
135

International Journal on Advances in Telecommunications, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/telecommunications/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Impacts of System Clock Granularity on Performance of

NDN Rate-based Congestion Control

Toshihiko Kato, Kazuki Osada, Ryo Yamamoto, and Satoshi Ohzahata

Graduate School of Informatics and Engineering

University of Electro-Communications

Tokyo, Japan

e-mail: kato@is.uec.ac.jp, osada@net.is.uec.ac.jp, ryo_yamamoto@is.uec.ac.jp, ohzahata@is.uec.ac.jp

Abstract—Named Data Networking (NDN) is a widely adopted

future Internet architecture that focuses on large scale content

retrieval. The congestion control is one of the hot research

topics in NDN, and the rate-based congestion control method is

considered to be well suited. From the viewpoint of

implementation, however, the rate-based method has an issue

that it requires the fine-grained clock management, which is

hard to implement in off-the-shelf computers. We focused this

issue in our previous paper, and evaluated the performance in

the case that consumers use a coarse-grained clock system. In

this evaluation, we used the Stateful Forwarding as a target,

which is a rate-based method proposed by the group proposing

NDN. The simulation results showed that a coarse-grained

clock system increases congestion. We also proposed a smooth

Interest sending scheme under a coarse-grained clock system,

which relieves congestion. However, our previous paper

discussed only results with limited evaluation conditions, such

as one consumer/producer pair configuration and a relatively

low link speed. In this paper, we revisit the impact of system

clock granularity of the performance of NDN rate based

congestion control with practical evaluation conditions and with

detailed analysis.

Keywords- NDN; Congestion Control; Rate Control; Clock

Management.

I. INTRODUCTION

This paper is an extension of our previous paper [1], which
is presented in an IARIA conference.

Resulting from a drastic increase in Internet traffic forecast
[2], there are many studies on the future Internet architecture
called Information Centric Network (ICN), which is well
suited for large scale content retrieval. Named Data
Networking (NDN) [3] is a widely adopted platform for the
ICN researches. The fundamental concept adopted in NDN is
the name of required content, not the address of hosts
containing the content. NDN uses two types of packets in all
communications: an Interest packet and a Data packet. A user
called a consumer that requests a specific content sends an
Interest packet containing the content name. A server called
a producer that provides the corresponding content data
returns a Data packet to the consumer. NDN routers
transferring the Data packet cache the packet for future
redistribution [4].

The congestion control is one of the hot research topics in
NDN [5]. Although it has been a hot topic in TCP, the
mechanisms in TCP congestion control are limited to the
congestion window management at data senders [6] and the

simple explicit congestion notification at intermediate routers,
which is recently introduced [7]. In contrast, various
techniques can be introduced to the NDN congestion control.
The receiver-driven window-based congestion control
approach is similar to that in TCP. In this approach,
congestion is detected by timeout [8][9] or the congestion
notification [10], and the window for Interest packets are
managed heuristically, e.g., through an Additive Increase and
Multiplicative Decrease (AIMD) mechanism. In NDN, the
rate-based congestion control approach is also studied actively.
In this approach, a consumer and routers maintain a rate, in
which Interest packets are transmitted contiguously. The rate
is determined heuristically by use of congestion notification
[11]-[13] or by the explicit rate reporting [14]-[16].

In NDN, the Round-Trip Time (RTT) between an Interest
packet and the corresponding Data packet changes largely
because of the Data packet caching at routers. The window-
based congestion control approach needs to determine a
window size corresponding to the delay and bandwidth
product, but the delay changes in NDN. Therefore, it is
pointed that the window-based approach is not suited to NDN
and that the rate-based approach is more appropriate for NDN
congestion control.

From the viewpoint of implementation, however, the rate-
based congestion control approach has some problems. Since
the transmission speed in recent data links becomes high, such
as 1 Gbps, the fine-grained clock management is required in
the rate-based congestion control. For example, if the Data
packet size is 10,000 bits and the link speed is 1 Gbps, the
interval of Interest packet transmission is 10 micro seconds
(corresponding to 100 MHz) when Interest packets are
transmitted in a line speed. If the rate is 0.5 Gbps or 0.3 Gbps,
the Interest transmission interval will be 20 micro seconds (50
MHz) or 33.33 micro seconds (30 MHz), respectively. In
order to handle these cases, it is supposed that higher precision
clock with shorter tick, such as 1 micro second (1 GHz), will
be required to control the Interest packet sending timing.

On the other hand, the fine-grained clock management is
hard to implement in off-the-shelf computers. TCP
implementation uses 200 msec and 500 msec clocks for the
delayed acknowledgement and retransmission, respectively
[17]. So, it is considered that implementing rate-based
mechanism with micro second order clock is extremely hard.

We pointed out this issue and discussed how a coarse-
grained clock system influences the NDN rate-based
congestion control, in our previous paper [1]. We adopted the
Stateful Forwarding [11] as a target system of evaluation,

136

International Journal on Advances in Telecommunications, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/telecommunications/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

because it is implemented in ndnSIM [18], which is a widely
used network simulator of NDN. Moreover, we proposed a
method to send Interest packets more smoothly even in the
coarse-grained clock environment.

