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Abstract—Smart Nodes are intelligent components of sensor
networks that perform data acquisition and treatment, by per-
forming virtualization of sensor instances. Smart Factories are
an application domain in which dozens of these cyber-physical
components are used, flooding the network with messages. In
this work, we present a methodology to reduce the number
of calls a Smart Node makes to the network. We propose
grouping individual communications within a Smart Node to
reduce the number of calls, which is important to improve
the efficiency of the factory network. The paper exposes and
explains the Smart Node internal structure, formally describing
the problem of minimizing the number of calls Smart Nodes
make to Cloud Services, by means of a combinatorial Constraint
Optimization Problem. Using two Constraint Satisfaction Solvers,
we have addressed the problem using distinct approaches. In
this extended version of the work, an additional constraint is
added to cut the search space, by eliminating infeasible solutions.
Optimal and sub-optimal solutions for an actual problem instance
have been found with both approaches. Furthermore, we present
a comparison between both solvers in terms of computational
efficiency, constraints created in the extended vs original version
and show the solution is feasible to apply in a real case scenario.

Keywords–Sensor Simulation; Combinatorial Optimization;
Time Synchronization; Smart Nodes; Industrial Wireless Sensor
Networks.

I. INTRODUCTION

Wireless Sensor Networks (WSN) consist of sensors
sparsely distributed over a given area to sense physical prop-
erties, such as luminosity, temperature, current, etc. They are
composed of sensor nodes, which pass data until a destination
gateway is reached. Common applications are industrial and
environment sensing, where they can be used to perceive the
state of a machine and prevent natural disasters, respectively.
Gateways in WSN play a preponderant role, since they acquire
data from sensors, do pre-processing and are responsible to
send sensors data to cloud systems for other forms advanced
processing.

In this work we present an extension to a previous formu-
lation [1] that solves the problem presented in the following

Figure 1. A Smart Node gateway.

sections. In this extended version, the problem was revised
with the intent to increase the time efficiency of the previous
proposed solution and also to explore in more detail the
previous results. For this analysis, it was planned to run the
same tests again, but for a longer period of time. After getting
a second set of results, the problem was once again analysed.
The analysis objective was try to find some constraint, for-
mulation improvement or domain reduction that decreases the
complexity for finding a solution.

The presented technology, a sensor gateway, inherits its
main characteristics from the Smart Component philosophy.
This philosophy is based in a consistent study of the Smart
Manufacturing initiative and it is being systematically re-
fined and matured by past and present European projects
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(XPress [2], IRamp3 [3], ReBORN [4] and SelSus [5]). There
are five essential characteristics to a Smart Component:
• Reconfigurable and modular: the solution must be

capable to extend its capabilities by adding new soft-
ware modules and it must be capable to reconfigure
its internal operation in runtime.

• Data processing capabilities: system state assess-
ment, event detection and fault alarm requires data
processing capabilities.

• Omnidirectional communication and interface ca-
pabilities: omnidirectional means that the system must
be capable to talk with devices at a lower level (sen-
sors and machines), same level (other Smart Compo-
nent’s) and higher level (cloud servers, manufacturing
systems).

• Process events and take actions: this capability
provides the system with a certain degree of smartness
and autonomy. In case any event of interest, the system
must be capable of detecting it and take the proper
actions.

• Real-time acquisition, processing and delivering:
typically, field devices operate at variable real-time
scales, performing multiple tasks in a coordinated way.
Providing actions in real time is a vital factor for
industrial scenarios.

What introduces the complexity that we are trying to
address in the Smart Component is the fact that it was designed
to be modular, according with Component-Based Software En-
gineering methodologies. It was developed as ”a composite of
sub-parts rather than a monolithic entity” [6]. The advantages
of such tackle many objectives of the software industry, some
of them are: reduction of production cost, code reuse, code
portability, fast time to market, systematic approach to system
construction and guided system design by formalization and
use of domain specific modelling languages.

The component model is the foundation of a component
based design. It defines, briefly, the composition standard,
that is: how components are composed into larger pieces;
how and if they can be composed at design and/or run-
time phases of a component life-cycle; how they interact;
how the component repository (if any) is managed and the
runtime environment that contains the assembled application.
Because all of this, component models are hard to build.
Some known problems are: achieving deterministic and real-
time characteristics; managing parallel flows of component
and system development; maintaining components for reuse;
different levels of granularity [7] and portability problems [8].

