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Abstract—Over the last years, education paradigms developed
from the traditional classroom learning to novel approaches like
e-learning and blended learning. Especially blended learning,
which combines the traditional approach with e-learning inde-
pendent of time and place, is an important concept to increase
the quality of study programmes. For the creation of laboratory
setups in higher education dealing with computer networks,
virtualized network environments have been continuously gaining
momentum. Depending on the desired practical or theoretical
orientation, they can be implemented using different paradigms,
as well as corresponding hardware or software solutions. A high
practical relevance and functional realism can be achieved using
network emulation. However, emulation requires more resources
compared to network simulators, due to the complexity of realistic
network functions. To offer emulated virtual network environ-
ments, e.g., for a large number of participants in higher education
courses, scalable virtualization backends and cluster solutions are
necessary. In this article, we provide an overview over available
paradigms to create networking experiments in higher education
classes. We also present a number of requirements, which we
identified to be important in the context of the networking
laboratory (NetLab) of Fulda University of Applied Sciences.
Based on these requirements, the available software solutions
were compared and the best matching solutions were selected
for the use in our laboratory. The scalability and performance
evaluation of virtual network testbeds presented in this article,
outlines the suitability of each compared network virtualization
and emulation solution for higher education courses, and dis-
cusses possibilities for further improvements.

Keywords–Network Virtualization; Network Emulation; Higher
Education; VIRL; GNS3.

I. INTRODUCTION

In recent times, the paradigms for teaching in higher
education have been evolving to include concepts like blended
learning. This paradigm shift is especially helpful for hands-
on laboratory exercises, as they typically include for example
virtual testbed setups for larger class sizes as well as extending
the use of the experiments and testbeds beyond the laboratory
or classrooms. Furthermore, offering e-learning and blended
learning content is a necessity today to increase the quality of
study, e.g., by including complex and practical examples, and
to keep pace with the rapid development of online courses and
the mobility of students as well as lifelong learning. This is
especially true for computer network labs, where real-world
test setups are needed to complement lectures and theoretical
models with practically relevant exercises [1].

To provide such environments, various approaches are
possible, depending on the intended focus on theoretical or

practical relevance. Figure 1 gives an overview of correspond-
ing gradations of possible approaches, including references to
some of the appropriate tools available. While the implementa-
tion of testbeds in real-world networks, e.g., campus networks
of organizations and universities as shown at the left end of
the figure, would provide the most realistic testbed, the risk
of interference with regular operation and availability of the
production network forbids this option in most cases. To over-
come this problem, a separate physical testbed can be created
apart from the production network. However, bootstrapping
such a testbed with realistic characteristics is complex and
expensive, hence making fast adaption to varying requirements
and ever-changing network environments far from realistic.
Virtual testbeds can reduce the setup cost immensely, but
besides the additional effort and complexity introduced by
the virtualization, still a lot of manual work is required for
setting up and providing the required networking components
and interfaces, virtual networks and so on.

Theoretical models, as shown on the right of Figure 1,
take a completely different approach by abstracting com-
plex network topologies and protocols in the model. This
is specifically useful when designing experimental protocols,
but the implementation of such formal specifications - or
even the transfer of the insights learned - in the real world
can be quite challenging due to missing practical orientation.
Simulations, though also based on an abstract model of the
network and protocols, improve the practical relevance by
trying to replicate real-world characteristics. One of the big
advantages of simulations is the capability of exact modeling
of real-world behavior, such as timing or transmission quality.
Another advantage of deterministic simulation is the option
of changing the simulation speed. However, only an abstract
network is modeled by a simulation, which does not fully
reflect the characteristics of a real network.

To resolve these issues, emulation is recommended in
[2] as the means of choice to implement virtual network
testbeds. The authors come to this conclusion by evaluating
the goals and advantages of emulation using the following
criteria: Functional Realism, Timing Realism, Traffic Realism,
Topology Flexibility, Easy Replication, and Low Cost. In
their research, they show that emulation only lacks in the
area of Timing Realism while fulfilling all other evaluation
criteria. Therefore, emulation provides a flexible foundation
for experimental network testbeds being positioned in the
middle between practical implementations with high relevance
for real-world environments and accurate but typically rather
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abstract theoretical models. Besides the evaluation in [2], the
advantages perceived by using emulation for virtual network
testbeds with a high practical relevance is also described in
[3], [4] and [5].

In addition, while lectures typically last about 90 min-
utes, the work in labs needs time for preparation and post-
processing, which means that often only about 60 minutes
are available for the hands-on exercises. This period is often
not enough for in-depth exercises, especially when dealing
with an abstraction or simplification of complex setups with
high practical relevance. Also, the effort to provide testbeds
increases significantly for large numbers of participants in
laboratory courses. By choosing an emulation approach, much
greater flexibility is gained also in terms of accessing the
virtual test environment. Where formerly students had to attend
in person, i.e., to be able to use the equipment on-site, they
are now enabled to work basically from any location as long
as sufficient Internet access is provided. Hence, emulated
environments are currently primarily used for higher education
courses in the networking laboratory (NetLab) at the Applied
Computer Science department of Fulda University of Applied
Sciences. These environments support the argument for em-
ulation environments as presented in [2], which were also
recently updated in [6]. The advantages of emulation-based
environments, described in detail in the remaining sections of
this article are also further amplified by the possibility to use
them to improve the reproducibility of research experiments
as described in [6] and also in [7] and [8]. This way, students
in higher education, e.g., master courses, can get an insight
into current research in the area of computer networks, use
explorative learning to understand and discuss the findings,
leading to a deeper understanding and developing the ability
to carry out own small research projects and individually
contribute to applied sciences, e.g., in papers adjacent to
the master thesis. Emulated testbeds and experiments being
developed by the students can in turn be used in research
projects supporting the students to become junior researchers.

Figure 1. Classification of experimental scientific networking testbeds.

Nevertheless, the emulation of scalable virtual network
testbeds results in high resource requirements due to the
number of virtual machines needed, especially for large re-
search projects or higher education courses. In this article, we
present an analysis of these resource requirements of virtual
network testbeds based on experiences from providing such
an environment in the NetLab. Solutions that were evaluated
and used in the NetLab are shown in Figure 1 (e.g., GNS3,
EVE-NG, VIRL). Primarily, currently Cisco’s Virtual Internet
Routing Lab (VIRL) is used. Advantages of this solution will
be presented in this article. Further, we discuss options to
improve the scalability of such an environment.