Although our previous paper gave some level of steady
discussions and proposals, it has some problems in terms of
the details of performance evaluation. The performance
evaluation in our previous paper used a simple network
configuration where one pair of consumer and producer
connected via two routers using 10 Mbps links. The coarse-
grained clock system used 50 msec through 200 msec tick
intervals. This means that our previous paper provides only a
trivial performance evaluation. In this paper, we revisit the
issue of the impact of system clock granularity on the
performance of NDN rate-based congestion control, with
practical evaluation conditions. We add some evaluations on
the maximum depth of token bucket used for rate control [19]
in the evaluation described in our previous paper. We also
provide some results of performance evaluation using a
dumbbell network configuration with 100 Mbps links. The
tick interval is 1 msec through 10 msec. Those evaluation
results also show that the coarse-grained system clock gives
some performance degradation of the rate-based congestion
control and the proposed smoothening method improves the
performance.

The rest of this paper is organized as follows. Section II
explains the related work on NDN congestion control and
discusses the system clock management. Section III describes
the simulator-based performance evaluation of the Stateful
Forwarding over a coarse-grained clock system. Section IV
gives our proposal of smooth Interest packet sending even if
the coarse-grained clock management is used. Section V
provides the performance evaluation results using a dumbbell
network configuration. In the end, Section VI concludes this
paper.

II. RELATED WORK

A. Related work on NDN congestion control

As described above, the congestion control methods in
NDN are categorized as the window-based and the rate-based
methods. The Interest Control Protocol (ICP) [8] and the
Content Centric TCP (CCTCP) [9] are examples of the
traditional TCP like window-based methods, where a
consumer sends Interest packets with the limitation of window
size, and the window size is changed according to the AIMD
mechanism triggered by Data packet reception and congestion
detected by timeout. The Chunk-switched Hop Pull Control
Protocol (CHoPCoP) [10] is another window-based method.
It introduces the explicit congestion notification with random
early marking instead of the timeout-based congestion
detection, and the Interest sending control is done at a
consumer with the window size changing according to the
AIMD mechanism. Although the window-based methods are
simple, the window size itself may not be optimum when
many Data packets are cached in different routers.

On the other hand, the rate-based methods are classified
into the non-deterministic scheme, which uses the AIMD
mechanism in determining the Interest sending rate, and the

explicit rate notification scheme, in which intermediate
routers report the optimum Interest rate to a consumer. The
Stateful Forwarding (SF) [11] is an example of the former
scheme. SF introduces a negative acknowledgment (NACK)
packet, which has a similar packet structure with Interest, as a
response to an Interest packet. NACK packets are generated
when a router detects congestion. A consumer and a router
manage the Interest sending rate locally by AIMD, and it
decreases the rate when a NACK packet is received. The
Stateful Forwarding with NACK suppressing [12] is a
modification of SF. It resolves a problem that SF suffers from
excessive rate reduction invoked by continuous NACK
packets generated within one congestion event. The Practical
Congestion Control (PCON) scheme [13] uses the CoDel
active queue management scheme [20], which watches out the
delay of packets in sending queues, to detecting congestion.
When congestion is detected, a router signals it to consumers
and downstream routers by explicitly marking Data packets.
In respond to this reporting, the alternative path forwarding or
the rate reducing is performed by downstream routers or
consumers, respectively.

In contrast with those non-deterministic methods, new
methods have emerged that enable routers to report a
maximum allowed Interest sending rate. In the Explicit
Congestion Notification (ECN) based Interest sending rate
control method proposed in [14], a consumer uses a minimum
rate among the reported rates from all intermediate routers. In
the Hop-By-Hop Interest Shaping (HoBHIS) [15], routers
decide the maximum allowed Interest sending rate
independently and accordingly shape Interest packet. The
maximum allowed rate is also reported to a consumer and this
allow a consumer to send Interest packets without invoking
congestion. The Multipath-aware ICN Rate-based
Congestion Control (MIRCC) [16] introduces a similar per-
link Interest shaper at every router and rate reporting to
consumer. It takes account of the case that a flow uses
multipath transfer. In those methods, the maximum allowed
rate is calculated from the parameters including link capacity
and utilization, queue size, inflated Interest rate, and average
RTT. They are able to control Interest transmission so as to
suppress congestion, and as a result they can provide higher
throughput compared with other rate-based methods.

B. Discussions on clock management

Although the rate-based congestion control methods are
capable to provide better performance than the window-based
method, they have implementation issues. In order to control
the timing to send Interest packets, timers need to be
implemented that expire when Interest packets are sent out. If
the link speed is high and there are a lot of content retrieval
flows, the timeout values of those timers become small and
the timeout timing will be random. In order to implement
those timers over off-the-shelf computers, the fine-grained
clock mechanism and multiple timers realized by timer
interrupt handler are required. However, they will introduce
large processing overhead and reduce processing throughput
drastically.

In order to avoid this problem, TCP protocol processing
uses very rough clock mechanism, as described above. The

137

International Journal on Advances in Telecommunications, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/telecommunications/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Asynchronous Transfer Mode (ATM) [21], a legacy scheme
standardized in the framework of broadband integrated
services digital network, uses rate-based control for sending
ATM cells. However, they do not use clock mechanism but
adopt a way that null cells are inserted between user data cells
in order to pace user data cell flows.