According to [6], components can be divided into 2 main
classes: 1) objects, as in OO languages; 2) architectural units,
that together compose a software architecture. According to
the authors, there are no standard criteria for what constitutes
a component model. Components syntax is the language used
to component definition and which may be different from
implementation language. Typically, the containers and run-
time environments are designed and maintained in a server.
In this case, we are dealing with an embedded system; being
itself the runtime environment and container. The Smart Node
uses architectural units as encapsulation for drivers that gather
sensor and machine data, objects are used to implement
algorithms for data treatment.

Figure 1 shows a Smart Node from an external operation
of perspective. These components are nodes in Industrial
Cyber Physical Systems that operate and control Industrial
Wireless Sensor Networks. To introduce the problem this paper
addresses, let us consider a scenario in which a reasonable
number of these components operate simultaneously. In this
operation the following conditions applies:

• Gateways are in constant synchronization with In-
tra/Inter Enterprise Cloud systems.

• Gateways perform collaborative tasks by talking over
the network.

• Human Machine Interface devices proceed to on de-
mand requests to the Smart Nodes.

A large quantity of messages is expected, generated by a
large number of devices and services.

Gateways collect data from different sensor types (e.g.,
humidity, current, pressure). These cyber-physical components
are coupled to industrial machines, along with several sensors,
which collect data about the operation of machines; finally, the
data collected is treated and synchronized with Cloud systems
for multiple purposes. The majority of sensors coupled to
industrial machines sample data at very different rates and
synchronize the collected data with the Smart Node, in the
respective sampling frequency. A Smart Node can embed a
set of different data treatment modules. These modules can be
instantiated to provide different ways of treating sensor data in
a way that can be represented as a graph (Figure 2). A gateway
internal logic arrangement is represented using a directed
acyclic graph (DAG). The graph structure in Figure 2 can be
divided into three levels, each with a different label and colour
assignment: the Sensor Level (bottom level), includes sensor
instances providing data to the gateway; the Data Treatment
Level (middle level), includes nodes representing instances of
algorithms embedded at the gateway that can treat information
in several ways (e.g., aggregate data using moving average,
perform trend analysis or other functions); the Network Level
(top level), includes nodes where the flow resulting from the
lower level nodes can be redirected to subscribing hosts in the
network. This internal structure can be dynamically rearranged:
new sensors and data modules can be loaded into the Smart
Node; the connections between nodes can be reformulated to
synchronize and treat data in new ways.

A problem of efficiency emerges due to the different rates
at which the data is gathered from all kinds of connected
sensors. When data reaches the Network Level nodes, it is
immediately sent to the subscriber, a node in the network, in
this case, some cloud service. Slight time differences in the
availability of data lead the different Network Level nodes to
perform new and individual calls. If those time differences
were eliminated, Network Level nodes would be synchronized
and data from the different nodes could be packed together,
reducing the total number of calls made and the network traffic
heavily. To accomplish synchronization among Network Level
nodes, data buffers for all the edges connecting nodes previous
to a particular Network node must be resized to compensate:
(1) different time to process data by Data Treatment level
nodes, since each module takes different time to process data;
(2) different sampling rates of sensors, a same number of
samples is accumulated at different times.
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Figure 2. Internal Gateway configuration.

Taking advantage of the DAG representation of the gate-
way, we formulate and propose a solution to the problem as a
combinatorial Constraint Optimization Problem.

The remaining chapters in this work describe the following:
In Section II, a formal definition of the problem is presented.
Section III shows literature review, the problem formulation
basis. In Section IV, the solving process is detailed along with
assumptions, constraints and technology that has been used.
In Section V, the initial set of results is presented. Section VI
explains the revision made to the initial problem solution, a
new constraint is formally defined and the application of that
constraint is reported in comparison with extended result sets.
In section VII, conclusions and future work are described.