The remaining part of this article is laid out as follows.
The following Section II discusses related work in the area

of virtualized networking laboratories and the effectiveness
of such labs in higher education courses. Section III gives
examples for emulated network topologies used in higher
education courses in the NetLab. Based on these use-cases,
requirements for virtual networking testbeds, and software
products available to implement such testbeds, based on the
classification and examples shown in Figure 1, are presented.
Our experiences during the implementation of such a solution
are discussed in Section IV, where we present our selection
of tools for creating a scalable platform for virtual networking
testbeds. Next, an evaluation of the scalability and performance
of the VIRL environment is presented in Section V. As an
alternative to VIRL, Section VI presents a comparison to
the scalability and performance of GNS3 using the same
virtualization environment and methodology as for the VIRL
benchmark. Finally, a conclusion and future work can be found
in Section VII.

II. RELATED WORK

Services in today’s cloud-driven infrastructures are based
on sophisticated network topologies, which interconnect vari-
ous network and server components, and build the foundation
for scalability, redundancy and high availability of IT services.
Given this practical relevance, it seems obvious that training
in the lab is essential for computer science students to gain
practically relevant knowledge of the theoretical concepts
taught in lectures. Therefore, the simulation and emulation of
such network topologies for teaching higher education classes
as well as employing them in scientific projects is subject
of current research. In [4], a virtual environment based on
VIRL is compared to physical setups using Cisco Certified
Network Associate (CCNA) pods and network simulation
software like Cisco Packet Tracer. Furthermore, the cost, setup
requirements and limitations are estimated and reviewed. The
solutions discussed in this article address these limitations.
A similar comparison is presented in [9], where the network
emulator GNS3 is compared to Cisco Packet Tracer. The use
of VIRL and GNS3 in the area of research and education
are also discussed in [5] and [10], respectively. However,
these papers do not address the scalability for VIRL and
GNS3 in large higher education courses. Also, they do not
discuss their didactical suitability and characteristics for the
use in higher education. An extensible and scalable emula-
tion/simulation framework based on a declarative XML-based
language (as also used in VIRL) for modeling and evaluation
of large network topologies is explained in [11]. This open-
source toolset is also compared to other well-known simulation
and emulation environments like ns-3 or PlanetLab. A brief
introduction to model and simulate interconnected autonomous
systems using the Boson Network Simulator is described in
[12]. An open-source tool for simulating protocol behavior in
congested networks by throttling network links and controlling
delay and packet loss is described in [13]. This software is
widespread and used in other emulation products to alter link
transmission properties in network topologies. The didactics-
oriented software called Netkit to model and emulate a wide-
range of real-world devices is outlined in [3]. The goal of
this emulation environment software is to setup networking
experiments at low cost and with little effort. While these
papers focus on large topologies and didactical suitability, they
do not address the performance and scaling for large higher
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education courses. A framework for reproducible container-
based emulation of networking experiments is presented in
[2]. In [14], network topologies are emulated by using virtual
routers on Linux-based hosts. The real-time network emulator
EmuNET used for testing protocol and application behavior
in network topologies, is introduced in [15]. However, these
solutions do not allow the use of real-world network op-
erating systems and networks components (e.g., virtualized
Cisco or Juniper equipment). The application of a cloud-
based virtual environment for security related education is
outlined in [16]. It is based on a platform called V-Lab, which
utilizes open-source virtualization technologies, and software
defined networking (SDN) solutions. Finally, an evaluation of
the effectiveness of virtual laboratory environments for student
learning is performed in [17]. In the paper, a course taught at
the University of Massachusetts Amherst, which consisted of
multiple lectures, homework assignments, and lab assignments,
is evaluated. The paper tries to quantify student learning
in lectures and labs, and the author concludes that learning
indeed occurs almost equally as much during lab sessions as
in lectures. This also coincides with the results of a study
conducted by Stanford University researchers, who assigned
the task of reproducing results from over 40 papers in the
research area of computer networks to over 200 students [18].
They found that this kind of practical training is interesting
for the students, and gives them the opportunity to understand
topics of current research, or even interact with researchers.
While these papers are useful for the evaluation of didactical
suitability and characteristics of virtual laboratory network
testbeds, they did not address the scalability and performance
for the use in higher education courses discussed in this article.

III. VIRTUAL ENVIRONMENTS FOR NETWORK TESTBEDS

Following on from the consideration of emulation testbeds
in [2], various possibilities of assisting lectures with practical
exercises in our networking laboratory (NetLab), being de-
scribed in this article, were evaluated. The following sections
will first provide an overview of the approaches and the
laboratory scenarios used in some of our courses, to present
concepts and ideas behind the experiments carried out by the
students. Afterwards, requirements for an implementation of
a virtual environment are derived from the characteristics of
these approaches and concepts. Finally, an overview of the
candidates for a concrete implementation, currently used in
the NetLab, are presented.

A. Examples for Exercises in the NetLab at Fulda University
The networking laboratory at the Applied Computer Sci-

ence department of Fulda University of Applied Sciences
provides practical relevant exercises in the field of computer
network development, configuration and operation. Besides
computer networks themselves, exercises also include dis-
tributed systems, e.g., internet, cloud or multimedia services, as
well as network security or network management and monitor-
ing. Thus, the laboratory supports lectures and further allows
students to perform independent experiments to improve their
knowledge and expertise in areas related to the indicated
topics.

Refer to Figure 2 for some examples of network topolo-
gies used in our NetLab environment for student laboratory
exercises. Figure 2a shows a topology consisting of four

Arista vEOS (4.16.9) nodes with redundant links between
them. The topology is one out of many used by master’s
students to understand and troubleshoot real-world networks.
In this specific case, students team up to investigate the impact
of the Spanning Tree Protocol (STP) in various data center
networking scenarios using technologies like MSTP, LACP and
MLAG. Based on similar exercises, the master’s students also
work on Leaf-Spine-based topologies including BGP fabrics,
which are widely used in web-scale data centers by companies
like Facebook or Microsoft (Figure 2b). Here, the endpoint
nodes are based on Ubuntu 14.04 GNU/Linux containers
(LXC), while the spine and leaf switches are driven by Cisco
IOSv (15.6(2)T). In the past, we also implemented similar
topologies using vEOS (BGP) and NX-OSv (FabricPath). A
great advantage of this setup is the flexibility we provide for
the students. LXC containers can be managed using standard
Linux commands via SSH, nodes can be started and stopped
in the middle of a running emulation, network links can be
connected or disconnected, and it is also possible to configure
various QoS parameters like delay, jitter or packet loss on the
links. Beyond that, traffic entering or leaving a specific inter-
face can be collected and investigated using Wireshark. SDN-
based scenarios, including the OpenFlow controller OpenDay-
light and OpenFlow 1.3 capable Arista vEOS switches, can be
explored using the topology shown in Figure 2d. Since vEOS
behaves identical compared to the EOS-based Arista hardware
switches, by choosing VIRL over the previously used Mininet,
students can test OpenFlow deployment in a near real-world
environment.
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veos-4

(a) 4-node Arista vEOS MLAG.
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(d) vEOS/OpenDaylight SDN topology.