Yamamoto [22] tackled a similar issue for high speed TCP
data transfer. He pointed out that the TCP over Gigabit link
requires the rate control as well as the window control but the
clock-based rate control provides large processing overhead
for terminals. So, he introduced pause packets over Gigabit
Ethernet, corresponding to null cells in ATM, that are used
only between end nodes and switching hubs. This method can
be adopted only over the dedicated link and cannot be applied
to the shared media type link like high speed wireless LAN.

Kato and Bandai mentioned a similar issue on the
processing overhead of fine-grained clock management for
the rate-based congestion control, but they took a method that
exploits a hop-by-hop window control [23].

III. FUNDAMENTAL PERFORMANCE EVALUATION WITH

COARSE-GRAINED CLOCK

Based on the discussions in Section II.B, we evaluate how
the rate-based NDN congestion control works when the clock
granularity is coarse. We adopt SF [11] as a target rate-base
scheme because it is implemented by its proposer over
ndnSIM version 1.0 [18], which uses C++ as a programming
language. This section discusses the fundamental
performance evaluation when the clock management becomes
coarse-grained.

A. Software implementation

Currently, ndnSIM has several versions; 1.0, and 2.0
through 2.6. Although SF is proposed by the research group
who is maintaining ndnSIM, we believe that SF is
implemented only in ndnSIM 1.0. Moreover, there are some
bugs and problems in ndnSIM 1.0. For evaluating the
influence by coarse-grained clock system, we added the
followings to the current ndnSIM software.
 Support of AIMD like rate control

SF mentions the rate control using AIMD as one
possible candidate, but ndnSIM does not implement it. So,
we implemented it in the module managing Interest and

Data packets (the ForwardingStrategy class) in the
following way. The start value of Interest sending rate is
given manually. When a router receives a Data packet, it
increases the rate by one, under the limitation that it does
not exceed the link speed at the outgoing interface. When
receiving a NACK packet, it halves the current rate, under
the limitation that the minimum value of Interest sending
rate is 1 packet/s.

It should be noted that the intermediate routers do not
provide a shaping function that transmits Interest packets in
a fixed rate. Instead, it provides a policing function that
checks whether the Interest sending rate exceeds the limit
or not. In order to handle a variable sending rate, the
policing is performed by use of a token bucket as described
above.

 Use of constant bit rate (CBR) type consumer
ndnSIM 1.0 provides three types of consumers: rate-

based (the ConsumerCbr class), window-based (the

ConsumerWindow class) and batch-type (the

ConsumerBatches class). We decided to use the

ConsumerCbr class and added the AIMD like rate
control on it. This class uses a protected static variable

m_frequency as the Interest sending rate. We changed
the variable in the same way described above in the

OnData() and OnNack()methods, which are the
methods called when a Data packet and a NACK packet is
received, respectively.

 Emulation of coarse-grained clock system
In NDN, the rate control is implemented in the classes

Consumer and ConsumerCbr; the Consumer class is

the superclass of ConsumerCbr. The sending of Interest

packets with a specific rate is implemented in the

ScheduleNextPacket() method of the

ConsumerCbr class. In this method, the

SendPacket() method of the Consumer class is

invoked periodically, every 1.0/m_frequency seconds.

The SendPacket() method sends one Interest packet
actually.
We emulated a course-grained clock system in the

Consumer class in the following way (see Figure 1).
 A clock system with longer tick, such as 100 msec,

is implemented in the Consumer class. It calls itself

periodically with the Schedule() method of the

Simulator class.
 We also introduced a queue storing Interest packets

temporarily. This queue is implemented using the

list class.

 In the SendPacket() method, Interest packets are
stored in the queue, instead of being sent actually.

 When the longer clock tick is invoked, all the queued
Interest packets are transmitted actually.

 Specifying bucket maximum depth explicitly
In ndnSIM 1.0, a token bucket is implemented in the

LimitsRate class. We introduce a constant which
manages the maximum depth of the bucket.

time

1/m_frequency sec

queuing Interest packets

long term clock

sending queued
Interest packets

sending queued
Interest packets

Figure 1. Implementation scheme of coarse-grained clock system.

138

International Journal on Advances in Telecommunications, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/telecommunications/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Performace evaluation with simple network

As a fundamental performance evaluation, we conducted
the evaluation described in this section.

 (1) Experimental setting
The network configuration used in this evaluation is

shown in Figure 2, which is a linear configuration where one
consumer (C), two routers (R1 and R2), and one producer (P)
are connected via 10 Mbps link with 50 msec propagation
delay. The length of a Data packet is 1250 bytes, and the link
speed corresponds 1,000 packets/sec. As described above, a
consumer and routers maintain a token bucket for policing the
Interest packet flow. The arriving Interest packet is thrown
into the token bucket conceptually, and, if the depth of the
bucket becomes larger than the maximum value, a NACK
packet is replied for the Interest packet. In our experiment,
the maximum depth is set to 50 packets.

Under these conditions, we evaluated the cases that the
coarse-grained clock has 50 msec, 100 msec, and 200 msec
tick intervals. In all the evaluation runs, the consumer starts
from 200 packets/sec as the Interest sending rate. Each
evaluation run takes 10 sec.