II. PROBLEM DEFINITION

Each arc in the graph (see Figure 2) has an associated
buffer bn,m. Given the fact that sensors are sampling at
different frequencies freq, these buffers are filled at different
rates. We define G as the set of nodes in a particular Gateway
instance; three subsets of nodes are contained in G : N ⊂ G
is the subset of Network Nodes (index k nodes); P ⊂ G is the
subset of data Processing Nodes (index j nodes); S ⊂ G is
the subset of Sensor Nodes (index i nodes). The subsets obey
to the following conditions:

G = N ∪ P ∪ S;N ∩ P = ∅;P ∩ S = ∅;N ∩ S = ∅ (1)

Nodes in N can be classified as consumers; nodes in S are
exclusively producers; nodes in P are both producers and
consumers. Edges between nodes can be defined as:

en,m =

{
1 if n is consumer of m : n 6= m;

m ∈ P ∪ S and n ∈ N ∪ P
0 otherwise

(2)

As an example, we can observe in Figure 2 that node j6
consumes from i4 (Sensor Level) and j3, which is in same
level (Processing Level) and all the k nodes (Network Level)
only consume from inferior levels. To help in the definition of
this problem, two additional subsets of nodes, containing the
connections of a given node, are defined as follows:

Wn = {j : j ∈ P ∧ en,j = 1} , n ∈ N ∪ P (3)

Equation (3) defines a subset of nodes in P , which are produc-
ers for the given node n ∈ N ∪ P . As an example (Figure 2),
for n = j6 : Wj6 = {j3}; for n = k3 : Wk3

= {j6, j4}; and
for n = j3 : Wj3 = ∅ since it does not consume from any
Data Processing nodes.

Xn = {i : i ∈ S ∧ xn,i = 1} , n ∈ N ∪ P (4)

Equation (4) defines a subset of nodes in S, which, are
producers for the given node n ∈ N∪P . In Figure 2, these are
the nodes i in the Sensor Level, from which, Processing Level
nodes and Network Level nodes consume. As an example
(Figure 2), for n = k3 : Xk3

= {i6, i7}; for n = k1 : Wk1
= ∅

since it does not consume from any Sensor Level node and for
n = j6 : Wj6 = {i4}.
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A processing node in P applies an algorithm to transform the
data coming from its associated producers. The data generated
at the sensor level is delivered to the processing nodes as a
batch, which contains the number of samples equal to the size
of the buffer for the corresponding edge.

In order to the processing to be possible, the number of
elements in each collection must be the same. This constraint
must be applied to the subsets Wn and Xn of a given node n
in N ∪P , respectively; for that constraint to be respected, the
size of every buffer associated to each element in Wn ∪ Xn

must be the same. Formally this constraint can be represented
as:

∀n ∈ N ∪ P,∀m ∈Wn ∪Xn : |bn,m| = f(n) (5)

Where |bn,m| represents the size of the given buffer for the
given edge en,m and f(n) is the size of any buffer from which
node n consumes.

The size of a buffer is adjustable and can vary from 1 to
1000. The objective of this problem is to arrange a combination
of values to parametrize the size of every buffer |b|, for every
arc in the graph, which minimizes the differences between
times at the Network Nodes in which data is available to be
sent to the network. To calculate the time that takes data to be
available at every node k ∈ N , the times for all its providers
in the graph must be calculated. As data comes in collections
(sets of single values), let us define burst as the exact time at
which data is sent from one provider node to a consumer node
and represent the burst of a node n as Bn.

The burst of a Sensor Node i is defined by the product of
its sampling frequency and the size of the buffer associated
to the edge en,i we are assuming. That way, every time a
sample from a sensor is collected, that sample is sent to all
consumers of that sensor. A burst of a Sensor Node to an
adjacent consumer node, m, occurs when the buffer for the
edge ei,m is completely filled, and is formally represented by
the expression:

Bi,m = freq(i)×|bi,m|×ei,m = 1;∀i ∈ S∧m ∈ P ∪N (6)

For a Data Processing Node, the burst time must contemplate
all the burst times from its providers, the time that takes for the
associated function T (f(n)) to treat one data sample and the
size of the buffer associated to the edge en,m we are assuming.
The expression which determines the burst time for a Data
Processing Node j to a consumer node m is defined as:

Bj,m = (maxi∈Wj∪Xj
(Bi,j) + T (fj)× (|Wj |+ |Xj |))× |bj,m|; ej,m = 1 (7)

We assume that the growth in time complexity of the function
T (fn) : n ∈ P is linear with the number of samples to process.
Since the size of each producer buffer is equal, we multiply
the total number of producers of j by the cost of treating a
single sample. To calculate the burst for j1 (see Figure 2), we
take the max burst of Xj1 and sum the product of T (fj1) (time
to process one sensor sample) with the number of elements in
Xj1 (which corresponds to the producers i1, i2 and i3).