Figure 2. Examples of emulated network topologies for student exercises.

An example of a much simpler network topology is shown
in Figure 2c. Students in bachelor programmes troubleshoot
network misconfiguration (i.e., ARP, routing, delay, packet
loss, port status) and discover the underlying network topology
by using tools like ping, traceroute/mtr and Wireshark, before
they establish connections to an Apache web server running on
node server-B. Again, all server and client nodes are based on
Ubuntu 14.04 LXC, while switches in this scenarios are based
on IOSvL2 (15.2(4.0.55)E). For realistic WAN emulation we
use the standard Linux network emulation netem on the ISP
node to inject delay and add packet loss. The node named ISP
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acts as a default gateway for the emulated topology, which
is connected to the physical local area network for NetLab
projects (flat-1). Thus, the invocation of commands like ping or
traceroute targeting hosts on the Internet (i.e., google.com) is
possible from inside the emulated environment, enhancing the
practical relevance of the exercises. Furthermore, from within
the NetLab, students can connect to their nodes in the emulated
network using OpenVPN, for instance to configure the web
server.

All examples and topologies mentioned in this section are
under continuous development and are actively used in the
NetLab. Corresponding topology configurations for VIRL are
managed using Git and can be downloaded from [19].

B. Requirements for Virtual Networking Testbeds
The NetLab is currently equipped with 20 PCs and addi-

tional workspaces for notebooks, allowing students to bring
their own devices to the laboratory to extend the lab equip-
ment or to extend the experiments over the teaching time
as described for e-learning and blended learning approaches
in Section I. These workspaces are arranged in so-called
”islands”, so that students can work together in groups of
four, and share a pre-packed experimental rack filled with
networking equipment, such as routers, switches, and firewalls.

As mentioned in the introduction, working in the laboratory
requires additional effort for preparation of the test setups
(i.e., cabling the experimental racks and setting up an initial
configuration) before the actual experiments can begin, as well
as for cleaning up after the experiments are finished. Hence,
often only 60 minutes are left for the hands-on exercises, which
is not enough time for in-depth practical training, and the lab’s
state can not easily be preserved to span over multiple lessons
when physical network components are being used. For this
reason, in our networking lab we aim to provide a combination
of classroom teaching and novel approaches like e-learning
and blended learning to the students. Each of these approaches
introduces demands on the learning environment, the time for
preparation in the lab, or possibilities of external access.

• Classroom teaching — The traditional on-site learn-
ing in a classroom. In order to fulfill the time restric-
tions of classroom learning with a typical duration
of 90 minutes for each session, the preparation of
exercises to a predefined state must be considered.
Further, the current state of an exercise should be
storable and resumable at a later time to allow students
to continue, discuss, share and present their work.

• E-learning — A teaching method that enables high
flexibility in learning regardless of the times and
locations of conventional classroom sessions. It must
be possible to attend a course without ever visiting a
traditional classroom. A fully virtual lab is required
to allow students to login from home at any time and
conduct an experiment using their own or individual
resources.

• Blended learning — This can be seen as a combina-
tion of the previous paradigms, where students attend
classroom sessions, but have the opportunity to finish
exercises at any time by accessing the virtual lab from
the NetLab outside of teaching time, but also from at
home or any place providing sufficient Internet access.

In addition, students are enabled to conduct their own
experiments in order to deepen their teaching content.

The paradigm of blended learning offers continuing learn-
ing and collaboration between students together with lecturers
and tutors, combining the advantages of classroom teaching
and e-learning. Therefore, we followed this idea for the higher
education computer network courses discussed in this article.
We experienced an increase in student groups using the labs
outside of regular class hours throughout the last semesters,
supporting our decision.

Regardless of the paradigm chosen, the implementation
must meet some of the requirements already outlined in [2],
which are essential to ensure that the behavior of real networks
and protocol peculiarities can be observed by students.

• Functional realism — Each system must provide the
same functionality as its pendant in real hardware.
Ideally, this can be achieved by executing exactly the
same program code that is also used on real-world
systems, i.e., by using real hardware or virtualizing
the operating system images of real routers, switches
and client systems.

• Timing realism — The timing behavior of all systems
in the test bed should be indistinguishable from real
physical systems. This is especially important for
exercises where traffic behavior is inspected with tools
like ping or tcpdump.

• Traffic realism — It should be possible to inspect
real network traffic in the networking testbed. Client
systems should be capable of generating and receiving
network traffic from users and systems on the local
network, or even on the Internet.

• Topology flexibility — It should be possible to create
new topologies of various kinds without great effort,
in order to be able to optimally map the requirements
of the various courses.

• Easy replication — It should be possible to duplicate
existing topologies without great effort, so that they
can be used by different groups of students indepen-
dently.

• Scalability at low cost — The environment must scale
for large numbers of students, while at the same time
minimize administrative effort and financial costs.

• Didactical reduction — The implementation ap-
proach must allow students to focus on the essential
learning materials, as there is not enough time in
classroom to understand complex simulation software
before the actual experiment can begin.

Figure 3 shows the characteristics of different networking
testbed approaches as introduced in Figure 1 and defined as
well as evaluated in [2]. In the lower part of the figure, the
didactical suitability of the approaches as perceived in several
computer networking related courses in the NetLab was added.
These didactical aspects are discussed in more detail in [20].
However, from this perception, it can be seen by evaluating
positive (+) and negative (-) values while ignoring a neutral
value (˜) that emulation is still the best option. Simulation (6
points) is offering better suitability for blended learning and
e-learning, since it is lightweight, provides exact timing and
the state can be prepared and restored even when using the
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Figure 3. A comparison of networking testbed approaches.

course material remotely. This also holds advantages when
using simulations in the classroom. Theoretical models (5
points), however, can be difficult to understand for students
leading to a worse suitability for blended learning. As already
discussed in this article, physical (-8 points) and virtual (-1
point) testbeds require much effort not only to build them, but
also to prepare their use during lectures and laboratory courses.
Hence, these options also received a low score in their didac-
tical suitability observed in the NetLab. Regarding didactical
reduction, emulation, simulation and theoretical models can
use abstraction to hide the complexity, e.g., by using prepared
experiments, models or formulas. Overall, emulation (8 points)
still offers the best overall score, when taking the didactical
suitability identified from courses in the NetLab into account.

C. Approaches for Implementing Virtual Network Testbeds
Blended learning techniques require ubiquitous access, as

well as the possibility to easily comprehend and modify the
experimental environment. Hence, integrated environments like
simulators and emulators are the method of choice to meet the
requirements of high realism and practical use.