Figure 3 shows the time variation of the sequence number
contained in the name of requested content. It corresponds to
the number of content request in a content retrieval flow. Each
value is plotted when the corresponding Interest packet is sent.
Figure 4 shows the time variation of the Interest sending rate
at the consumer. In this figure, each value is plotted when the
consumer receives a Data or NACK packet and it changes the
value of Interest sending rate.

The orange lines in Figures 3 and 4 show the results of the
original SF implementation. The sequence number is
increasing steadily. The Interest sending rate starts from 200
packets/sec and goes to 1,000 packets/sec, the maximum
value corresponding to the link speed. These results show that
the rate-based congestion control works well.

The gray line in Figures 3 and 4 show the results when the
coarse-grained clock system is used and the tick interval is 50
msec. The sequence number is also increasing steadily, but
there are several drops in the Interest sending rate. The rate
starts from 200 packets/sec and goes to 1,000 packets/sec, but
it drops to 500 packets/sec at 3.2 sec. This is triggered by a
NACK packet generated locally inside the consumer. That is,
the consumer also maintains the token bucket for policing the
Interest packet flow. When the Interest sending rate is 1,000
packets/sec and the tick interval is 50 msec, fifty Interest
packets are generated in one moment by the application, and
rush into the bucket. Since the maximum depth of the bucket
is 50 packets, all of them are stored in the bucket and leaked
in 1,000 packets/sec (actually they are transmitted to R1 in a
line speed). But in some timing, fifty Interest packets are

generated in the situation that there are some packets
remaining in the bucket. Then, a NACK packet is generated.

The yellow lines and the black lines in Figures 3 and 4
show the results when the tick interval is 100 msec and 200
msec, respectively. In these cases, the increase of the
sequence number is suppressed, and the Interest sending rate
is limited up to 600 and 300 packets/sec, respectively. This is
because the number of Interest packets transmitted back to
back is increasing. These results show that, when the tick
interval becomes large in the coarse-grained clock system, the
rate-based congestion control does not work correctly.

Table I gives a summary of the results. The Data packet
throughput is the total content size transferred during an
evaluation run divided by ten seconds. In the case of the fine-
grained clock (Original in the table), the throughput is 8.75
Mbps and there are no NACK packets transferred. In the case
of the coarse-grained clock with 50 msec tick, the Data packet
throughput decreases slightly, because the rate goes to 1,000
packets/sec and there are no contiguous NACK receiving.
However, the cases with 100 msec tick and 200 msec tick, the

TABLE I. SUMMARY OF RESULTS WITH COARSE-GRAINED

CLOCK.

Data packet
throughput (Mbps)

Number of NACK
packets

Original Tick = 50
msec

Tick = 100
msec

Tick = 200
msec

8.75 7.72 3.12 1.50

0 7 20 27

C R1 R2 P

speed:
10Mbps
delay:

50 msec

10Mbps

50 msec
10Mbps

50 msec

 Data packet: 1250 Bytes --- 10Mbps => 1000 packets/sec
 Max. depth of token bucket = 50 packets

Figure 2. Network configuration and conditions in fundamental evaluation.

Figure 3. Time variation of Interest sequence number.

Figure 4. Time variation of Interest sending rate.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2 4 6 8 10

se
q

u
en

ce
 n

u
m

b
er

time (sec)

Fine-grained clock

tick: 50 msec

tick: 100 msec

tick: 200 msec

0

200

400

600

800

1000

1200

0 2 4 6 8 10

In
te

re
st

 s
en

d
in

g
ra

te

(p
ac

ke
ts

/s
e

c)

time (sec)

Fine-grained clock Tick: 50 msec

Tick: 100 msec Tick: 200 msec

139

International Journal on Advances in Telecommunications, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/telecommunications/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

number of NACK packets increases and the Data packet
throughput decreases largely.

We also investigated how the token bucket depth changes.
Figure 5 shows the time variation of the token bucket depth at
the consumer. Figure 5 (a) is the result for the tick interval of
50 msec. In this case, the bucket depth increases up to 50
packets, which is the maximum depth, and then it keeps the
value for around 0.5 sec. In the case that the tick interval is
50 msec, fifty Interest packets are transmitted in a group when
the rate is 1,000 packets/s, the maximum value corresponding
to the line speed. This is the same as the maximum bucket
depth. Therefore, a group of Interest packets transmitted in
the line speed pile fifty tokens in the bucket, which are
released from the bucket just before the next group are

generated. This procedure is repeated for around 0.5 sec, and
in some timing, a token exceeds the maximum depth. This
generates a NACK packet and the Interest sending rate is
halved.

Figure 5 (b) shows the result for the tick interval of 100
msec. In this case, it is possible to send up to 100 Interest
packet in a group, but when the rate becomes 510 packet/s, the
Interest packet burst contains fifty one packets and the bucket
overflows. Since multiple NACK packets are generated, the
rate is reduced to 1 packet/s.