Finally, to calculate the burst of a Network Node k ∈ N :

Bk = max
i∈Xk∪Wk

(Bi,k) (8)

Using the expression to calculate the burst for each Network
Node, the objective is to minimize the variance of burst for all
the Network Nodes and also minimize the sum of all buffer
sizes in the DAG. By varying the size of the buffers in the
graph, the variance of all burst times for Network Nodes and
the sum of all buffer sizes are minimized. With a variance
of zero or closer, data from different Network Nodes can be
packed in the same payload and sent to the subscribers in the
network. Even if the quantity of data exceeds the maximum
payload size for the protocol in use, or the physical link being
used, the number of connections needed is far less than it
is when using the original strategy of independent calls. The
number of buffers |P ∪N |, times an upper bound buffer size
of 1000 is multiplied by the variance. This way, the variance
has more impact in the search of an optimal solution than the
sum of all buffer sizes.

V̂ (Bk)× 1000× |P ∪N |+
∑

n∈|P∪N |

∑
m∈Wn∪Xn

|bn,m| (9)

As follows from Equation (9), minimizing variance of burst
times for network nodes is the major concern. To reflect this,
the variance is multiplied by the maximum possible size for a
buffer (1000, which is a reasonable number of samples for a
sensor), times the number of Processing and Network nodes.
This will drive the solver to focus on a solution with less
variance, and break ties by considering the minimal buffer sizes
(as these incur a cost). With a variance of 0 at the Network
Level nodes, all data produced can be sent to the cloud using
the same call. If variance is higher than 0, a threshold must be
used to decide the maximum reasonable time to wait between
bursts. In comparison with individual calls strategy – a call
made every time a burst at the Network Level occurs – the
number of calls to the cloud is minimized as a consequence.
The theoretical search space of the problem is En, where E
represents the total number of edges in the graph and n = 1000
is the Buffer Size domain upper bound. The real search space,
imposed by the constraint of Equation (5), can be determined
by Fn, where F = |P |+ |N | is the total number of Processing
and Network nodes in the graph.

III. RELATED WORK

To the best of our knowledge, there is no scientific literature
or works that cover this exact problem. The problem presented
in this work emerged due to the very specific nature of Smart
Nodes applied to industrial monitoring situations. Since an
exact formulation or solution to this problem could not be
found, the related works presented are analogous in the sense
that some knowledge could be used to refine the modelling
and solutions presented.

The theoretical background behind this problem has a large
spectrum of application. The problem of modelling buffer
sizes is mostly applied to network routing, to which the
works [9],[10] and [11] are examples. As we are not interested
in dealing with networks intrinsic characteristics, those buffer
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optimization problems can hardly be extrapolated to this work.
The domain of Wireless Sensor Networks (WSN) is another
scope of application of buffer modelling optimization, with
relevant literature in this domain; the section of Routing
problems in [12] covers a great number of important works re-
garding Flow Based Optimization Models, for data aggregation
and routing problems. WSN optimization models care with
constraints that this problem modulation does not cover, such
as: residual energy of nodes, link properties, network lifetime,
network organization and routing strategies.

A relevant work in WSN revealed to be of the major inter-
est for this work. The authors presented and solved the problem
of removing inconsistent time offsets, in time synchronization
protocols for WSN [13]. The problem presented has a high
degree of similarity with the case we are dealing. The problem
is represented by a Time Difference Graph (TDG), where each
node is a sensor, every sensor has local time and every arc has
an associated cost time given by a function. The solution to the
problem is given by a Constraint Satisfaction Problem (CSP)
approach. For every arc in the graph there exists an adjustment
variable (analogous to the buffer size in this case), assignments
are made to the variables to find the largest consistent sub-
graph, i.e., a sub-graph in which inconsistent time offsets are
eliminated.