Emulation can be seen as a compromise between theory
and practice, especially when it is used to implement virtual
network testbeds. It allows to deploy real-world operating
systems (i.e., GNU/Linux servers, Windows clients) and utilize
typical network management tools, like Wireshark or iperf. In
the NetLab physical and virtual testbeds, as well as emulation
and simulation have been used over the past years to support
higher education courses and research projects. In accordance
with the results discussed in [2], emulation has proven to be
a particularly flexible solution. Physical testbeds are provided
in the lab in form of pre-packed experimental racks to allow
realistic student projects and Cisco certifications (i.e., CCNA,
CCNP) [21]. However, due to the complex and time-intense
preparation of the environment, these physical testbeds are not
suitable for short-term exercises and lab sessions, in which
students should carry out experiments, e.g., to see the prac-
tical use of theoretical concepts presented in a corresponding
lecture.

Yet, the realization of virtual testbeds (i.e., using a dis-
tributed approach with VMware Workstation or a central
approach with VMware vSphere ESXi) doesn’t require less
effort, as the preparation and maintenance of the virtual
machines and networks is time-consuming. For this reason,
in the NetLab virtual testbeds are mostly used for practically
relevant client-server applications and experiments in the IT
security area. The constant need to install software updates in
the virtual machines used for these testbeds and adapt them to
changes in the surrounding laboratory environment throughout
the semester, requires additional effort. Simulation software
like ns-3 [22] or OMNeT++ [23] is mentioned in some lectures
in master’s programmes, but not currently used for practically
relevant experiments in the lab.

Practical training for the previously mentioned CCNA
certification includes the use of Cisco Packet Tracer [24].
However, in some lecture exercises students criticized the
missing practical relevance. For example, network clients (i.e.,
PCs) in Packet Tracer are simulated and do not provide
feature-complete implementations of common network tools,
such as arp, ping or traceroute. Another drawback of the
simulation is that there are peculiarities, which only appear in
the simulation and need to be specifically explained to students.
One example of such behavior is that in case of an ICMP
PING, the first packet will be dropped at the router in the
destination network until the destinations MAC address has
been determined using ARP. While this behavior is correct, it
typically can’t be observed in a real network, where almost
any client starts to send packets to the router immediately
after booting the operating system, hence its MAC address is
already in the routers ARP table, when sending ICMP PING
packets. Besides this lack in Traffic Realism and the stated lack
in Functional Realism, e.g., due to missing common tools in
the simulated clients and network components, there is also
no Timing Realism achieved within Packet Tracer, which is an
even bigger problem for research projects.

The software Mininet [25], mentioned in [26] and [2],
is also provided in our NetLab, where it is mainly used for
experiments in the SDN area. The resource requirements of
Mininet are extremely low, due to a container-based approach,
which allows to emulate huge topologies with hundreds or
thousands of individual nodes. Therefore, Mininet is typically
the best choice for large topologies and complex network
management and automation implementations, e.g., in re-
search projects. Still, the creation of complex topologies in
Mininet requires decent knowledge of the underlying Python-
API, which again is time-consuming in short-term courses.
Further, it is not possible to use or connect arbitrary real-
world network components in Mininet topologies, limiting the
practical relevance of the experiments carried out in Mininet.
Also, images of real-world network equipment, e.g., in form
of virtual machines, cannot be used in Mininet. Hence, though
the scalability and performance of Mininet is excellent, and its
actively used in the NetLab for research projects and master’s
courses, it is not specifically considered in the evaluation of
this article, due to the limitations for the use cases and virtual
network topologies discussed in the previous sections.

IV. RATIONALE FOR SELECTING VIRL AND GNS3
Over the last years, Mininet [25], eNSP [27], GNS3 [28],

EVE-NG [29] (formerly UNetLab) and VIRL [30] have been
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deployed and evaluated as a solution for realistic emulation
of networking environments in the NetLab. By the time of
publishing our initial research [1][20], VIRL was the most
promising option, and was already used in several courses. It
was compared to other emulation software alternatives based
on criteria that are directly derived from administrative and
educational requirements presented in Section III-B. In the
meantime, new major versions of GNS3 (v.2.1) have been
released, which implement features like QoS properties that
we missed so far. Figure 4 depicts an updated revision of the
initial comparison table, which is simplified compared to our
initial paper and now includes the new version of GNS3. It
clearly shows VIRL as the most promising approach when
compared to GNS3 (v.2.0). However, with the new software
release, GNS3 (v.2.1) even gets a slightly higher score.

Cisco Modeling Lab (CML), which is able to scale for
a large number of nodes providing centralized management
and automatic load balancing, is mainly depreciated due to the
high licensing costs. CML is using the same technical basis as
VIRL, and can be considered as the multiuser version of VIRL.
In the case of EVE-NG, we were only able to test the free
version, which lacks in some required functionality, such as
centralized management, automatic load-balancing, but more
importantly, the possibility to connect to a physical network,
and to allow incoming VPN connections. These functions,
however, might be available in the upcoming Premium or
Learning Center release, which was announced to be released
in 2018.

The poor performance of Mininet in our comparison is
mainly due to the fact that no custom images are supported and
connections to the console are very limited, hence the demands
for functional realism and ubiquitous learning are not fulfilled
for the use cases described in Section III-A. In addition, due
to the implementation of Mininet as a command line tool and
the missing GUI, the collaboration of students as well as the
required training time in the laboratory is worse compared to
the considered alternatives GNS3 and VIRL. However, even
though the application of Mininet is not suitable for our virtual
lab, we provide it locally installed on the lab computers, where
it is especially used for thesis work in the field of SDN and
NFV as well as for master’s courses. By using LXC containers
and OpenVSwitch as the basis for virtual hosts and networks,
Mininet allows large network topologies to be launched on
single-user computers even with limited resources. Due to its
lightweight approach and its excellent suitability as an SDN
environment, Mininet remains the best choice for research-
oriented experiments in the master’s field despite its lower
rating compared to GNS3 and VIRL.