Figure 5 (c) shows the result for the tick interval of 200
msec. In this case, when the rate becomes 255 packets/s, the
generated Interest burst will make the bucket overflow.
Although the frequency of the bucket overflow is similar with
the case of 100 msec tick, the throughput will be lower since
the number of Interest packets sent is smaller than the case of
100 msec tick.

IV. PROPOSAL TO SMOOTHEN INTERST PACKET SENDING

A. Proposed method

In the SF mechanism with the coarse-grained clock system
described in Section III, we supposed that Interest packets are
transmitted only in response to ticks. As a result, Interest
packets were sent in a burst and this triggered the overflow in
the token bucket.

Here, we propose an Interest control method that utilizes
the Data and NACK packet receiving timing. When a
consumer receives a Data or a NACK packet, the receiving
processing is triggered by a hardware interrupt mechanism,
and it does not give large overhead to computers, different
from the software based timeout mechanism. So, the
receiving timing is a good chance to proceed the Interest
packet sending. So, we have added the following mechanism
in the coarse-grained clock system described in Section III.A.

 When a consumer receives a Data or a NACK packet,
it processes the received packet and then tries to send
the Interest packets stored in the Interest queue.

 This procedure is implemented in the OnData()

and OnNack() methods in the Consumer class.

B. Perforamce evaluation results in simple configuration

We have conducted the performance evaluation of the
proposed method in the same configuration and conditions as
the previous section. Figure 6 shows the time variation of the
Interest sending rate at the consumer implementing the
proposed method.

Different from the results given in Figure 4, all the cases
when the tick interval is 50 msec, 100 msec, and 200 msec
give the similar results with the fine-grained clock system.
That is, the Interest sending rate starts from 200 packets/sec,
goes to 1,000 packets/sec straightly, and keeps in this level.
This means that there are no NACK packets generated. These
results mean that the proposed method is effective for
smoothening the bursty Interest packet sending caused by the
coarse-grained clock system.

Table II shows a summary of the results. There are no
NACK packets in all the cases of three tick interval values.

(a) tick = 50 msec.

(b) tick = 100 msec.

(c) tick = 200 msec.

Figure 5. Time variation of token bucket depth in consumer.

0

10

20

30

40

50

60

0 2 4 6 8 10

b
u

ck
et

 d
e

p
th

 (
p

ac
ke

ts
)

time (sec)

0

10

20

30

40

50

60

0 2 4 6 8 10

b
u

ck
et

 d
e

p
th

 (
p

ac
ke

ts
)

time (sec)

0

10

20

30

40

50

60

0 2 4 6 8 10

b
u

ck
et

 d
e

p
th

 (
p

ac
ke

ts
)

time (sec)

140

International Journal on Advances in Telecommunications, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/telecommunications/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Data throughput are also similar for three cases, and the
value is close to that of the fine-grained clock based SF.

V. PERFORMANCE EVALUATION WITH REALISTIC

ENVIRONMENTS

The performance evaluation conditions described in
Sections III and IV are too simple because of linear network
configuration, relatively low link speed and relatively long
tick intervals. In this section, we provide the results of
performance evaluation in more practical conditions.

A. Evaluation conditions

Figure 7 shows the network configuration used by the
performance evaluation described in this section. It is a
dumbbell network. Ten consumers (C1 through C10) are
connected to router R1, which is connected to another router
R2. Ten producers (R1 through R10) are connected to router
R2. All the links have the link speed of 100 Mbps and the one
way transmission delay of 50 msec. The size of a Data packet
is 1,250 bytes, i.e. 1Kbit. The line speed corresponds to 10

Kpackets/sec in terms of Data packets. The detailed
evaluation conditions are as follows.

 One consumer is supposed to retrieve a dedicated
content from the corresponding producer, e.g., C1
from R1. This means that no Data packet caching is
used.

 In the evaluation, we changed the number of
consumer/producer pairs from 1 to 10. In the case of
the number of pairs is one, it is a linear network
configuration. In this case, the token bucket in the
consumer will overflow, as in the evaluation
described in Section III. When it is more than one,
the link between R1 and R2 becomes the bottleneck
link and the token bucket in router R1 will overflow.

 The initial value of Interest sending rate is set to the
maximum rate (10 Kpackets/sec) divided by the
number of consumer/producer pairs. For example,
when the number of pairs is two, the initial Interest
sending rate is 5 Kpackets/sec for two consumers.

 The sending of Interest packets will start at the same
time among the consumers. That is, the Interest
sending will be synchronized at least in the beginning
of the evaluation runs. This is a very heavy condition,
but, since the token buckets are prepared for
individual consumer/producer pairs, the overflow
will occur independently and at different timings for
different pairs. So, the impact of this condition
seems to be not large.

 The maximum value of token bucket depth is set to
50 packets, 100 packets, or 500 packets. Since the
congestion is invoked by the overflow at the token
bucket, we tested for different maximum values.

 The tick interval vales are selected from 1 msec, 5
msec, and 10 msec. We believe that these values are
reasonably small to be implemented in off-the-shelf
computers.

In the case of the evaluations in Sections III and IV, there
was only one Interest packet flow. So, we used the Interest
sending rate limit assigned for individual outgoing interface.