Focusing the search in the literature domain of CSP prob-
lems, several works were revealed in the sub-domain of bal-
ancing, planning and scheduling activities that can be related
to this application [14][15][16][17][18]. Namely, models of
combinatorial optimization for minimizing the maximum/total
lateness/tardiness of directed graphs of tasks with precedence
and time constraints [14][18]. These problems are analogous
to this work, and due to a simplified formulation with the
same constraints (precedences and time between nodes), can
be easily extrapolated to our case.

IV. IMPLEMENTING AND TESTING

A. Problem Assumptions
The Smart Node application has several interfaces for real

sensors, the physical connections range from radio frequency
to cabled protocols. By testing this model with simulated
scenarios, we assume no interference or noise of any type can
cause disturbance in the sampling frequency. In a real case
scenario, a sensor could enter in an idle state for a variety
of reasons. In that case, data would not be transmitted at all,
causing the transmission of data to the Cloud to be postponed
for undefined time, waiting for the Network Level node burst
depending on the idle sensor. For simplification, we assume
a sensor never enters an idle state. Also, it is assumed that
the time that takes to treat one sample of data will increase
linearly for more than one sample, as mentioned for T (fj)
when introducing Equation (7).

B. Constraint Satisfaction Problem Solvers
For comparison of performance purposes we implemented

the problem using both OptaPlanner and SICStus Prolog. As
the Smart Node is implemented in Java we can take advantage
of a direct integration with OptaPlanner in future. On the
other hand, we expected that SICStus Prolog would produce
the same results with better computation times because of the
lightweight implementation and optimized constraint library.
Using these premises and the results presented in the next

section a grounded decision about what solver to use in future
implementations of the Smart Node can be made.

C. Tests
To validate the problem solutions, several DAG configura-

tions were tested using the two implemented versions, based on
OptaPlanner and SICStus Prolog, as described in Section IV.
To test the implementations an algorithm to generate instances
of the problem was built. The script generates instances of the
Smart Node internal structure, DAG’s, with a given number of
Processing and Network nodes. Algorithm 1 briefly illustrates
the approach:

Data: G← S ∪ P ∪N
Result: Smart Node internal configuration G
notV isitedNodes← G;
Pnodes← randomInteger( |P∪N |

2 , |P ∪N | − 2);
Nnodes← nNodes− Pnodes;
Snodes←
randomInteger(nNodes

2 , nNodes + nNodes
2 );

G← S, P,N ←
generateNodes(Snodes, Pnodes,Nnodes);
remainingEdges← Pnodes× 2 +Nnodes+Snodes;
while remainingEdges > 0 do

if node← notV isitedNodes.nextNode() then
notV isitedNodes.remove(node);

else
node← G.randomNode();

end
if node is S then

connect to a random P or S node, disconnected
nodes first;
remainingEdges−−;

else if node is P then
get connection from a random P or S node,
disconnected nodes first;

connect to a random P or S node, disconnected
nodes first;
remainingEdges−−;
remainingEdges−−;

else
get connection from random a P or S node,
disconnected nodes first;
remainingEdges−−;

end
end

Algorithm 1: Smart Node instance generation.

Real scenarios generally have a higher number of Sensor
Nodes, followed by a small number of Processing Nodes and
an even smaller number of Network Nodes. Typically, the total
number of nodes does not exceed 30 per operation. The in-
stance generator picks aleatory numbers for the nodes bounded
by a real case scenario application. Sampling frequencies for
the sensors are assumed to vary from 400 to 2000 milliseconds.
Functions to treat data in Processing Nodes are not typically
complex. We measured the real case scenario functions to treat
the minimum amount of data (1 sample) and we got values
ranging from 0.19 to 0.38 milliseconds. To cover the buffer
size domain, we need to take the worst case, 1000 samples.
Given best and worst cases, the values attributed to cost of
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Processing Nodes ( T (fj) in Equation (7)) are between 1 and
40 milliseconds.

1) OptaPlanner: This solver [19] is a pure Java constraint
satisfaction API and solver that is maintained by the RedHat
community. It can be embedded within the Smart Node ap-
plication to execute and provide on-demand solutions to this
optimization problem. Because of the reconfigurable property
of the Smart Node internal structure, each time the structure is
rearranged, the solution obtained to the problem instance prior
to the reconfiguration becomes infeasible. The integration (see
Figure 3) between the two technologies is accomplished by
defining the problem in the OptaPlanner notation: (1) Buffer
Size class corresponds to the Planning Variable, during the
solving process it will be assigned by the different solver
configurations; (2) Edge class is the Planning Entity, the
object of the problem that holds the Planning Variable; (3)
SmartNodeGraph class is the Planning Solution, the object
that holds the problem instance along with a class that allows
to calculate the score of a certain problem instance. The score
is given by implementing Equation (9); the best hard score is
0, which corresponds to null variance between the Network
Levels nodes. The soft score corresponds to the minimization
of the sum of all buffer sizes and does not weight as much as
a hard score in search phase.

