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Abstract— Data analytics has been widely accepted as a key 
enabler for 5G cellular networks. They can be applied in order 
to improve the performance of several mechanisms ranging 
from network management and traffic engineering to radio 
access network selection and traffic steering. Towards this end, 
this paper presents three supplementary mechanisms and 
provides a mapping of the required new functional entities into 
the latest version of the 5G architecture as specified by 3GPP. 
Additionally, it evaluates the performance of one of the 
mechanisms that targets the minimization of the information 
collected and used by the data analytics engine.  All in all, this 
paper provides a holistic framework based on the use of data 
analytics that addresses several key 5G-oriented, resource 
management and traffic steering challenges.   

Keywords- 5G cellular networks; data analytics; traffic 
steering; mobility management. 

I.  INTRODUCTION 
Lately, the use of data analytics to support the operation 

of 5G cellular networks has emerged as a hot research topic 
[1]. The application of data analytics covers a wide range of 
network operations such as network management and control 
as well as policy enforcement. Figure 1 illustrates how this is 
achieved. More specifically, data are collected from a 
number of network components and may include a variety of 
information fields such as the quality of the wireless channel, 
the network load, accounting information, configuration and 
fault indications, the profile of the subscribers, etc. This data 
is stored and updated regularly. When collected, it is pre-
processed, and any necessary transformation, discretization, 
normalization, outlier detection and dimensionality reduction 
is applied. The result of this process is then provided to a 
data analysis procedure which builds a model that caters for 
knowledge extraction from the processed data. For example, 
the result of this process may be the identification of 
situations where the occurrence of some specific events (e.g., 
a significant increase of the number of high mobility users) 

causes a given result (e.g., increase of the handover blocking 
probability). The knowledge model may also include some 
solutions for specific situations (e.g., force the network 
components to place high moving users to macro cells). The 
knowledge discovery results can then be communicated to 
either policy, management or control modules. These 
modules can employ this information in order to optimize the 
operation of the network and improve its performance. In 
this paper we provide a complete framework on how data 
analytics can be used to support Radio Access Technology 
(RAT) selection and traffic steering. 
 

 
Figure 1. Big data analysis for cellular networks 

 
To answer why data analytics are needed for RAT 

selection and traffic steering one has to consider the 
following. One of the most promising family of use cases has 
been named by the 3rd Generation Partnership Project 
(3GPP) as enhanced Mobile BroadBand (eMBB) services. 
These are characterized by throughput demanding services, 
high data volumes and significant numbers of users in 
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specific areas (e.g., stadiums, malls etc.). To support these 
services, the following architectural updates/ changes are 
required [2]: 

• densified deployment of base stations 
• support of heterogeneous access networks (e.g., 

operating below and above 6GHz, WiFis etc.)  
• deployment of efficient integration mechanisms 

among heterogeneous access networks  
• support of flexible and dynamic steering of users’ 

sessions through these access networks 
These design decisions create a complex heterogeneous 

environment. Thus, the selection of the most appropriate 
RAT and base station to support a user’s session is no longer 
a simple task. Under a homogeneous network this selection 
is simply based on the evaluation of the signal quality as 
received by neighboring base stations. However, for 5G 
networks the number of choices is going to be considerably 
higher. The dense deployment of base stations will offer at 
any time a high number of candidate macro, micro and femto 
cells for a user equipment (UE). Also, different RATs have 
different characteristics such as the supported throughput, the 
tolerance to interference, the transmission power and the 
respective energy consumption, the tariffing policy of the 
operator for using an access network etc. Thus, a selection 
should consider, apart from the signal quality, parameters 
like the mobility of a UE, the Quality of Service (QoS) 
required by its active services, the battery status of the UE, 
the preferences of the users, the network access and the 
technologies supported by the UE. 

This device/technology-wise heterogeneous environment 
calls for a novel and comprehensive framework, which will 
take into consideration the available information related to 
the values of the abovementioned characteristics. A plethora 
of approaches has been proposed in the past to address this 
issue [3]. These approaches are based on the dynamic 
collection and evaluation of contextual information. The 
evaluation is usually done either through the calculation of 
utility functions or using neural networks or fuzzy logic 
mechanisms to reach a decision.  

However, these solutions assume that the contextual 
information is somehow already in place and they neglect to 
estimate the signaling overhead that is required for the 
collection of contextual information. Moreover, although 
they consider that the preferences of the users are known, 
there is up to now no automatic solution to acquire this 
information, apart from having the users to set their 
preferences manually. Finally, these approaches are reactive 
schemes that take decisions on the fly. However, the 
complexity of the 5G networks requires that when available, 
some decisions should be proactive, otherwise the UEs will 
constantly monitor the environment and switch rapidly from 
one base station to another. This will be an extra overhead 
for the UEs’ computational resources and their batteries. 

To address these points the current paper builds upon our 
prior work presented in [4] and [5]. In these papers we have 
presented two independent solutions:  
a) a RAT selection scheme, named Compass (Context 
Aware RAT Selection), for 4G networks that achieves 

significant performance gains while keeping the signaling 
overhead at a minimum and b) a data analytics scheme, 
named Context Extraction and Profiling Engine (CEPE), 
that improves the performance of 4G cellular control 
functions (i.e., handover, call admission control and cell 
camping). Also, it calculates the profile of any user by 
monitoring its past actions. Based on this profile, the system 
has essentially the users’ preferences and is able to predict 
their future behavior in terms of location, mobility and 
service activity. So, future decisions for serving the UEs’ 
sessions under the most appropriate RAT can be taken 
essentially proactively. These two schemes can be adapted 
to operate under the 5G cellular systems and can be 
designed to operate complementary.  

Very recently, the significance of these types of schemes 
for future cellular systems has been acknowledged by 3GPP. 
A new network function, called NetWork Data Analytics 
Function (NWDAF) has been introduced in [6]. Currently, 
this function has limited functionality and is employed in 
order facilitate operators’ policy manipulation in real time. In 
the 5G architecture, the Policy Control Function (PCF) will 
be used to control the placement and service of UEs by the 
most appropriate cell and radio access technology. In future 
releases, it is expected that additional information will be 
provided from NWDAF to network control functions 
responsible to handle the mobility of active and idle UEs. 
Moreover, it is considered that the output of NWDAF will 
also feed new network functions related to Access Traffic 
Steering, Switching and Splitting schemes (ATSSS) [7]. This 
framework is currently under investigation by the 3GPP 
since it has been acknowledged that the traffic steering of 
user sessions through multiple RATs is of paramount 
importance for 5G networks. 