This is called PerOutFaceLimits implemented in the

LimitsRate class in ndnSIM 1.0. In the case of this
evaluation, however, the rate limit needs to be prepared for
individual Interest flow as well as for outgoing interface. This

is realized by PerFibLimits implemented in the same
class. It should be mentioned that there is a bug for

PerFibLimits in ndnSIM 1.0. In the method

NotifyNewAggregate() in the LimitsRate class,
which is called just after the instance is created, the

LeakBucket () method needs to be scheduled in order to
start the periodical token release. However, this is done only

for PerOutFaceLimits, and not for

PerOutFaceLimits. So, we modified this part of
program in ndnSIM 1.0.

B. Performance evaluation results of SF under coarse-

grained clock

We conducted performance evaluation of SF under the
conditions described above. The execution time of one

Figure 6. Time variation of Interest sending rate in proposed method.

TABLE II. SUMMARY OF RESULTS WITH PROPOSED METHOD.

Data packet
throughput (Mbps)

Number of NACK
packets

Tick = 50
msec

Tick = 100
msec

Tick = 200
msec

8.73 8.70 8.69

0 0 0

0

200

400

600

800

1000

1200

0 2 4 6 8 10

In
te

re
st

 s
e

n
d

in
g

ra
te

(p

ac
ke

ts
/s

e
c)

time (sec)

Tick: 50 msec

Tick: 100 msec

Tick: 200 msec

C1

R1 R2

P1speed:
100Mbps

delay:
50 msec 100Mbps

50 msec

100Mbps

50 msec

 Data packet: 1250 Bytes --- 100Mbps => 10 Kpackets/sec
 Max. depth of token bucket = 50 packets, 100 packets, 500 packets
 Tick interval = 1 msec, 5 msec, 10 msec

C10 P10

Figure 7. Network configuration and conditions in practical evaluation.

141

International Journal on Advances in Telecommunications, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/telecommunications/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

evaluation run is 10 sec similarly with the evaluation
described in Sections III and IV. Figure 8 shows the results
of Data packet throughput. The graph indicates the sum of
Data packet throughput of individual consumer/producer pairs.
So, the limit is 100 Mbps. The horizontal axis of the graph is
the number of consumer/producer pairs; 1, 2, 5, and 10. The
figure shows the three cases with different maximum values
of token bucket depth; 50 packets, 100 packets, and 500
packets. Figure 9 shows the total number of NACK packets
generated in individual consumer/producer pairs. We can
discuss the following from those results.

 Figure 8 shows that, when there are multiple Interest/
Data packet flows, the total Data packet throughput
decreases. This is because SF itself has some

performance problem in the case of multiple flows
[12]. In the dumbbell network, the Interest sending
rate of individual flow increases to the maximum
value corresponding to the line speed between a
consumer and the bottleneck router. This triggers
network congestion at the bottleneck router, and
generates a number of NACK packets. So, the Data
throughput degradation and the increase of NACK
packets in the case of multiple flows come from
factors other than the coarse-grained system clock.

 In the case of a single Interest/Data flow between one
pair of consumer/producer, the coarse-grained clock
degrades the Data throughput. When the maximum
bucket depth is 50 packets (Figure 8 (a)), the tick

 (a) max. bucket depth = 50 packets. (a) max. bucket depth = 50 packets.

 (b) max. bucket depth = 100 packets. (b) max. bucket depth = 100 packets.

 (c) max. bucket depth = 500 packets. (c) max. bucket depth = 500 packets.

 Figure 8. Data throughput under practical evaluation conditions. Figure 9. Number of NACK packets under practical evaluation conditions.

0

10

20

30

40

50

60

70

80

90

100

1 2 5 10

to
ta

l D
at

a
th

ro
u

gh
p

u
t

(M
b

p
s)

of consumer/producer pairs

fine 1msec 5msec 10msec

0

100

200

300

400

500

600

700

800

900

1000

1 2 5 10

to
la

l #
 o

f
N

ac
ks

 (
p

ac
ke

ts
)

of consumer/producer pairs

fine 1msec 5msec 10msec

0

10

20

30

40

50

60

70

80

90

100

1 2 5 10

to
ta

l D
at

a
th

rp
u

o
gh

p
u

t
(M

b
p

s)

of consumer/producer pairs

fine 1msec 5msec 10msec

0

200

400

600

800

1000

1200

1 2 5 10

to
ta

l #
 o

f
N

ac
ks

 (
p

ac
ke

ts
)

of consumer/producer pairs

fine 1msec 5msec 10msec

0

10

20

30

40

50

60

70

80

90

100

1 2 5 10

to
ta

l D
at

a
th

ro
u

gh
p

u
t

(M
b

p
s)

of consumer/producer pairs

fine 1msec 5msec 10msec

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 5 10

to
ta

l #
 o

f
N

ac
ks

 (
p

ac
ke

ts
)

of consumer/producer pairs

fine 1msec 5msec 10msec

142

International Journal on Advances in Telecommunications, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/telecommunications/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

interval of 5 msec degrades the throughput slightly,
and the tick interval 10 msec induces a heavy
throughput degradation. When the maximum bucket
depth is 100 packets, a slight throughput degradation
is observed for the tick interval of 10 msec. There
are no throughput degradations for a single flow
when the maximum bucket depth is 500 packets.