Since the search space is exponential, heuristics can be
implemented to help the OptaPlanner solver to determine the
easiest buffers to change. The implemented heuristic sorts the
buffers from the easiest to the hardest. The sorting values are
given by the number of ancestors of a given edge, an edge
with a greater number of ancestors is more difficult to plan.
Also, if an edge leads to a Network Node, it is considered
more difficult to plan. OptaPlanner offers a great variety of
algorithms to avoid the huge search space of most CSPs. These
algorithms can be consulted in the documentation [20] and
configured to achieve best search performances. For a correct
comparison we used the Branch and Bound algorithm, which
is the same algorithm that SICStus Prolog uses by default,
without heuristics.

Figure 3. UML for Smart Node and OptaPlanner integration.

The UML diagram in Figure 3 shows the modelling of the
problem using the OptaPlanner methodology.

2) SICStus Prolog: SICStus Prolog [21] provides several li-
braries of constraints that allow to model constraint satisfaction
problems much more naturally than the OptaPlanner approach,
which follows from the fact that modelling a problem in
SICStus Prolog takes advantage of the declarative nature of
logic programming. The problem modelling involved four
types of facts (to represent N , P and S nodes, and to represent
edges) and six predicates (to gather variables, express domain
and constraints). The clpfd (Constraint Logic Programming
over Finite Domains) [22] library was used to model and solve
the problem. This library contains several options of modelling
that can be used to optimize the labelling process. In our case,
the labelling process takes as objective the minimization of
the difference between the Network Node with the maximum
burst time and the one with the lowest burst time (Equation
(9)). The variables of the problem are given by a list of
all the facts edge(from,to,buffer size)., where buffer size are
the variables to solve in a finite domain from 1 to 1000. In
future implementations of the problem, global constraints and
labelling options must be analysed to ensure the modulation
is the most optimized.

V. RESULTS

For both implementations the first set of results is shown
in Tables I and II. The results shown are an average of 5
different problem instances for each problem size, which is
determined by |P ∪N |, see Section II. To gather results, the
generator was used to generate 5 instances of the problem for
each row. Then, both solvers were used in the same machine
(Intel(R) Core(TM) i7-4710HQ CPU @ 2.50GHz (8 CPUs),
2.5GHz, 16384MB RAM), with the same conditions (Windows
10 Home 64-bit), to run the tests. We established a limit of
60s to run the tests, which was considered acceptable for the
solvers to find a feasible solution in a real case. Another limit
was the number of nodes used in the experiences. With a
number of nodes in the order of 100, and a time window of
8 hours, both solvers were unable to give a response to most
cases. Given the complexity stated, and the fact that in real
cases the number of nodes normally does not exceed 30, 50
nodes was the limit used for the tests.

The quality of the solutions found is mostly given by the
second column, which represents the constraint of minimizing
the burst times at the Network Level. As we can be seen in
Table II, the SICStus Prolog implementation shows the best
results for the most relevant quality factor. In the third column,
the sum of all the buffer sizes is lower in the OptaPlanner
implementation (Table I). During the tests, it was observed in
the logs that the OptaPlanner was much slower traversing the
search tree. Regarding all the columns, a clear tendency to
worst results is obvious along the table, but in the last line of
both tables, a sudden improvement in the variance occurs. This
behaviour enforces the NP-Completeness nature of this kind
of problems. In every row of both tables, in which a Solution
time of 60 seconds is found, that row matches a sub-optimal
solution. Since both solvers were programmed to stop at 60
seconds, most solutions are not optimal. Sub-optimal solutions
are feasible in a real case, even if the variance between call
times is not zero, because the gap is heavily reduced. The
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TABLE I. OptaPlanner results

TABLE II. SICStus results

Smart Component can define a time window with the size of
the variance, and this way, include all results in the same call.