This paper extends the work presented in [1]. The key 
contributions of our current paper are the following. At first, 
we illustrate the latest status of 3GPP concerning the support 
of data analytics and traffic steering in 5G networks. Then, 
we present in detail how our prior work can be adapted and 
mapped into 3GPP’s network functions. Moreover, we 
provide detailed examples on their integrated operation. 
Additionally, we introduce and evaluate a new mechanism, 
called Context Information Processing (CIP) that targets the 
minimization of the acquisition of contextual information, 
which will be used by the data analytics mechanism of 
CEPE.  

The rest of the paper is structured as follows. In Section 
II we present the current status of 3GPP specifications in 
relation to the overall architecture and the support of 
NWDAF and ATSSS network functions. In Section III we 
discuss the state of the art of research proposals for the 
support of RAT selection and traffic steering. In section IV 
we briefly describe the key functionalities of CEPE and 
Compass and we introduce the CIP mechanism. We also 
illustrate how these mechanisms can be integrated and 
mapped directly to the 5G network architecture. In Section V 
we evaluate the performance of CIP. We conclude the paper 
and sketch future research directions in Section VI. 
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II. THE 5G NETWORK ARCHITECTURE 
In [6], 3GPP introduces the 5G network core 

architecture. Some key principles target to: 
• Modularize existing network functions to enable 

their flexible placement into network components 
and potentially allow their alternate configuration for 
different use cases. 

• Enable network functions to interact among them 
even directly if this is required. The architecture 
does not preclude the use of an intermediate function 
to help route control plane messages. 

• Minimize dependencies between the Access 
Network (AN) and the Core Network (CN). The 
architecture is defined with a converged core 
network with a common AN - CN interface, which 
integrates different Access Types e.g., 3GPP access 
and non-3GPP access. 

• Support "stateless" Network Functions (NFs), where 
the computational resources are decoupled from the 
storage resources. 

• Support concurrent access to local and centralized 
services. To support low latency services and access 
to local data networks, user plane functions can be 
deployed close to the AN. 

The reference 5G architecture is illustrated in Figure 2. 
 

 
Figure 2. 5G system architecture 

 
The key network functions in the core networks are: 
• Unified Data Management (UDM): supports the 

Authentication Credential Repository and Processing 
Function (ARPF).  

• Authentication Server Function (AUSF): supports 
the authentication of end users.  

• Policy Control function (PCF): supports unified 
policy framework to govern network behaviour, 
provides policy rules to control plane functions. 

• Core Access and Mobility Management Function 
(AMF): supports mobility management, access 
authentication and authorization, security anchor 
functions and context management. 

• Session Management Function (SMF): supports 
session management, selection and control of User 
Plane (UP) functions, downlink data notification and 
roaming. 

• User Plane Function (UPF): is the anchor point for 
inter/intra RAT mobility, supports packet routing 
and forwarding, QoS handling for user plane, packet 
inspection and policy rule enforcement. 

• Network Exposure Function (NEF): provides a 
means to securely exchange information between 
services and 3GPP NFs.  

• Network Function Repository Function (NRF): 
maintains the deployed NF Instance information 
when deploying/updating/removing NF instances. 

• Radio Congestion Awareness Function (RCAF): 
Informs the PCF about potential congestion issues in 
the radio access network. 

• Network Slice Selection Function (NSSF): supports 
the functionality to bind a UE with a specific slice 
(i.e., a logical network that is configured and tailor-
cut for a specific use case). 

One of the novel core network functions, which are 
introduced is NWDAF. According to the latest 
standardization activities, the NWDAF will provide load 
level information at a network slice level. NWDAF provides 
slice specific network data analytics to the PCF, as well as 
the NSSF over their newly specified interfaces (i.e., Nnwdaf, 
Nnssf and Npcf). PCF will be using the NWDAF input for 
optimizing the policies assigned to each UE and its 
respective on-going sessions and data flows. NSSF will 
utilize the NWDAF’s output to maintain the optimal 
UE/slice mapping for the diverse types of UEs and data flow 
characteristics. Note that multiple slices may be coexisting in 
certain areas. Besides PCF and NSSF, also TSSF (Traffic 
Steering Support Function) will essentially receive 
NWDAF’s output for optimizing traffic steering decisions. 

As for the support of untrusted non-3GPP access systems 
(like WiFi) an interworking function, called Non-3GPP Inter 
Working Function (N3IWF), is introduced. It supports the 
establishment of Internet Protocol Security (IPsec) tunnels 
with the UE and relays the information needed to 
authenticate the UE and authorize its access to the 5G CN. 
Note here that since Release 14 [8], 3GPP is also pursuing 
the tight integration of WiFis with the cellular system at the 
radio access network level. One such solution is the LTE-
WLAN Aggregation (LWA) that capitalizes the dual 
connectivity split-bearer architecture, introduced in Release 
12, where the aggregation of data links takes place at the 
Packet Data Convergence Protocol (PDCP) level. Another 
example is the RAN-controlled LTE-WLAN Interworking 
(RCLWI) mechanism that enables an eNB/New Radio 
gNodeB (NR gNB) to trigger a steering command to the UE 
to offload its traffic to a WiFi.  

NWDAF and the interworking functions create the 
framework to define policies and allow the flexible flow 
handling among heterogeneous access networks. For the 
actual control of these capabilities 3GPP is in the process to 
define a new network function, namely the ATSSS, which is 
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responsible for the management of the different UE flows 
over the available access technologies [6]. The three main 
operations supported by the ATSSS are: 

• Access Traffic Steering: The procedure that selects 
an access network for a new data flow and transfers 
the traffic of this data flow over the selected access 
network.  

• Access Traffic Switching: The procedure that moves 
all traffic of an ongoing data flow from one access 
network to another in a way that maintains the 
continuity of the data flow.  

• Access Traffic Splitting: The procedure that splits 
the traffic of a data flow across multiple access 
networks. When traffic splitting is applied to a data 
flow, some traffic of the data flow is transferred via 
one access and some other traffic of the same data 
flow is transferred via another access system.  

All the three operations are applicable between 3GPP and 
non- 3GPP access. The ATSSS is distributed over different 
network entities, such as the UE, the UDR, the SMF and the 
PCF as shown in Figure 2.  

The ATSSS logical architecture consists of the following 
components: 

• UDR-AT3SF: The User Data Repository for Access 
Traffic Steering Switching and Splitting Function 
holds UE’s subscription data.  

• PC-AT3SF: The Policy Control Access Traffic 
Steering Switching and Splitting Function defines 
the ATSSS policies according to: a) the application-
specific information provided by the AF, b) access 
information/notification provided by the AMF, c) 
UE subscription and user profiles provided by the 
UDR-AT3SF and d) network local policy. The PC-
AT3SF may also take input from the NWDAF into 
consideration to generate or modify its policies.  