The advantages of VIRL and GNS3 are strongly related
to the findings in [2] and [5]. The functional realism of
VIRL is extended compared to the other alternatives, as it
allows to use officially licensed network operating system
images of Cisco components, like IOS or NX-OS, while at
the same time, images from other vendors (i.e., Arista vEOS,
HP VSR, Juniper vSRX/vMX, Cumulus VX) are supported as
well. However, the most important advantage over the other
alternatives is the underlying scale-out architecture based on
OpenStack. This allows a central and scalable installation and
enables the users to access the emulated network topologies
location-independently (i.e., from within the NetLab or from
at home using private PCs and laptops. Multiple VIRL hosts

in the NetLab enable a scale-out of the testbed, which allows
to emulate much bigger topologies than possible on a single
PC in the laboratory or on a student notebook. In addition, the
open architecture of OpenStack, as well as the open compo-
nents used by VIRL (i.e., Ubuntu 14.04, LXC, linux-bridge,
VXLAN) make it possible to extend the environment with
in-house developed components to build specifically tailored
testbeds for the use in research and education. Still, for the
operation of VIRL in our environment, a few extensions were
implemented, including customizations to the Arista vEOS
and CumulusVX operating system images for our university’s
environment and for deployment in VIRL [31]. For example, to
allow the operation of MLAG, it was necessary to modify the
base mac in order to prevent clashes of MAC addresses gen-
erated by vEOS with locally generated KVM MAC addresses
[31].

In the latest version, GNS3 offers a lot of the functions
required in our lab environment. Regarding network operating
system choices it is as flexible as VIRL, with most vendors
providing software images that are free to use in GNS3.
However, especially Cisco requires users to buy a regular
software maintenance contract to legally use their software
images in this virtual environment. Beyond network operating
system images, GNS3 supports the use of a wide range of
server, desktop, and mobile operating systems by QEMU
virtual machines. Although, cluster support with automatic
scheduling of nodes in a topology (or project in GNS3) across
multiple compute nodes is still not supported, the abandoning
of Ciscos academic license for VIRL raised the importance
to consider GNS3 as an alternative for our virtual network
testbeds.

Improvements in terms of scalability (i.e., the size and
amount of emulated testbeds), performance (i.e., the time to
bootstrap a complete emulated topology) and usability (i.e.,
initial configuration) of VIRL and GNS3 will be discussed in
the following sections.

V. PERFORMANCE AND SCALABILITY EVALUATION

Thanks to using virtual networks for the exercises shown in
Figure 2, students can especially benefit from the advantages of
the emulation as discussed in Section I. However, for complex
topologies and a large number of students in the class, the
benefits of the emulation places enormous demands on the
virtual infrastructure it is running on. Even for smaller topolo-
gies it can take more than 5 minutes to start the emulations.
Therefore, in the following sections, we describe a way to
benchmark and optimize the waiting time until the emulations
are ready to be used by the students in our laboratory.

A. Implementation of a VIRL Benchmarking Environment
The hardware we use for evaluating the performance and

scalability of our VIRL environment was described in detail in
[32]. For the evaluation presented in this article, initially VIRL
1.2.83 (October 2016) was used, since we kindly received an
extended node count license in the Cisco dev/innovate research
program for this version. Later, we repeated the evaluation
with VIRL version 1.3.296 (August 2017) leading to slightly
better, but similar results, as shown in the following sections
of this article. All VIRL hosts are based on Ubuntu 14.04
VMs, each configured with 32 vCPUs and 64 GB of RAM.
These VMs build a nested virtualization environment inside a
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Figure 4. A comparison of network emulation software based on out requirements.

VMware vSphere 6.5 cluster, in which each of the four VMs is
bound to a separate physical ESXi host by DRS constraints to
limit fluctuations in available resources in the virtualization
environment. Each underlying ESXi host is equipped with
two 8-core Intel(R) Xeon(R) E5-2650v2 2.60 GHz CPUs, 256
GB RAM and uses two NetApp E2700 over a redundant 16
Gbit/s Fibre Channel connection as a storage back end. The
nodes are connected via 1 Gbit/s Ethernet to a Cisco Catalyst
3850 switch and with two 10 Gbit/s links to an Arista 7150S-
24 and Arista 7050S-52 leveraging MLAG. As discussed in
[2], the Timing Realism regarding emulation with regard to
virtualization particularly depends on the isolation level of
the virtualization environment. When strict isolation is not
guaranteed, concurrently running VMs can have a negative
performance impact. Therefore, we defined a separate resource
pool with static resource allocation for our VIRL environment.
All benchmark scenarios were repeatedly performed at night
in the semester break to ensure minimum load and interference
of the workload on the ESXi cluster. By monitoring the overall
performance and capacity of our VMware vSphere cluster, we
were able to verify that VMs related to the VIRL benchmark
were the only systems that produced considerable load in our
VMware environment during the tests. The topology shown in
Figure 2a was used to evaluate the performance and scalability
of our environment. Due to its small size and node count, it
can be scaled fine-grained up to the full capacity of our cluster.
For the evaluation of the scalability of virtual testbeds and their
application in higher education courses with a large number of
participants, the following four metrics are of special interest:

• Start Time, the time until the start of all submitted
topologies is processed by VIRL’s REST API

• Active Time, the time until all VMs start to boot

• Usable Time, the time until booting has finished and
the virtual console of all vEOS nodes is accessible

• Console delay, the latency of the virtual console

To measure these metrics and in order to minimize outliers,
we developed a script to run our performance tests in a reliable
and reproducible manner. Each test run first starts up the
network topologies using VIRL’s REST API and measures
the time until the start is confirmed (Start Time) and all
nodes become active (Active Time). In our terminology, Active
Time means that the VM is deployed by the OpenStack Nova
scheduler on a VIRL host system, all virtual networks and
ports are up and accessible, the vEOS image is provided and
its boot sequence starts. Next, we measure the time until the
VM really becomes responsive by connecting to the virtual
console (Usable Time) and finally measure the interaction
delay of keyboard inputs (Console delay). For this purpose,
a Python script was developed, which establishes WebSocket
connections to the serial consoles of the nodes running on the
VIRL hosts.
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Figure 5. Schematic view of the environment’s memory usage.

A schematic representation of the VIRL environment is
depicted in Figure 5. At first, we performed all tests on only a
single VIRL node, meaning that the node not only executes the
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VMs needed for the emulated topology, but also acts as control
node, which provides the OpenStack and VIRL environment.
In Section V-B, we will share some negative observations we
made, when including the control node in VM execution. Each
individual test run for an increasing number of simultaneously
emulated network topologies was executed ten times in a row.
We started with only one topology and scaled in steps of five,
until the VIRL host was working to capacity. Next, all tests
were repeated on a 2-node and finally on a 4-node VIRL cluster
to draw conclusions concerning scalability of the environment.
The benchmark script and related toolset is available at [33].

B. Scalability Evaluation
The results from our previously explained test case are

illustrated in Table I and Figure 6. When using a single VIRL
host, the maximum number of simultaneously emulated net-
work topologies is mainly limited by the resources (primarily
the amount of main memory) available to the host. Each vEOS
node uses 1 vCPU and 2 GB of RAM. Therefore, a test run
with ten concurrently emulated network topologies requires 80
GB of main memory (10 * 4 vEOS nodes * 2 GB RAM) to be
available, which is more than a single VIRL host in our test
system can provide (see Figure 5). Hence, a stable execution
was not possible with a single host, even with memory over-
provisioning enabled (Figure 6a).

