.

Figure 16: LTE1800 network frequencies. Uplink and down-
link signals present.

dashed threshold). It can be noticed that when the studied
bandwidth is doubled and this extra band contains only noise,
we get 2 dB gain.

Next, both uplink and downlink signals are present. There
were 2001 frequency domain points and 1000 time sweeps.
Figure 16 presents one measurement at 1.7 − 1.9 GHz. Both
uplink and downlink signals are present. In Figure 17, one
snapshot when both uplink and downlink signals are present
is presented. Therein, both signals are suppressed.

In the WLAN measurements, 2.4−2.5 GHz frequency area
was used. There were 1000 sweeps and 1201 frequency domain
data points. In Figure 18, one snapshot is presented when there
is a WLAN signal present and the FCME algorithm is used to
perform IS. As can be seen, the WLAN signal is found.
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Figure 18: IS using the FCME method at frequencies 2.4−2.5
GHz where WLAN signals exist. Threshold is −90 dBm.

Next, the desired false alarm rate (PFA,DES) values are
compared to the achieved false alarm rate (PFA) values in
the noise-only case. Figure 19 presents one situation when
there is only noise present. According to the definition of
the FCME method, threshold parameter 4.6 means that 1%
of the samples is above the threshold when there is only noise
present. Here, there are 1201 samples so PFA,DES = 1% = 12
samples. In Figure 19, 12 samples are over the threshold, so
PFA,DES = PFA. We had 896 measurement sweeps in the
noise-only case at WLAN frequencies. Therein, minimum 1
sample and maximum 19 samples were over the threshold as
the mean was 10 samples and median value was 9 samples.
Those were close of required 12 samples. Note that the
definition has been made for pure AWGN noise.
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Figure 19: IS using the FCME method at frequencies 2.4−2.5
GHz where are no signals present. Threshold is −91 dBm.
1% = 12 samples are above the threshold, as expected.

VII. CONCLUSION

In this paper, the performance of the forward consecutive
mean excision (FCME) interference suppression method was
studied against relatively narrowband interfering signals exist-
ing in the novel cognitive radio networks. The focus was on
interference suppression in secondary user receiver suffering
interfering signals caused by primary and other secondary
users. In addition, the extension of the FCME method called
the localization algorithm based on double-thresholding (LAD)
method that uses three thresholds was proposed to be used for
both interference suppression and intended signal detection.
LTE simulations confirmed the performance of the extended
LAD method that uses three thresholds. Real-world LTE and
WLAN measurements were performed in order to verify the
performance of the FCME method. It was noted that the
extended LAD method that uses three thresholds can be used
for detecting and suppressing LTE signals, and the FCME
method is able to suppress LTE OFDM and SC-FDMA signals
as well as WLAN signals. Our future work includes statistical
analysis, more detected and suppressed signals, as well as
comparisons to other methods.
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