• CP-AT3SF: The Control Plane Access Traffic 
Steering Switching and Splitting Function is the 
main control plane of the ATSSS architecture. It is 
responsible for ATSSS policy enforcement and 
session management of all data sessions. 

• UP-AT3SF: The User Plane Access Traffic Steering 
Switching and Splitting Function is the user plane 
anchor point for all ATSSS traffic and presents a 
single IP address towards data networks. It is 
responsible for ATSSS policy rule enforcement in 
the user plane of the core network.  

• UE-AT3SF: The UE Access Traffic Steering 
Switching and Splitting Function is the policy rule 
enforcement at the UE level for UE-initiated uplink 
traffic. It may also generate traffic reports to be sent 
to the CP-AT3SF. 

From the above analysis, it becomes clear that ATSSS’s 
functional elements will be responsible to select the access 
technology per each active UE data flow. 3GPP is currently 
defining the context parameters, on which these decisions 
will be made, as well as the negotiation details between the 
UE and the network, as far as the mapping between the data 

flows and the available access network resources are 
concerned. 

 

 
Figure 3. The ATSSS architecture 

 
As it will be shown in detail in Section IV, the novel 

framework we describe in our paper is fully compatible with 
this latest architectural status of 3GPP. 

III. STATE OF THE ART ANALYSIS 
In this section, we present a state-of-the-art analysis of 

research proposals for a) data analytics and b) RAT selection 
and traffic steering in 5G networks. 

A. Data analytics solutions for 5G networks 
Lately, several researchers are investigating how data 

analytics can assist in improving the performance of 5G 
networks. The authors in [9] present a unified data model 
based on random matrix theory and machine learning. They 
also provide examples on how big data analytics can be used 
to estimate the location, select an appropriate waveform, 
discover coverage holes, characterize user plane traffic etc.  

The work in [10] presents a generic extraction and 
correlation framework that reduces the collected data set 
through randomization and a coarse preservation of 
statistical relationship among data records. This scheme is 
very interesting but as the authors state, it remains an open 
issue how to filter out unrelated information so as to 
minimize the collection of huge amounts of data that is not 
really useful. We address this point with the CIP scheme that 
is presented in a later section. 

The results of the SELFNET project are presented in 
[11]. The target of the authors was to provide an autonomic 
network management framework for 5G mobile networks. 
Thus, the focus lies on the analyzer module that infers data 
from a set of collected metrics. The paper presents in detail 
the operation of the analyzer, but it does not provide a 
detailed discussion on the information that needs to be 
collected to support specific 5G use cases.  

Another proposal to use data analytics for network 
management is presented in [12]. The authors present a new 
framework, named Big Data SON (BSON). It takes into 
consideration data at a UE level (i.e., network related 
performance such as throughput, delay, blocking and drop 
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rates etc.), cell related data (Reference Signal Received 
Power and/or Quality - RSRP/RSRQ, of serving and 
neighboring cells, number of active users etc.) and core 
network data (alarms, configuration, security data, Call data 
records etc.). By applying data mining schemes upon the 
collected information, it is possible to transform reactive 
network management mechanisms into proactive ones. The 
paper provides an exhaustive list of information that can 
potentially be used. However, it does not analyze the traffic 
volume that needs to be collected in order for the scheme to 
perform the desired results. Also, they provide operational 
details only for a simple scenario.  

The authors of [13] present the user and mobile network 
data that can be potentially collected and processed by a data 
mining scheme. They also discuss how resource 
management, planning, interference coordination and cache 
server deployment is done nowadays. They suggest that 
these will be optimized if data analytics mechanisms are 
adopted by network operators. The paper discusses the main 
operation principles of their framework but there are no 
detailed examples. 

The authors of [14] present a mechanism that analyzes 
past information related to the load of wireless network in 
order to optimize the allocation of radio resources in the 
future. Interestingly enough, the results are based on the 
analysis of data collected from a commercially deployed 
mobile network. Another interesting idea is presented in 
[15]. It is proposed to use data analytics to optimize the 
performance of specific protocols in the radio access 
network. For example, the authors suggest that it is possible 
to reduce, for example, the overhead in Radio Header 
Compression in PDCP, or minimize the required signaling 
during the execution of a handover. 

In [16], the authors introduce a solution that analyzes 
application layer information to identify the exact model of 
an end device. The authors of [17] suggest that the 
examination of Call Detail Records (CDR), collected from 
the core network, can be used to estimate moving patterns of 
people inside a city.  

Finally, the work in [18] discusses how data analytics can 
be used to understand the relationship between users and 
services. More specifically, this approach requires to obtain 
real-time information about the application the users are 
using, analyze the information and predict the users' 
preferences and expectations. Then, the network resources 
are managed accordingly to provide the required Quality of 
Experience (QoE) to the end users. Based on this solution, 
the UEs should collect a lot of information and transfer it 
regularly to the network for further processing. This requires 
a lot of processing power in the UEs and it may affect their 
battery level consumption. More importantly, the exchange 
of a significant amount of information over the wireless link, 
by a large number of UEs, may cause performance issues to 
the real data the UEs are exchanging. 
In the following sections, we will briefly present how CEPE 
has been designed to operate and create a dynamic profile 
for end users. Based on this profile several control functions 
can optimize their performance [5]. Also, we introduce CIP 
that minimizes the collection of information needed by the 

CEPE framework. The key idea is that information is 
collected and transmitted to the CEPE engine only when the 
UE behavior deviates from the expected one as already 
captured by the user profile. 

B. RAT selection and Traffic Steering solutions 
The challenge of optimizing traffic steering and RAT 

selection in heterogeneous and multi-cell layer network 
environments has been studied thoroughly during the past 
years. 

The work in [19] proposes a cognitive framework, which 
operates on the side of the UE and targets to create a 
knowledge base using clustering and reinforcement learning 
techniques in order to create effective policies for the 
different user/network states. The authors present specific 
benefits in terms of balanced cell load; however, the 
evaluation is based on only 2 Long Term Evolution (LTE) 
nodes and 3 client nodes, which makes the model a bit 
simplistic. In addition, the authors restrict their model only in 
the downlink, and assume that there is no interference. 

In [20], the authors attempt to optimize the data flow – 
Air Interface Variants (AIVs) mapping via dynamic traffic 
steering on the PDCP layer. The traffic steering framework 
resides in the Radio Access Network (RAN) and translates 
the AIV-agnostic QoS metrics to AIV-specific ones based on 
real-time feedback from the AIVs. Although it presents a 
very advanced evaluation scenario using small cells and 
1000 UEs, it does not describe in detail the context 
information and/or the algorithmic approach that has been 
followed. 