TABLE I. RELATIVE CHANGE IN Start Time, Active Time AND Usable Time
DEPENDENT ON THE NUMBER OF TOPOLOGIES.

Number of Topologies Start Time Active Time Usable Time
1 → 5 5.0617 2.5242 1.7440
5 → 10 2.0378 1.8517 1.6705
10 → 15 1.5105 1.4693 1.4686
15 → 20 1.3597 1.4548 1.4420
20 → 25 1.2334 1.2797 1.2793
25 → 30 1.2081 1.2304 1.2349

Looking at the effects of the number of parallel topologies
in respect of performance, Figure 6b clearly depicts our
expectation of a linear increase of the Start Time, while with
an increasing number of topologies the Active Time and Usable
Time ascends non-linear. The effect can best be observed when
performing the test on a cluster with four or more nodes
(Figure 6c). Up to a number of 10 simultaneously started
topologies, the difference between Active Time and Usable
Time gets smaller. This can be explained by the overhead
the OpenStack-based resource scheduling and management
introduces, which decreases with the number of simultane-
ously started topologies. For higher numbers of concurrent
simulations, the system load generated from setting up virtual
networks and interfaces causes an increased difference between
Active Time and Usable Time. The curve for Usable Time has
a comparatively steep slope as expected, as for an increasing
number of virtual nodes, the time until all nodes are usable
increases due to the limited resources.

Alongside with the overhead introduced by the scheduling,
the comparatively large difference between Start Time and
Active Time results from the expensive process of creating
all required virtual networks for connecting the devices. All
links of the topology (Figure 2a) are redundant, which requires
the creation of two VXLAN segments and its associated ports
per pair of devices on the GNU/Linux bridge interface of the
OpenStack nodes. The overhead of this was clearly visible
by the CPU load produced by the Neutron process on the

OpenStack controller node. The main limitation here is the
fact that neutron-server and nova-conductor are single-threaded
in VIRL’s OpenStack Kilo setup, which limits the maximum
performance of virtual network creation to a single CPU
core. In most of our test cases, the CPU core neutron-server
was executed on, was working to capacity. To overcome this
limitation, we increased the number of neutron-server, nova-
api and nova-conductor worker processes to ten. However, due
to the fact that memory gets reserved on the VIRL master for
these processes, the additional resource requirements resulted
in a decrease of the maximum number of simultaneously
started topologies to only 25 (Figure 5). Even more prob-
lematic was the observation that some of the vEOS nodes
were not successfully started at the end of the test run, which
is most likely explained by the dynamic memory allocation.
When starting all topologies nearly at the same time, nova-
scheduler is not able to determine the truly remaining amount
of main memory and schedules too many VMs to the control
node. At the same time, Figure 6d depicts that the Usable
Time of the 20 topologies decreased by 16% and Active
Time by 18%. While we assume room for improvement by
carefully optimizing the OpenStack and KVM configuration,
our recommendation is rather the use of a dedicated VIRL
master node, which is currently not possible in VIRL, but
can be manually achieved by deactivating nova-compute on
the controller. The average console delay of the emulated
vEOS nodes stays nearly constant with a growing number of
simultaneously active topologies, as shown in Figure 6g. As
a result, even if the time to start the concurrent simulations
increases, a smooth use of the individually usable emulations is
guaranteed despite the increased CPU load of the hypervisors.
Limiting factors regarding our benchmark are more related
to the amount of main memory and I/O performance, rather
than the CPU load. What accounts for the latter is primarily
the OpenStack and VIRL management processes, as well as
the boot process of the vEOS instances, which utilizes the
assigned vCPU to its maximum capacity for about 60 seconds
in case of our test setup. As a performance improvement,
Cisco recommends the use of a ramdisk for running Nova
VMs, as well as an SSD for the VIRL hosts. We implemented
both recommendations in our test environment to compare the
impact on performance. First, a ramdisk was created, which is
regularly only supported on the controller in VIRL, hence we
needed to manually configure it also on the compute nodes.
Figure 6e depicts the measurement results, clearly showing
only a minor performance improvement, which is obviously
attributable to the small amount of required ephemeral storage
of only about 213 MB for a vEOS image. Second, we added
two local solid state drives (Samsung 850 PRO) to each of
the servers. Figure 6f shows no significant improvement of
the performance, which is attributable to the previously used
storage back end (NetApp E2700) already offering about 650
MB/s read/write performance. Due to the higher number of
IOPS of the SSD, we assume that an improvement is likely
to be observable when the I/O load of the VMs increases as a
result of more complex topologies.

VI. EVALUATION OF GNS3 AS AN ALTERNATIVE

During winter term, we ported the example topologies for
the advanced computer networks masters’ course, as intro-
duced in Section III-A, to a GNS3 testbed. We experimented
with GNS3 v.2.1.3. The production environment described in
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(a) Single VIRL Host. (b) 2-node Cluster.

(c) 4-node Cluster. (d) 4-node, More Workers.

(e) 4-node, Ramdisk. (f) 4-node, SSD. (g) 4-node, Avg Delay.

Figure 6. Results from measuring the time it takes to start multiple instances of the topology shown in Figure 2a.
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(a) RAM usage. (b) Measured time to start multiple instances of the topology from Figure 2a in GNS3.

Figure 7. Evaluation of GNS3.

this section, however, currently still uses v.2.0.3. The GNS3
testbed consists of five VMs, using an identical configuration
as described for the VIRL testbed in Section V-A. Due to
the missing automatic clustering and scheduling of started
topologies in GNS3, we only used one GNS3 VM as a
single node for the initial evaluation of the GNS3 performance
described in this section. We started the same diamond-shaped
topology with four Arista vEOS nodes, shown in Figure 2a,
as for the VIRL evaluation discussed in the previous section.
The entire process to start the topologies and the handling of
so-called projects in GNS3 is different, compared to VIRL.
Also, not only the code quality (e.g., regarding documentation

and comments as well as the stability of the GNS3 GUI) still
seems to be significantly lower on the GNS3 side. However,
the progress of the project is impressing and not only the
unattractive license model of VIRL for the use in academia
strengthens the potential of GNS3 compared to VIRL. Since
the code for GNS3 is available as open-source (under GPL-
3.0 license) in a GitHub repository, extensions as well as
fixes to the environment are possible. Although, GNS3 does
not seem to focus classroom environments, as described in
the requirements for a cluster environment in Section III-B.
Instead, GNS3 seems to focus on a single user environment
(e.g., for network consultants). However, features like the
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simultaneous shared access to the console of emulated devices
by multiple students, hold advantages and unique functions
offered by GNS3 compared to VIRL when being used in
classroom environments.