VI. PROBLEM REVISION

In this section, the second set of results is presented and
discussed. A deeper problem analysis was conducted and the
conclusions of this analysis are applied in a third set of tests.

Firstly, the time limit imposed to the search conducted in
the previous results (Table I and Table II), was extended to 9
hours. To add more detail to the study, two new columns were
added to the new results (Table III, Table IV and Table V). The
initial variance ∆Vi(Bk), introduced in the first column, is the
variance calculated with all buffer sizes set to the minimum
size of 1. This column was introduced to give an idea of by
how much is the time difference between the optimized version
is produced and the first approach - set all buffers to same
value, 1. The second column introduced was ”Total Search
time (s)”, it indicates the total amount of time that the search
process took. For 32400 seconds (or 9 hours), it indicates a
non optimal solution, because the search phase surpassed the
time limit established. When the time indicated is the same as

in ”Total Search time (s)”, it means that an optimal solution
was found timely. ”Total Search time (s)” indicates the time
that took to find the solution presented in the table, which is
the last optimization found before the time limit was exceeded.
With this separation it is possible to see that most of the results
(∆Vf (Bk)) are found in a average time of 2.46 hours for the
SICStus implementation. These results motivated a problem
revision to decrease the search time and that is addressed in
the following sections.

TABLE III. OptaPlanner Extended Results

TABLE IV. SICStus Extended Results

A. Proposed Enhancement
To analyse the problem more deeply, let us consider the

buffers in the graph were adjusting its size is really critical.
The buffers in inferior levels, all that connect P and S nodes,
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although their size may impact the final solution, are less
critical. The unique constraint that must hold on these is
the one of Equation (5). This constraint implies that buffers
connecting P nodes must have the same size. In these cases,
the impact on the superior level is dictated by the burst time
of the latest provider to send data. There is nothing that can be
done beyond this constraint. On the other hand, let us consider
buffers that connect directly to network nodes N . These buffers
dictate the optimization function defined in Equation (9). By
increasing the buffer size, we are multiplying it by the burst
time of the latest consumer to provide data. That is to say, if
the values of these buffers are different, we cannot multiply the
same value on two or more different buffers. If the same value
is multiplied, we are maintaining the difference between them.
Taking this in consideration, there is an obvious constraint
to apply in this case, constrain buffers with different burst
times of having the same size. Although this seems a little
improvement, the impact of this constraint grows in function
of the number of different buffers being considered.

To formalize this constraint, let us first define a set that
contains the buffers of all edges that connect directly Network
Nodes. Let us denote this set by NBs, which stands for
”Network Buffer’s”. We can define this set recurring to the
previous set definitions in Equation (3) and Equation (4), as
follows:

NBs = {bk,m : ∀k ∈ N,m ∈ Xk ∪Wk} (10)

Relying on the DAG of Figure 2 to give a clearer ex-
ample, this set would contain the following buffers NBs =
{bk1,j5 , bk1,j2 , bk2,j6 , bk3,j6 , bk3,i6 , bk3,i7 , bk3,j4 , bk4,j7}.

Having at this point a clear view of types of buffers that
will be the target of this optimization, we can introduce the
constraint that will be only applied when the buffers belong to
edges were the following conditions apply. The first condition
for applicability of this constraint is that it can only be applied
to buffers with different burst times (Bi,n1

6= Bj,n2
). The

second condition is that the source of data cannot be the
same, because implicitly the burst time will be the same.
Considering Figure 2, the buffers bk2,j6 and bk3,j6 fall in these
two conditions. They have the same source, implicitly they
have the same burst time. The logic of this constraint is: if
we multiply the same factor (buffer size) by the same value
(burst time), we are maintaining the variance between the two
buffers being considered.

∀i ∈ BNs, ∀j ∈ BNs, i 6= j, Bi,n1
6= Bj,n2

, n1 6= n2 : |bi,n1
| 6= |bi,n2

| (11)

The impact of this constraint can be theoretically calculated
for the worst search case, i.e., explore all the possible com-
binations of buffers sizes in NBs. Let us define the number
of possible combinations for buffer sizes as 1000B . In which
1000 is the domain size for a buffer and B is the number of
buffers in NBs. Now we need to obtain the number of buffers
that correspond to edges with different burst times. If we
apply the conditions of Equation (11) to NBs, specifically the
part that guarantees different burst times (Bi,n1

6= Bj,n2
), we

obtain the number of buffers D to which this constraint can be
applied. Considering the previous definitions for B and D, by

relying on combinatorics, we can apply simple arrangements
to calculate the number of times that two ore more buffers in a
search assignment will be equal. By subtracting the number of
combinations cut from the search space (due to the application
of Equation (11)) to the total number of assignments, we get
the optimized number of possible combinations.