In [21], the authors focus on the energy perspective and 
propose an energy-sustainable traffic steering framework, 
which adjusts dynamically the traffic load to match the base 
stations’ energy distributions in both the spatial and the 
temporal domains. Moreover, they identify several research 
challenges related to service capability with energy 
harvesting, low complexity operation, trade-off between 
system and user performance, etc. They present a 
comprehensive case study with realistic configurations and 
show a considerable optimization from the energy 
consumption perspective. However, no context information 
is analyzed and no network-related Key Performance 
Indicators (KPIs) are thoroughly discussed. 

The work in [22] presents a context-aware framework, 
which uses a multi-attribute decision making scheme for 
optimal RAT selection in an ultra-dense network. The 
authors categorize the decision criteria between network- and 
user- oriented ones. The network-oriented criteria include the 
received signal strength and the communication data rate. 
The user-related criteria include the type of the application, 
jitter, packet loss and delay. In the performance evaluation of 
the proposed scheme, they target at the minimization of the 
number of handovers, while they also focus on the ranking 
abnormality, i.e., the condition to investigate the ranking 
order of the access network due to the inclusion or exclusion 
of a RAT. Nevertheless, the evaluation is carried out based 
on numerous assumptions (e.g., the results are analyzed at 
thirty pre-defined decision points), without deploying a 
realistic network environment.  
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In [23] the authors attempt to identify the impact of 
different aspects of network models, including network 
topology and bandwidth allocation of the performance of 
several RAT selection algorithms. They carry out a detailed 
survey of different solutions, categorizing them in 
reinforcement learning-based algorithms, regret matching-
based, RAT selection games-based, partially/fully distributed 
algorithms, etc. They conclude that the performance of 
adaptive RAT selection algorithms is most significantly 
affected by the number of base stations that a user can 
connect to. However, they do not use any realistic/simulated 
environment to carry out the evaluation, they provide no 
details in relation to the actual evaluation environment, while 
the comparison is based only on “numerical tests”. 

Last but not least, in [24], the authors present a 
comprehensive survey of the main traffic steering and 
handover decision criteria in the literature. According to this 
work, some researchers focus on evaluating the 
RSRP/RSRQ, the user location or speed, the mobility 
patterns, the battery level, the mean UE transmit power and 
the UE power consumption, the load of the cell and the 
service type. Apart from the case of RSRP, typically 
researchers are using multiple criteria (e.g., battery lifetime, 
traffic type, cell load, speed) and are using different tools 
(e.g., cost-based functions, fuzzy logic, etc.) to reach a 
decision. 

As it can be inferred from the above analysis, numerous 
efforts have attempted to provide a solution towards the 
heterogeneous RAT selection in dense network deployments. 
However, all of the reviewed papers make numerous 
assumptions, either on the design and architectural aspect of 
the solution (e.g., in relation to the available interfaces), or 
on the actual evaluation of the mechanism (e.g., by not 
implementing vital parts of the signaling procedures, 
simplistic network environment, etc.).  

To the best of our knowledge, there is no previous work, 
which makes a comprehensive discussion on the specific 
context information to be acquired and processed and the 
burden this information imposes on the network. 
Furthermore, the work presented in the following sections 
combines complementary functionalities (i.e., data analytics 
with RAT selection schemes) and maps them into the latest 
5G architecture focusing on how to acquire contextual 
information and minimize any related control signaling 
exchange.  

IV. MAPPING THE PROPOSED FRAMEWORK INTO THE 5G 
ARCHITECTURE 

In this section, we briefly describe the key points of 
CEPE and Compass presented in [4] and [5]. Furthermore, 
we present a novel mechanism, named CIP that aims to 
minimize the amount of contextual information that needs to 
be collected for CEPE’s operations. Also, we provide a 
detailed description about how these schemes can 
interoperate and map their functionality into the latest 5G 
architecture. 

A. CEPE: A Context Extraction and Profiling Engine  
The work presented in [5], is able to automatically build 

a user profile that can be used to predict the future behavior 
of a subscriber. This information is used to improve the 
performance of network control operations. More 
specifically, static and dynamic information is collected 
about: 

1. User profile related information (static): gender, 
device type characteristics (e.g., cpu, memory, os, 
device type)  

2. UE and device dynamic characteristics (dynamic): 
location, transmission power, amount of transmitted 
and received data, experienced delay, loss of 
packets, associated cells identifiers 

3. Network related measurements (static and dynamic): 
type of cell (e.g., macro, femto, etc.), power 
transmission level, available resource blocks, 
amount of transmitted and received, data, delay, 
packet loss, number of connected devices 

Based on these measurements, data analytics are used to 
build a knowledge model, the outcome of which is 
essentially a dynamic profile for end users. This profile 
predicts their future behavior based on their location, time 
and day, the battery level of their devices and their monetary 
charging status. This way the network can use this 
information to place users to the appropriate cells and radio 
access technologies during the execution of a handover or a 
new session establishment. Also, this information is used by 
the end devices to select the most suitable cell to camp on, 
when they are in an idle state. Extensive simulations 
demonstrate significant performance improvements both for 
the network operator as well the end users [5]. Note here that 
this is exactly the information (i.e., the dynamic profile of 
users that captures their future behavior in terms of mobility 
and service consumption), that the newly introduced 
NWDAF can report to the PCF and other network 
components to improve the performance of a 5G network. 
Thus, CEPE is essentially a potential future evolution of 
NWDAF. The introduction of NWDAF in the 5G 
architecture and its interfacing with the PCF (Figure 4) 
clearly indicates that in the future, its output will be used to 
select the most appropriate policies for UEs or types of UEs 
(e.g., high/low moving terminals, terminals involved in 
high/low data rate exchange, etc.). 

 

 
Figure 4. Provision of information to NWDAF 
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In the state of art research efforts (e.g., [17]), it has been 
identified that users tend to have the same behavior that is 
dependent on the terminal they use, their monetary charging 
status and preferences, the status of their battery and 
obviously their location (e.g., home office, on the road, etc.) 
during specific dates and hours. Their behavior also depends 
on the status of network components (e.g., the load of the 
network, the received signal strength, the experienced delay 
or packets losses). All this information is required for a data 
mining function like NWDAF/CEPE to create a realistic 
model and enable the selection of appropriate policies or fine 
tune network control functions. In Figure 3, the network 
components that have to feed information to the 
NDWAF/CEPE as well as the type of this information are 
illustrated. These 5G network components can potentially be 
UDR, PCF, RCAF and UE. Additional entities not included 
in Figure 1 are: 

• Network Management System (NMS): reports 
performance indicators (e.g., bandwidth utilization, 
packet loss, latency, alerts, etc.). 

• Access Network Discovery and Selection Function 
(ANDSF): reports the current policy rules shared 
with a UE to help it decide, to which available WiFi 
it may connect to. 