 When there are multiple Interest/Data flows, the
affects by the coarse-grained clock is clearly given in
the case that the maximum bucket depth is 50 packets
(Figure 8 (a)). According to the tick interval’s
increasing, the total Data packet throughput is
decreasing. In the case that the maximum bucket
depth is 100 packets or 500 packets (Figure 8 (b) or
8 (c)), the Data throughput of SF with fine-grained
clock is higher than that under coarse-grained clock,
except the case of tick interval = 10 msec and
maximum bucket depth = 100 packets.

 As for the fairness among multiple Interest/Data
flows, Figure 10 shows the Data packet throughput
of individual flows in the case of tick interval = 1
msec and maximum bucket depth = 50 packets. For
individual cases of consumer/producer pairs, the
Data throughput of individual flow is similar with
each other.

C. Performance evaluation results of SF with smoothening

Inerest packet sending under coarse-grained clock

Figure 11 shows the evaluation results when the proposed
smoothening Interest sending rate method is used under the
coarse-grained clock. In this case, the results are different for
the case of single Interest/Data flow and for the case of
multiple flows.

When there is only a single flow, the total Data packet
throughput is improved by the proposed method. For example,
in the case of tick interval = 5 msec and maximum bucket
depth = 50 packets, the total Data throughput increased to 91
Mbps from 74 Mbps. In the case of tick interval = 10 msec
and maximum bucket depth = 50 packets, the throughput
becomes 30 Mbps, which was 16 Mbps without the
smoothening method. In the case of tick interval = 10 msec
and maximum bucket depth = 100 packets, the throughput
increased to 91 Mbps from 75 Mbps. That is, it can be

concluded that in the single Interest/Data flow case, the
proposed smoothening method is effective to increase Data
throughput when a coarse-grained clock is adopted.

However, when there are multiple Interest/Data flows, the
proposed method does not improve the total Data packet
throughput. The throughput in Figure 11 is similar with the
corresponding results in Figure 8. The reason for this result
will be that SF has other performance problems, such as the
excessive rate reduction by continuously transmitted NACK
packets [12], and they cancel the effects of the Interest sending
smoothening.

Figure 10. Individual Data packet throughput at tick interval = 1 msec and

max. bucket depth = 50 packets.

0

10

20

30

40

50

60

70

80

90

100

1 2 5 10

in
d

iv
id

u
al

 D
at

a
th

ro
u

gh
p

u
t

(M
b

p
s)

of consumer/producer pairs

(a) max. bucket depth = 50 packets.

(b) max. bucket depth = 100 packets.

(c) max. bucket depth = 500 packets.

Figure 11. Data throughput with Interest sending smoothening.

0

10

20

30

40

50

60

70

80

90

100

1 2 5 10

to
ta

l D
at

a
th

ro
u

gh
p

u
t

(M
b

p
s)

of consumer/producer pairs

1msec 5msec 10msec

0

10

20

30

40

50

60

70

80

90

100

1 2 5 10

to
ta

l D
at

a
th

ro
u

gh
p

u
t

(M
b

p
s)

of consumer/producer pairs

1msec 5msec 10msec

0

10

20

30

40

50

60

70

80

90

100

1 2 5 10

to
ta

l D
at

a
th

ro
u

gh
p

u
t

(M
b

p
s)

of consumer/producer pairs

1msec 5msec 10msec

143

International Journal on Advances in Telecommunications, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/telecommunications/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. CONCLUSIONS

This paper revisited an issue on how the coarse-grained
clock system influences the NDN rate-based congestion
control, which was pointed out in our previous paper [1].
Currently, the rate-based congestion control is considered to
be effective in NDN. However, the rate-based control over
high speed links requires highly precious clock management
and this gives a serious processing overhead to off-the-shelf
computers. So, we think that commodity based consumers
need to use a coarse-grained clock system.

In the fundamental performance evaluation using Stateful
Forwarding as a target system, we showed the following.
Even if the network does not cause any congestion, the tick
intervals such as 50 msec, 100 msec, and 200 msec generate
some NACK packets. Especially, in the cases of 100 msec
and 200 msec ticks, the Data throughput decreases largely.
These results mean the NDN rate-based congestion control
has some problems when it is used with a coarse-grained clock
system.

This paper also proposed a scheme to smoothen Interest
sending, which allows a queued Interest packets for sending
to be transmitted when any Data or NACK packets are
received. As the result of fundamental simulation evaluation,
the proposed method did not generate any NACK packets
even if 50 msec, 100 msec, and 200 msec are used as tick
intervals.

This paper also showed the evaluation results using more
practical network configuration, with higher link speed,
multiple Interest/Data flows, and shorter tick intervals such as
1msec through 10 msec. In this evaluation, the results were a
little different in a single flow case and a multiple flow case.
When there is only one Interest/Data flow, the coarse-grained
clock induced the Data packet throughput, even the tick
interval is 1 msec. The proposed smoothening method also
recovered the Data throughput, as in the fundamental
evaluation.

However, when there are multiple Interest/Data flows, the
situation changed. In this case, the link between intermediate
routers in a dumbbell network becomes the bottleneck.
Stateful Forwarding itself degrades the Data throughput in this
case. Although the coarse-grained clock degrade the
throughput in some conditions, the issue of Stateful
Forwarding has a larger impact. The proposed smoothening
method did not increase the throughput, either.