1000B − 1000!

(1000−D)!
(12)

Considering the most basic case, five buffers (B = 5), and
only two different among them (D = 2), this would give us
a reduction in the search space of 999000 possibilities. In the
most optimistic case, in which all buffers are different (B = 5
and D = 5), the reduction in search space is exponentially
best, resulting in a cut of 9.90034950024× 1014 possibilities.

B. Enhancement Tests
This subsection reports the results of implementing the

optimization constraint developed in the previous section.
The same conditions (hardware and time limit) and problem
instances (same graphs) as in the previous tests were used.
Because of the results obtained by the OptaPlanner imple-
mentation (Table III), the optimization constraint was only
implemented in the SICStus solution. Table V shows the results
for optimized version of the problem.

TABLE V. SICStus Enhancement Results

In Table VI, a comparison between the number of prunings
for the same iterations and versions (in each table, for the
same number of nodes |P ∪ U |, there are two rows for the
two different problem graphs tested) of the test is presented.
The number of prunings was obtained by SICStus, using the
fdstats predicate. As can be verified, the number of prunings
was increased, which means that the improvement introduced
is reducing the search space by cutting the search tree more
times in the optimized version of the implementation.
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TABLE VI. SICStus Enhancement Statistics

Despite the optimized version having reached faster solu-
tions in practically all cases, as shown in the graph of Figure 4,
the solution quality was affected negatively as can be seen
in the graph of Figure 5. Although this might seem a worse
strategy at first sight, it will always guarantee that the ideal
solution of ∆Vf (Bk) = 0 is found faster than in the previous
implementation.

Figure 4. Search Time Comparison, Optimized vs Non-Optimized

Figure 5. Solution Quality Comparison, Optimized vs Non-Optimized

VII. CONCLUSION AND FUTURE WORK

Despite the search space of the problem, both solvers
reached optimal solutions in cases that are feasible to real
application. In the future tuning options of the solvers must be
explored. Another additional constraint to this problem could
be the introduction of a case in which a single or several
sensors are producing data with a higher priority. The problem
can be easily reformulated to embrace that kind of situation by
modifying the objective function Equation (9). SICStus Prolog
shows a clear advantage in computation time. That difference
can be the reflex of the number of code lines needed to model
the problem. SICStus Prolog required eight procedures (pred-
icates), against 10 classes and 1 XML configuration file for
the OptaPlanner implementation. The difference in modelling
complexity possibly causes an additional overhead. Another
important remark is that, given the experience of implementing

the problem and playing with the solvers options, two contrasts
can be highlighted: (1) SICStus Prolog is very intuitive at
the problem modelling phase, on the other hand, OptaPlanner
required more effort, both in implementing an perceiving the
methodology; (2) tuning the solvers, for example the time out
feature that allows to stop the solver in the desired time, it is
more intuitive in the OptaPlanner approach.

Regarding the optimization presented, the solution quality
suffers with the constraint proposed in Equation (11). This
decrease in quality of the solution is due to the fact that buffers
involved cannot be equal. Despite achieving a worse variance,
in cases were it is possible to achieve the ideal solution of zero
variance, this implementation will find it faster, as shown in
Figure 5. In this case, there exists a trade-off between better
sub-optimal solutions (the non optimized version) and better
chance to find optimal solutions (optimized version).

Considering all pros and cons, SICStus Prolog most proba-
bly will be chosen to integrate the Smart Node in future work.
These experiments were made off-line, as future work, the
Smart Component can embed the optimization code and adopt
a strategy to optimize the variance in idle CPU time until an
optimal solution is found on-line. In this extended version can
be verified that, when the problem is too big, the complexity
outperforms a reasonable time for a solution. As future work,
an idea to split the DAG in sub-graphs, arrange individual
solutions, and later join them using intermediary buffers.
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