• Offline Charging System (OFCS): passes 
information contained in CDRs, related to the 
resource usage of a UE. 

• Online Charging System (OCS): informs about the 
current credit management status of a UE. 

Based on this information, the NWDAF/CEPE can 
collect information that is related to the current behavior of 
users and create their dynamic profile that essentially is a 
prediction of their future actions. Table I presents some 
examples of behavioral profiles that can characterize a single 
user or a set of users that have the same behavior. To create 
such a list, the NWDAF/CEPE requires mainly information 
from the UE, the OFCS the OCS, the UDR and the AF 
(optionally). It also requires information from the NMS and 
the RCAF. 

At the same time, the NWDAF/CEPE should have the 
information about the current policies being used by the 
operator as it receives the related information from the PCF 
and ANDSF. This way it is able to correlate the received 
input and identify a) the best policies to be used, b) the 
estimated bandwidth required for a future period of time in 
an area and c) what is the optimum placement of UEs in cells 
and radio access technologies. This is doable since the 
network is aware of the type of users in an area, their number 
(from those that are connected or those that have recently 
performed a location update process) and the available 
capacity of the network. Thus, NWDAF/CEPE can provide 
rules to PCF in the form of  

• Profile (Home C) ^ # of users (high) ^ Network load 
(high) à place users in femto cells 

• Profile (On the road) ^ # of users (any) ^ Network 
load (any) à place users in macro cells 

 

The behavioral profiles of users can be communicated to 
any network functions that are responsible for managing the 
user mobility or the establishment and management of user 
sessions. Such entities are AMF, SMF, TSSF and 5G Base 
Stations (gNBs). 

B. CIP: A Context Information Preprocessing module  
One of the most critical aspects of network context-based 

systems is the vast volumes of data, that need to be 
aggregated and transmitted towards a specific network 
analytics function deployed in the core network. The CIP 
mechanism performs context data aggregation, filtering and 
preprocessing techniques. The module comprises 
aggregating and compressing mobile network-related context 
information, as well as techniques related to identifying and 
discarding user profile-redundant or unnecessary context 
data, before any transmission to the network data analytics 
function, i.e., CEPE.  

TABLE I.  EXAMPLES OF BEHAVIORAL PROFILES 

 
 

CIP operates in a distributed manner, is deployed on 
every context-generating network entity (UE, gNB, UPF, 
etc.) and performs the preprocessing locally, on the 
respective entity, before transmitting it “upwards” towards 
the core network. Each CIP aggregates context information 
per a unique user identifier and in the aggregated information 
it identifies redundant or unnecessary data and discards it. 
The aforementioned unique identifier may be the user IMSI 
(International Mobile Subscriber Identity) or any other 
unique identifier for the user, so as to indicate that this 
context information refers to a certain user. Any information 
item, acquired at a specific network entity is in line with the 
already generated user profile (in other words, any 
user/device behavior, in line with the predicted, profiled 
behavior by CEPE) is considered redundant and is discarded, 
as it provides no additional gain to the knowledge extraction 
information base. Nevertheless, we define a Consistency 
Index (CI), which is utilized by the system as a metric of the 
consistency of the latest generated profiles towards the next 
phases of the system training. Each time context information 
is acquired and identified as consistent with the existing 
profiles, CI is updated accordingly for the specific profile. 

Figure 5 details the CIP process, when deployed in a 
network entity acting as contextual information source.  
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Figure 5. CIP operation 

 
The steps it follows are: 

1) Aggregation of profiles and context information: via the 
respective interfaces, context information is pulled/ 
pushed to CIP.  

2) Linking of context information with the profiles 
provided by CEPE: for each connected IMSI, CIP 
makes an association with the respective profile that has 
already been acquired by CEPE and stored in CIP. 

3) Context information comparison with the respective 
profile so as to identify any redundant information. If 
the information item that is evaluated is consistent with 
the respective profile, the item is identified as 
redundant. 

4) Redundant information removal: Redundant 
information is discarded since it offers no additional 
insight to the CEPE data-mining phase. 

5) Consistency Index update: every time an information 
item is identified as redundant, the CI is updated 
accordingly 

6) Aggregation per unique identifier (e.g., IMSI): the 
filtered context information items are aggregated per 
identifier in order to be transmitted to CEPE. 

Each user may have more than one behavioral profiles 
related to specific context information items (e.g., location, 
time periods, date, battery level, etc.); at the same time, each 
CIP entity may have more than one user profiles that refer to 
one or more users, the CIP when it has to provide context 
information to the CEPE (Step 1 – Figure 5), then it links the 
context information with the respective user behavioral 
profile (Step 2 – Figure 5) for the identification of the active 
behavioral profile. This implies that the CIP will map the 
context information to be transmitted with the predicted 
behavior of the user under certain preconditions that refer to 
the process that produced the context information. Then, by 
comparing the context information of the user, which is the 
actual behavior of the user with his predicted one 
(represented by the user behavioral profile), the CIP 
identifies the redundant information (Step 3 - Figure 5). 
Specifically, when a user complies with his predicted 
behavior, this information is considered redundant and may 
be discarded (Step 4 - Figure 5). When the user does not 

comply with his predicted behavior, then this information is 
not redundant and has to be collected by the CEPE so as to 
be considered in the user behavioral profile extraction 
process from the “User Behavioral Profiles Extraction 
Function”. Each time redundant data is discarded, a 
consistency index (CI) is updated for the associated user 
identifier. Only not redundant data and the Consistency 
Index are transmitted to the CEPE either directly or through 
other CIPs (Step 5 & 6 – Figure 5).  

As it will be shown in the Evaluation section, CIP’s 
operation becomes of utmost importance in large scale 
scenarios, with thousands of coexisting UEs and base 
stations. The context information escalates proportionally to 
the number of the users, while simultaneously, the RAT 
selection processing becomes even more complicated, as 
more UEs contend for the available attachment points. 

C. Compass: A UE-oriented RAT selection scheme  
The third component of the proposed framework is 

Compass, a light-weight RAT selection mechanism, which 
operates on the UE-side. Compass aggregates and processes 
context information in the vicinity of the UE using Fuzzy 
Logic. Compass’ objective is to construct a Suitability list of 
the available RAT and cell layer options. 

Compass assesses the user preferences along with five 
different types of context information items (Figure 6), 
available in the network, i.e., the Received Signal Strength or 
RSRQ (for non-3GPP and 3GPP networks respectively), the 
base station’s load in terms of utilized capacity, as well as 
the respective load of the backhaul, the UE mobility type 
(static UE, low/high mobility, etc.), and finally the traffic 
flow characteristics (critical delay requirements, etc.). In 
order to avoid any signaling overhead to the network, the 
afore-mentioned information items have been carefully 
selected, as they are already available either in the UE or 
received from the network (e.g., in the form of broadcast 
messages). This approach considerably minimizes the 
signaling overhead of the proposed scheme. 