Recently, several rate control methods with explicit rate
reporting are proposed. They will resolve the non-
deterministic rate selection which Stateful Forwarding relies
on. It is considered that we need to apply our methodology to
those new types of rate-based congestion control methods in
the future.

REFERENCES

[1] T. Kato, K. Osada, R. Yamamoto, and S. Ohzahata, “A Study
on How Coarse-grained Clock System Influences NDN Rate-
based Congestion Control,” Proc. of IARIA ICN 2018, pp. 35-
40, Apr. 2018.

[2] Cisco public, “Cisco Visual Networking Index: Forecast and
Methodology, 2016-2021,” Jun. 2017 [retrieved: Sep. 2018].

[3] V. Jacobson et al., “Networking Named Content,” Proc. of
CoNEXT ’09, pp. 1-12, Dec. 2009.

[4] N. Minh, R. Yamamoto, S. Ohzahata, and T. Kato, “A Routing
Protocol Proposal for NDN Based Ad Hoc Networks
Combining Proactive and Reactive Routing Mechanism,” Proc.
of IARIA AICT 2017, pp. 80-86, Jun. 2017.

[5] Y. Ren, J. Li, S. Shi, L. Li, G. Wang, and B. Zhang,
“Congestion control in named data networking - A survey,”
Computer Communications, vol. 86, pp. 1-11, Jul. 2016.

[6] A. Afanasyev, et al., “Host-to-Host Congestion Control for
TCP,” IEEE Commun. Surveys & Tutorials, vol. 12, no. 3, pp.
304-342, 2010.

[7] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of
Explicit Congestion Notification (ECN) to IP,” IETF RFC
3168, Sep. 2001.

[8] G. Carofiglio, M. Gallo, and L. Muscariello, “ICP: Design and
Evaluation of an Interest Control Protocol for Content-Centric
Networking,” Proc. of IEEE INFOCOM 2012, pp. 304-309,
Mar. 2012.

[9] L. Saino, C. Cocora, and G. Pavlou, “CCTCP: A Scalable
Receiver-driven Congestion Control Protocol for Content
Centric Networking,” Proc. of IEEE ICC 2013, pp. 3775-3780,
Jun. 2013.

[10] F. Zhang, Y. Zhang, A. Reznik, H. Liu, C. Qian, and C. Xu, “A
Transport Protocol for Content-Centric Networking with
Explicit Congestion Control,” Proc. of IEEE ICCCN 2014, pp.
1-8, Aug. 2014.

[11] Y. Cheng, A. Afanasyev, I. Moiseenko, B. Zhang, L. Wang,
and L. Zhang, “A case for stateful forwarding plane,”
Computer Communications, vol. 36, no. 7, pp. 779-791, Apr.
2013.

[12] T. Kato and M. Bandai, “Congestion Control Avoiding
Excessive Rate Reduction in Named Data Network,” Proc. of
IEEE CCNC, pp. 1-6, Jan. 2017.

[13] K. Schneider, C. Yi, B. Zhang, and L. Zhang, “A Practical
Congestion Control Scheme for Named Data Networking,”
Proc. of ACM ICN 2016, pp. 21-30, Sep. 2016.

[14] J. Zhang, Q. Wu, Z. Li, M. A. Kaafar, and G. Xie, “A Proactive
Transport Mechanism with Explicit Congestion Notification
for NDN,” Proc. of IEEE ICC 2015, pp. 5242-5247, Jun. 2015.

[15] N. Rozhnova and S. Fdida, “An extended Hop-by-Hop Interest
shaping mechanism for Content-Centric Networking,” Proc. of
IEEE GLOBECOM 2014, pp. 1-7, Dec. 2014.

[16] M. Mahdian, S. Arianfar, J. Gibson, and D. Oran, “Multipath-
aware ICN Rate-based Congestion Control,” Proc. of ACM
ICN 2016, pp. 1-10, Sep. 2016.

[17] K. Fall and W. Stevens, “TCP/IP Illustrated, Volume1; The
Protocols, Second Edition,” Addison-Wesley,

[18] A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM: NDN
simulator for NS-3,” NDN, Technical Report NDN-0005,
2012, Oct. 2012.

[19] “Overall ndnSIM documentation; Forwarding Strategies,”
http://ndnsim.net/1.0/fw.html [retrieved: Sep. 2018].

[20] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM
Magazine Queue, vol. 10, issue 5, pp. 1-15, May 2012.

[21] ITU-T, “B-ISDN asynchronous transfer mode functional
characteristics,” Series I: Integrated Services Digital Nework,
Recommendation I.150, Feb. 1999.

[22] Y. Yamamoto, “Estimation of the advanced TCP/IP algorithms
for long sistance collaboration,” Fusion Engineering and
Design, vol. 83, issue 2-3, pp. 516-519, Apr. 2008.

[23] T. Kato and M. Bandai, “A Congestion Control Method for
NDN Using Hop-by-hop Window Management,” Proc. of
IEEE CCNC 2018, pp. 1-6, Jan. 2018.