To get reproducible evaluation results for the performance
of GNS3 in the same way and using the same requirements as
described for VIRL in Section V-B, a Python-based benchmark
solution was implemented to automatically run the experiment.
Again, benchmarks were run ten times and GNS3 results in
Figure 7 and Table II show the average time of these runs.
Furthermore, benchmarks were run in different timeframes, to
reduce possible side effects of the underlying virtualization
infrastructure, which was not experiencing any other work-
load peaks during the tests. As for VIRL, the source of the
benchmark process can be downloaded from our Git repository
[34]. The Python script uses the GNS3 REST API [35] to
create benchmark projects (as copies of the original topology)
and measuring the time for this process (analog to the Start
Time described in this article for VIRL). Afterwards, the
benchmark projects are started and the time until all nodes
in the topologies are active is measured (as for Active Time
described in previous sections of this article). Since GNS3 is
not dependent on another scheduling solution, as for example
OpenStack in the VIRL setup, Active Time was reached only
a fraction of a second after Start Time. This is due to the fact
that GNS3 directly created the QEMU/KVM processes after
topologies were started without the overhead of scheduling and
messaging between the OpenStack components as described in
Section V-B.

Also, as shown in Figure 7b Usable Time was reached
quicker compared to VIRL on a single node. This is influenced
by the smaller CPU and RAM footprint of GNS3, shown in
Figure 7a compared to VIRL as depicted in Figure 5. This
smaller resource footprint and corresponding shorter duration
of benchmark runs, allowed for more fine-grained steps of
scaling the number of concurrent simulations. While Start and
Active Time increased linearly, as already described in this sec-
tion, similar to VIRL, Usable Time increased rapidly, as soon
as half (4 concurrent simulations * 4 vEOS nodes * 2 GB RAM
= 32 GB RAM) of the memory was filled by the vEOS VMs.
As expected, we were not able to run a significant amount of
benchmarks with 8 concurrent simulations (filling up the entire
64 GB RAM), although Kernel Samepage Merging (KSM)
was used to compress identical memory pages of the VMs.
Since KSM’s memory deduplication also takes resources and
especially time to scan allocated pages, only a few runs were
successful using 8 concurrent simulations. Their Start Time
varied from 13 to 20 seconds, Active Time was between 14
and 20 seconds, Usable Time between 291 and 331 seconds,
fitting into the trend of Figure 7b. The relative change in Start
Time, Active Time and Usable Time for increasing numbers of
concurrent simulations is listed in Table II. The last line of
Table II can be indirectly compared to the same increase in
concurrent simulations for VIRL from Table I, though the table
for VIRL is based on a setup with 4 nodes while the GNS3
benchmarks were run on a single host. For this reason, the
comparably large increase of Start Time and Active Time for
GNS3 is plausible. However, the lightweight implementation
and smaller resource footprint of GNS3 results in a lower
increase of Usable Time even when GNS3 running on a single
node is compared to a 4-node VIRL cluster.

TABLE II. RELATIVE CHANGE IN Start Time, Active Time AND Usable Time
DEPENDENT ON THE NUMBER OF TOPOLOGIES USING GNS3.

Number of Topologies Start Time Active Time Usable Time
1 → 2 2.0000 2.0000 1.0350
2 → 3 1.7500 1.7500 1.0423
3 → 4 1.3000 1.3000 1.0609
4 → 5 1.2747 1.2857 1.1058
5 → 6 1.2155 1.2137 1.1833
6 → 7 1.2057 1.1972 1.1978
1 → 5 7.3000 7.3000 1.2416

Figure 8 compares the results of one (Figure 8a) as well
as five (Figure 8b) concurrently started topologies between
GNS3 and VIRL. To allow a comparison, the results shown
in the figures are taken from a single VIRL node, which
was shown in Figure 6a in Section V-B, so that GNS3 and
VIRL both used only one node with an identical setup and
the same environment as described in Section V-A. It can be
seen from the figures that not only the Start Time and Active
Time is smaller for GNS3, due to the fact that GNS3 starts all
QEMU/KVM processes for the vEOS nodes directly, but also
and more importantly, the Usable Time decreases significantly
especially for large numbers of concurrent simulations. For
example, as shown in Figure 8b, the same topology that was
started five times in VIRL was usable after 315.2 seconds,
while being available for the students after 173.5 seconds (55%
of the time taken in the VIRL setup) when using GNS3 running
in the same virtualization environment with the same dedicated
resources.

Given the smaller resource requirements of GNS3, we tried
to identity the limiting factors for the results we measured
in further experiments, where CPU and RAM resources were
systematically reduced. Figure 9 shows CPU and RAM usage
of the GNS3 VM. Additionally, in the middle of the figure,
the CPU load on the underlying host is depicted to check
that there were no significant additional workloads in the
host while running the benchmarks. In the timeframe from
07.01.18 10:40 to about 13:45, a benchmark using the standard
value of 32 vCPUs and 64 GB, as for the VIRL tests, was
used. It can be seen in the figure that the VM experienced
high CPU ready time and less active time. Investigating this
effect further, led to the finding that this impact was caused
by a hyperthreading overhead combined with the NUMA
architecture of the underlying host (2 CPU sockets with 8
physical cores each). This means that during the start of a
large number of concurrent simulations, hyperthreaded cores
competed against each other and also led to the effect that
they needed to access RAM on another NUMA node, further
increasing ready time and access delay. We were able to
mitigate this effect, by decreasing the virtual CPUs available
to the VM from 32 to 16, so that the cores used by the VM
could be placed mostly on the same NUMA node. The result
can be seen in Figure 9. Two benchmark runs, one from ca.
13:45 to 19:45 and one from ca. 19:45 to 1:45 are graphed in
the figure.

The results measured for these runs are depicted in Figure
10. As visible, the results are similar to the runs with 32
vCPUs, shown in Figure 7b. However, as shown in the graph
for the CPU load on the VM in Figure 9, the CPU of the
underlying host is nearly used up to its capacity for these
runs, with the ready time of the CPU being reduced to a value
close to zero. Hence, the overall load of the benchmark on
the underlying virtualization infrastructure was less, though
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(a) 1 Simulation. (b) 5 Concurrent Simulations.

Figure 8. Comparison of starting the topology shown in Figure 2a on a single VIRL and GNS3 node.