 
Figure 6. Compass Fuzzy Inference System 

 
Although initially designed as a standalone scheme, 

Compass fits nicely with CEPE and CIP as it kicks in when 

fu
zz

ifi
er

BS/AP load

backhaul load

UE mobility

traffic flow 
type

RSRQ/RSS

Inference 
Engine

de
fu

zz
ifi

er

RAT  
suitability 

list

rulesU
E 

C
on

te
xt

 M
an

ag
er



109

International Journal on Advances in Telecommunications, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/telecommunications/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the dynamic profile of user is not yet formed or when the 
expected behavior of a user deviates from what is already 
captured by the existing profile.  

D. CEPE – CIP – Compass interworking  
This section highlights the complementary nature of the 

network-operated CEPE with the UE-oriented Compass and 
discusses how the assets and shortcomings of each one can 
provide a holistic context-based traffic steering and RAT 
selection framework. CIP –on the other hand- operates -with 
both Compass and CEPE- in a distributed manner in all 
involved network entities independently, towards the 
preprocessing of the context information before its 
transmission; thus, in this section we will mainly focus on 
CEPE and Compass. 

As already mentioned earlier, the core network-based 
CEPE with the UE-controlled Compass are able to operate 
independently –and with a different approach- with regard to 
the RAT selection and traffic steering policies. Compass 
operates on the UE side, and -based on a multi-criteria fuzzy 
logic based scheme- calculates the suitability of the available 
RATs and cells/APs for each one of its active sessions 
(applications/services/etc.) in almost real-time. On the other 
hand, CEPE operates as standalone Core Network 
function/entity, which builds upon historical context 
information and patterns in relation to the UEs, the network, 
the consumed applications and services, etc. and generates 
User Profiles, on which, prediction for future situations is 
based. 

The two mechanisms target the same objective (applying 
optimized radio resource management and traffic steering) 
from divergent perspectives, which however, are 
complementary and can be combined. The complementarity 
of the two schemes is federated by the fact, that -as happens 
in the majority of context-based mechanisms-, the benefits 
have always to confront numerous shortcomings and 
limitations as well. 
Compass operation provides knowledge of the current 
situation of the network status – in the vicinity of the UE- 
and, based on the respective service requirements, it triggers 
a session setup (or a handover in case of an on-going 
session) to the most appropriate access technology and 
specific cell/AP; besides, Compass minimizes unnecessary 
execution of control functions based on the mobility of the 
user, the requirements of a particular service/application, as 
well as the load of the network. 

Nevertheless, certain limitations refrain Compass from 
being capable of globally supporting the overall traffic 
steering and RAT selection operations in a holistic manner. 
The UE-assisted nature of the specific scheme, results in a 
solution, which on the one hand optimizes the resources 
provided for specific UEs, however, on the other hand, lacks 
any capability of an overall planning or overview of the 
status of the network, leading requests from the UE side 
impossible to address in very demanding situations, such as 
dense deployments. Novel traffic engineering approaches in 
forthcoming, challenging 5G environments will require 
solutions, which will act also partially from the UE side for 

an efficient, real-time network probing, however, the final 
network-side decision making will be of utmost importance. 

Furthermore, Compass acts in a reactive manner; the 
context acquired and processed by Compass refers to recent 
real-time behavior of the UE; this translates to slow 
convergence in cases of diverse UE behaviors in small time 
frames, consecutive calculations from the UE side every time 
the context is modified (such as mobility changes), etc. Last 
but not least, a context-based scheme on the UE side –no 
matter its efficiency- implies additional signaling 
information, -specifically for ultra-dense environments, 
where hundreds/thousands of UEs coexist among numerous 
base stations/Aps -, which makes the solution inefficient in 
terms of energy consumption – one of the most crucial 
aspects of UE-based solutions-, even if several energy-
related optimizations have taken place in Compass design 
and implementation. 

Contrary to Compass’ reactive nature, CEPE, on the 
other side, is a proactive Core Network based entity/function, 
which aggregates context information related both to the 
UEs (device characteristics, behavior profile, app usage, 
etc.), as well as the network status, and builds prediction 
models and user profiles, based on patterns, which are 
identified in this aggregated context over a certain amount of 
time. The network traffic demands prediction is directly 
linked to one of the strongest CEPE advantages: via the 
holistic picture of the network over long-time frames: this 
provides the network administrator a framework of utmost 
importance, facilitating traffic engineering operations, load 
balancing, etc. 

As already highlighted, CEPE’s longer term context 
processing differs considerably from Compass’s, which 
applies real-time monitoring and decision-making. One the 
one hand, this provides the ability to predict user future 
behavior, in terms of both mobility, as well as service usage; 
on the other hand, however, this operation implies certain 
weaknesses for specific/examples: a new UE connects to the 
network, which CEPE is not trained for, or there is a 
deviation from the existing profile (a UE enters a new area, 
in which CEPE is still not trained or an event occurs (e.g., 
new type of application/service launched), which deviates 
considerably from the profile that CEPE has built for the 
particular UE, etc.). Another shortcoming identified relates 
to the limited ability of CEPE operation to perform micro 
monitoring in real-time and identify the specific cell/AP, 
which should be selected for a specific UE –in case of 
multiple options-. This information is however acquired by 
Compass, which scans when required the UE’s environment 
in real-time; thus, the two schemes may as well combine 
context information towards the optimal selection. 

To sum up, certain capabilities and shortcomings of the 
operation of the two, primary context-based schemes (i.e. 
CEPE and Compass) prove that a solution, which combines 
their operation in a parallel and coordinated manner, would 
provide considerable gains (Figure 7). 

• Compass operates as long as no valid user profile is 
currently available 

• CEPΕ provides the main policies for UE to RAT 
mapping and traffic steering to the relevant network 
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entities, which are responsible for forwarding them 
down to the UEs. 

• Whenever, an event occurs, which shows that a UE 
behavior deviates from CEPE’s profiles (e.g., 
unexpected use of a service different mobility or 
location for a UE, etc.), Compass’ resumes its 
operation and the current profile is ignored. In this 
case CIP will update CEPE with new and detailed 
information. 

• Last but not least, CEPE can be exploited to fine-
tune the load information request rate of Compass to 
ANDSF, and/or other relevant context-aware 
components (not shown in the figure).  

 

 
Figure 7. CEPE – Compass interworking MSC 

 

E. The three mechanisms in 3GPP’s 5G architecture 
 

As already mentioned in the first Section of this paper, 
the three mechanisms we present in this work are designed in 
such a way, to be fully compatible with the 3GPP 5G 
architecture. In Section II we presented in detail the latest 
status in 3GPP with regard to the 5G system architecture, 
along with the primary system components. 

One of the novel core network functions, which are 
introduced in [6] is a dedicated data analytics function 
(NWDAF). CEPE, as a network data analytics and 
prediction engine is essentially a module, capable of 
supporting fully this functionality by serving as NWDAF 
instance in the forthcoming 5G architecture. Apparently, 
different data mining engines may be deployed by different 
operators, focusing on specific context information items or 
particular verticals/business scenarios. The diverse 
information items aggregated and processed by CEPE have 
been analyzed in the respective previous section. Mapping 
this information, with the afore- presented 5G architecture, 
several 5G network components, which generate valuable 
context information, will forward it to CEPE/NWDAF: 
Unified Data Repository, Access Network Discovery and 
Selection Function (ANDSF), PCF, RAN Congestion 
Awareness Function (RCAF), etc. 

Moreover, the Radio Congestion Awareness Function 
(RCAF) is also a vital component for Compass context 

information acquisition related to one of its five core context 
parameters, i.e. the real-time AP/cell load information. 
Compass will be receiving information related to the 
potential congestions related to specific APs/cells –besides 
the ANDSF, which has already been described in previous 
section- and will calculate the respective Suitability of each 
AP/cell. 

With regard to the ATSSS, UDR-AT3SF holds UE 
ATSSS subscription data for operator service and user 
profiles. This functional element is directly linked with the 
output of NWDAF-CEPE profiles, which receives and 
provides them –as will be described below- to other ATSSS 
functional elements. UE-AT3SF implements ATSSS policy 
rule enforcement at the UE for UE-initiated traffic (UL). It 
may also generate traffic reports to be sent to the CP-AT3SF. 
The traffic usage reports from UE-AT3SF are directly linked 
to Compass operation and fine-tuning role, described in the 
previous section regarding the CEPE-Compass 
complementarity. 

Thus, it becomes clear that ATSSS’ functional elements 
will be the responsible component/function, which will 
select the access technology per each active UE data flow. 
3GPP is currently defining the context parameters, on which 
these decisions will be made, as well as the negotiation 
details between the UE and the network, as far as the 
mapping between the data flows and the available access 
network resources are concerned. Compass, as already 
described in the respective sections, could operate as an 
ATSSS instance for this UE flow – RAT mapping 
optimization, providing optimal selection with an energy- 
and signaling-efficient approach. CEPE-NWDAF and 
Compass are capable of providing this context information to 
the ATSSS elements. The following figure illustrates the 
proposed architecture, which integrates CEPE, Compass 
(and CIP) and maps them with the NWDA and ATSSS 
functionalities. 

 

 
Figure 8. Logical interfaces of CEPE (as NWDAF instance) and Compass 

(as UE-AT3SF instance) in the 5G architecture 
 

To sum up, according to the above analysis, the Policy 
Control Access Traffic Steering Switching and Splitting 
Function (PC-AT3SF) defines ATSSS policies according to 
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the application-specific information provided by the 
Application Function (AF), access information/notification 
provided by the Access and Mobility Function (AMF), and 
UE ATSSS subscription and user profiles provided by the 
User Data Repository ATSSS (UDR-AT3SF). In our 
proposed architecture (Figure 8) this information, –on which 
the ATSSS policies are generated- is federated by the 
NWDAF-CEPE function and is also linked to the NSSF, via 
the PC-AT3SF. Compass module is considered part of the 
UE-AT3SF instance- and is responsible for sending traffic 
usage and access technologies Suitability reports to UP-
AT3SF, which relays them “upwards” via CP-AT3SF 
ultimately to NWDAF-CEPE for feedback-based fine-tuning 
of policies. A Compass instance is additionally deployed on 
the CP-AT3S function, in order to coordinate the scheme’s 
reporting with the Control Plane.  

V. CIP EVALUATION AND OVERALL SYSTEM 
OVERHEAD QUANTIFICATION USING AN ANALYTICAL 

APPROACH 
For the analysis of CIP, we consider an ultra-dense 

network with a high number of base stations (macro, as well 
femto cells) and UEs within a geographically limited area. 
We are assuming a network area serving a million active 
UEs. We assume that the operator is performing profile-
based data analytics using CEPE. Various parameters related 
to context information should be aggregated from numerous 
network entities, each of which is characterized by a 
different payload as well. For this reason, we provide Table 
II that shows the payload that we used in our evaluation 
schema; for each context item we also provide a reference, in 
which detailed insights are presented. 

 
 
 

TABLE II. PAYLOAD PER CONTEXT INFORMATION PARAMETER 

Parameter Payload Source 
Network Entity 

Reference 

IMSI 64 bits gNB, MME [25] 

Cell ID (+MCC+ MNC) 32 bits gNB, MME [26] 

Timestamp (TS) 32 bits All [27] 

Mobility (Mobility State 
Estimation based on 
Handover counters as in 
LTE) 

8 bits MME [28] 

User Charging Data Record 
(CDR) 

64 KB to 
100 MB 

OFCS (Offline 
Charging System) 
– CGF 

[29] 

Contract type (in SPR – 
Subscription Profile 
Repository) 

4 bits PCRF – PGW [30] 

Charging status (enough 
credit/no credit) 

1 bit Online Charging 
System (OCS) – 
PGW 

[31] 

UE Battery Status 
(normal/low) 

2 bits UE [32] 

 
The signaling overhead estimation depends on the 

network entities where CIP and CEPE are deployed as the 

number of hops and the interface types between the source 
and destination of the context information transmission 
varies. In the evaluation example, the key assumption for 
CEPE and CIP is illustrated in the following figure (Figure 
9). 

 

 
Figure 9. CEPE and CIP deployment in the network during the evaluation 

The particular example (Figure 9) shows that the CIPUE 
and the CIPgNB are one hop away in terms on direct, 
implemented network interfaces, the CIPUE and the CEPE 
two logical hops, etc. A similar scenario may of course be 
applied in the same way for N hops between the network 
entities, in case CEPE and CIP are deployed in different 
entities as well. 

We compare the proposed approach against two 
mechanisms by quantifying the overhead induced to the 
basic daily signaling due to their application (Table III). 

TABLE III. JUXTAPOSED SCHEMES 

Proposed scheme Pre-processing Redundant 
information 

identification/discard 
Standard None – all information 

is aggregated to be 
transmitted 

None 

Semi-optimized Basic pre-filtering (pre-
aggregation per IMSI 

and location) 

None 

 
The format of the transmitted context information 

comprises all the required information items, as discussed 
earlier and is described as follows: 

 
{(IMSI, location, TS), Mobility State Estimation (MSE) / 

Bearer ID / contract type / charging status / battery status} 
 
The IMSI-location-TS triplet comprises a key and is 

always transmitted along with one or more of the remaining 
context parameters (e.g., MSE, bearer ID, etc.). We define 
equation (1) in order to calculate the overall signaling cost 
imposed by the transmission of the afore-described context 
information parameters. 
 