Figure 9. CPU and RAM usage of the GNS3 VM and the underlying host during benchmarks shown in Figure 7b and 10.

the results for our measurements did not change significantly.
From the two full benchmark runs shown in Figure 9, the
CPU and RAM resources consumed by the tests are also
visible. The benchmark run started around 13:45 first shows
steps that result from first 10 times repeatedly starting a
single topology, then 10 times 2, followed by 10 times 3,
and afterwards 10 times 4 concurrent simulations. As stated
before, a single topology uses 4 x 1 = 4 vCPUs and 4 x
2 GB = 8 GB of RAM. Hence, 4 concurrent simulations
used 16 vCPUs and 32 GB of RAM. Therefore, vCPUs were
the most significant limiting factor for our benchmarks, even
after the issue described for concurrent hyperthreaded vCPUs
across NUMA nodes was resolved. As shown runs with more
than 4 concurrent simulations, starting at around 15:15 (1.5
hours after the benchmark was started), account for ca. 75%
of the entire 6 hours that the benchmark took to complete.
In the right part of Figure 9, the RAM consumed by the
VM is depicted. Along with the CPU usage, also the RAM
consumption increases with the amount of concurrently run
simulations, as expected. It can be seen in the picture that
the RAM of the VM is slowly starting to saturate, after the
maximum capacity of concurrent simulation is reached.

Booting a single vEOS 4.17.5M instance in our environ-
ment already takes ca. 135 seconds until the prompt is usable.
Therefore, the results measured for the start of a single instance
of our topology with four vEOS nodes is still close to the
minimum time that a single vEOS switch needs to boot. As
discussed, the amount of vCPUs is the main limitation in our
scenario. To further investigate the influence of the vCPUs on
the start of the concurrent topologies, we reduced the number

of vCPUs available to the GNS3 VM further down from 16
to 8. Results after this degradation are shown in Figure 11.
As expected, the further reduction of vCPUs moves the point
where Usable Time starts to rise, increasing the slope of the
curve, from 4 to 2 concurrent simulations, as 2 x 4 x 1 = 8
vCPUs of the vEOS instances fill up all virtual CPU cores
available for the VM.

To crosscheck a possible influence of the RAM limits of the
VM, additionally, the experiment was again repeated 10 times
in different timeframes using only 32 instead of 64 GB RAM
for the VM while changing the vCPUs back to 16. Results of
this experiment are shown in Figure 12. By comparing Figure
10 and Figure 12, it can be seen, as expected, that neither
Start, Active nor Usable Time were significantly impacted
by limiting the RAM to 32 GB, as long as not more than
3 concurrent simulations were started. Starting 4 concurrent
simulations already experienced a slightly higher Usable Time.
Benchmarks with more than 4 concurrent simulations were,
as expected, not possible, due to the fact that 4 concurrent
simulations already consume 4 x 4 x 2 GB = 32 GB RAM.

Evaluating the comparison running the same benchmark
process for GNS3 as for VIRL, GNS3 not only has the
advantage of being open-source and hence highly customizable
as well as offering an attractive licensing model compared to
VIRL and Cisco Modeling Lab (CML) for the use in higher
education, it also offers better scalability due to its significantly
smaller resource footprint. However, the lack of a cluster
solution as well as classroom features (e.g., user management)
for GNS3 is still leaving some advantages on VIRL’s side.
Nonetheless, manually distributing nodes of a single topology
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Figure 10. Results with 16 instead of 32 VCPUs for the GNS3 VM.

Figure 11. Results with 8 instead of 32 VCPUs for the GNS3 VM.

Figure 12. Results with 16 instead of 32 VCPUs and 32 instead of 64 GB RAM for the GNS3 VM.

run in GNS3 across multiple servers is possible. While not
being able to dynamically spread the load evenly across all
nodes, this already allows for fine grained scaling of GNS3
environments as back ends for higher education networking
courses. Also, clustering and collaboration support seems to
be on the road map for future GNS3 releases. Comparing
GNS3 and VIRL regarding their features, as for example
given in [20], recent versions of GNS3 already introduced
previously missing features for the use in education. For
example, since version 2.1.0 controlling the delay, jitter and
packet loss of links, e.g., for WAN emulation, which was
previously already available in VIRL, is now also possible
in GNS3 projects. Version 2.1.1 introduced the display of the
server individual nodes of the topology are placed on. Further
tracking of the RAM and CPU usage of the started topology
in GNS3 is planned for the upcoming GNS3 web interface
[36]. Overall, despite some glitches and the difference in
code and documentation quality, GNS3 looks like a promising
alternative for future virtual testbeds for computer networks in
our NetLab.

VII. CONCLUSION AND FUTURE WORK

Cisco VIRL provides a platform, which is capable of
creating realistic and scalable virtual network testbeds for

education and research projects. In comparison with alterna-
tives, such as GNS3 or EVE-NG, a clear advantage is that
it offers to use original Cisco operating system images in
conformance with license requirements. Beyond that, an even
more important feature is the foundation of VIRL, which is
based on the open-source project OpenStack. This enabled
us to modify and extend the environment as shown in this
article, and to build a well-scaling multi-node VIRL cluster,
which supports a sufficiently large number of simultaneous
emulations for application in education. Further, by allowing
the utilization of standard network management applications
(i.e., ping, traceroute) and operating systems (i.e., Ubuntu
VMs) inside the emulated network testbeds, as well as the
connection to real physical networks, a great flexibility and
functional realism can be achieved in comparison with other
simulation approaches. The increased start time introduced
by the emulation, especially for complex topologies, can be
compensated by using a VIRL scheduler that we developed
to specifically address the requirements of our NetLab [37].
It offers to pre-load topologies based on a schedule, e.g., in
advance of an upcoming seminar, hence minimizing delays
for the students. Additionally, we are actively developing a
management application for VIRL and GNS3 labs. When
finished, it will provide a self-service system enabling students
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to subscribe to courses and to start working on topologies
and reserving virtual lab time. To increase performance even
further, the most promising approaches are given by increasing
the number of cluster nodes and optimizing to the OpenStack
resource and network management.

By the time of writing, new major versions of GNS3
were released. Still, GNS3 does not provide a way to use
Cisco operating system images in conformance with the license
requirements. However, a large number of third-party virtual
network equipment images is available. Sadly, a load balancing
of started projects across multiple hosts still is not possible.
In this article, we present a comparison of the scalability and
performance of GNS3 as an alternative to VIRL. Though the
overall quality of GNS3 seems to be lower compared to VIRL,
performance and features in recent versions have surpassed the
performance as well as educational suitability of VIRL for the
use cases described in this article. Since Cisco seems to have
changed the strategy for VIRL and tries to move universities
to the expensive Cisco Modeling Lab, the new version of
GNS3 could become an interesting alternate candidate for our
environment. We are currently looking into the possibility to
develop appropriate extensions to GNS3 or EVE-NG to fix the
current lack in cluster-based load balancing and centralized
management and real-time collaboration options on running
simulations compared to VIRL.
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