 

 
O is the overall signaling overhead, N the number of 

users connected to the system, M the number of the different 
profiles/behaviors that the UE exhibits, Pc the consistency 
percentage that describes the portion of the acquired context 
information, which is consistent with the existing user 

O =
N

∑
i= 1

M

∑
j= 1

[(1 − Pc)x (S(Im)x Fr (Im) + Scdr) + S(Istatic) + Scc] (1)
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profile, S(Im) the payload of each one of the mth context 
parameter {TS / MSE / contract type / charging status / UE 
battery status}, Fr(Im) the transmission frequency of each one 
of the mth parameter {TS / MSE / CDR / contract type / 
charging status}, Scdr the message of the varying CDR file 
sizes (1/10/100 MB), S(Istatic) the payload of the static tuple 
{IMSI, location}, which equals (64 + 32 bits = 96 bits) and 
Scc the size of the Consistency Counter. 
 

 
Figure 10. System overhead with varying profile consistency 

 The evaluation that follows illustrates the system 
overhead imposed during the context data acquisition and for 
varying scenarios of UE profile consistency. We assume that 
the consistency percentage - Pc - varies from 10 up to 90%, 
as shown in the first chart (Figure 10). The second evaluation 
chart (Figure 11) illustrates the gain of the proposed scheme 
–CIP- against the two afore-mentioned standard 
mechanisms. As it can be seen on the X-axis of Figure 11, 
we attempt to assess the CIP’s gain for different cases, in 
terms of the CDR file sizes, which often may vary; in our 
evaluation we use varying sizes, from very small to 
considerably large: 1, 10 or 100 MB according to respective 
references [32]. For the evaluation, we consider some of the 
most challenging 5G use cases (Figure 12), which follow the 
METIS project specifications [33] and correspond to varying 
number of UEs in the network environment; traffic jam, 
shopping mall, stadium, open-air festival are some indicative 
examples. The results of the initial 3-fold evaluation that was 
described above are illustrated in the following charts. 

As depicted in the graphs, the gains of applying CIP 
during the context information acquisition and transmission 
between the different network entities may vary from small 
to huge. The most important parameter that influences the 
extent of the signaling overhead minimization is the data 
consistency in terms of the already available user profiles. 

In other words, as one would expect, the more consistent 
the context data is with the CEPE-produced user profiles, the 
more the overhead approaches zero when CIP is applied 
(Figure 10, Figure 11). 

 

 
Figure 11. CIP’s gain over the two selected schemes 

In all cases, the semi-optimized scheme performs better 
already than the standard scheme, which transmits all the 
information towards the Knowledge Extraction engine 
(CEPE), while both of these schemes our outperformed by 
CIP. 

As already discussed earlier, the number of devices to be 
managed by the network is one of the most challenging 5G 
use cases. Figure 12 illustrates the great gain that results 
from the application of CIP, particularly in selected, 
established use cases, as these have been identified and 
thoroughly defined in one of the first 5G EU projects, i.e. 
FP7 METIS 2020 [33], such as an Open Air Festival, or a 
Dense Urban Information Society, where the numbers of 
users peak. 

VI. CONCLUSIONS 
In this paper, a context based framework towards radio 

resource management was introduced, comprised of three 
mechanisms: Compass, CEPE and CIP. Each one of the 
individual mechanisms performs a complementary operation 
towards optimizing the RAT selection and traffic steering 
and switching operations in 5G network environments. The 
core policy extraction component, CEPE, is based upon 
extensive data analytics on user- and network- related 
information in order to generate UE profiles, while it is 
federated by the real-time operated, UE-oriented Compass 
scheme; CIP performs context information pre-processing 
and filtering towards the reduction of the transmitted 
information among the network entities.  

The second part of this work presented the latest 5G 
system architecture, as this has been described so far by 
3GPP and performed a comprehensive mapping between the 
former and the proposed framework. 

Future directions of this work will focus on –but will not 
be limited to- the real deployment and evaluation of the 
proposed system, using customized, open source software 
and components, based on the Open Air Interface [34] 
system, as well as custom Ettus Research-based Universal 
Software Radio Peripheral (USRP) [35] nodes for the 
hardware (access) part. 
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Figure 12. Signaling overhead for different  

5G use cases 
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APPENDIX – LIST OF ABBREVIATIONS 
 

5G 5th Generation of Cellular Mobile Communications 
3GPP 3rd Generation Partnership Project (3GPP) 
RAT Radio Access Technology 

eMBB Mobile BroadBand 
UE User Equipment 
QoS Quality of Service 

CEPE Context Extraction and Profiling Engine 
NWDAF Network Data Analytics Function 

PCF Policy Control Function 
ATSSS Access Traffic Steering, Switching and Splitting 

CIP Context Information Processing 
AN/CN Access/Core Network 

NF Network Function 
UDM Unified Data Management 
ARPF Authentication Credential Repository and Processing Function 
AUSF Authentication Server Function 
AMF Core Access and Mobility Management Function 
SMF Session Management Function 
UP User Plane 

UPF User Plane Function 
NEF Network Exposure Function 
NRF Network Function Repository Function 

RCAF Radio Congestion Awareness Function 
NSSF Network Slice Selection Function 
TSSF Traffic Steering Support Function 

N3IWF Non-3GPP Inter Working Function 
IPsec Internet Protocol Security 
LWA LTE-WLAN Aggregation 
PDCP Packet Data Convergence Protocol 

RCLWI LTE-WLAN Interworking 
NR New Radio 

UDR-AT3SF User Data Repository for Access Traffic Steering Switching and Splitting Function 
PC-AT3SF Policy Control Access Traffic Steering Switching and Splitting Function 
CP-AT3SF Control Plane Access Traffic Steering Switching and Splitting Function 
UP-AT3SF User Plane Access Traffic Steering Switching and Splitting Function 
UE-AT3SF UE Access Traffic Steering Switching and Splitting Function 

BSON Big Data SON 
RSRP/RSRQ Reference Signal Received Power/Quality 

CDR Call Detail Records 
QoE Quality of Experience 
LTE Long Term Evolution 
AIV Air Interface Variants 
RAN Radio Access Network 
KPI Key Performance Indicator 

NMS Network Management System 
ANDSF Access Network Discovery and Selection Function 
OFCS Offline Charging System 
OCS Online Charging System 
IMSI International Mobile Subscriber Identity 

CI Consistency Index 
MSE Mobility State Estimation 

 


