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Abstract—Named Data Networking (NDN) is a widely adopted 

future Internet architecture that focuses on large scale content 

retrieval.  The congestion control is one of the hot research 

topics in NDN, and the rate-based congestion control method is 

considered to be well suited.  From the viewpoint of 

implementation, however, the rate-based method has an issue 

that it requires the fine-grained clock management, which is 

hard to implement in off-the-shelf computers.  We focused this 

issue in our previous paper, and evaluated the performance in 

the case that consumers use a coarse-grained clock system.  In 

this evaluation, we used the Stateful Forwarding as a target, 

which is a rate-based method proposed by the group proposing 

NDN.  The simulation results showed that a coarse-grained 

clock system increases congestion.  We also proposed a smooth 

Interest sending scheme under a coarse-grained clock system, 

which relieves congestion.  However, our previous paper 

discussed only results with limited evaluation conditions, such 

as one consumer/producer pair configuration and a relatively 

low link speed.  In this paper, we revisit the impact of system 

clock granularity of the performance of NDN rate based 

congestion control with practical evaluation conditions and with 

detailed analysis.   

Keywords- NDN; Congestion Control; Rate Control; Clock 

Management. 

I. INTRODUCTION 

This paper is an extension of our previous paper [1], which 
is presented in an IARIA conference.   

Resulting from a drastic increase in Internet traffic forecast 
[2], there are many studies on the future Internet architecture 
called Information Centric Network (ICN), which is well 
suited for large scale content retrieval.  Named Data 
Networking (NDN) [3] is a widely adopted platform for the 
ICN researches.  The fundamental concept adopted in NDN is 
the name of required content, not the address of hosts 
containing the content.  NDN uses two types of packets in all 
communications: an Interest packet and a Data packet.  A user 
called a consumer that requests a specific content sends an 
Interest packet containing the content name.  A server called 
a producer that provides the corresponding content data 
returns a Data packet to the consumer.  NDN routers 
transferring the Data packet cache the packet for future 
redistribution [4].   

The congestion control is one of the hot research topics in 
NDN [5].  Although it has been a hot topic in TCP, the 
mechanisms in TCP congestion control are limited to the 
congestion window management at data senders [6] and the 

simple explicit congestion notification at intermediate routers, 
which is recently introduced [7].  In contrast, various 
techniques can be introduced to the NDN congestion control.  
The receiver-driven window-based congestion control 
approach is similar to that in TCP.  In this approach, 
congestion is detected by timeout [8][9] or the congestion 
notification [10], and the window for Interest packets are 
managed heuristically, e.g., through an Additive Increase and 
Multiplicative Decrease (AIMD) mechanism.  In NDN, the 
rate-based congestion control approach is also studied actively.  
In this approach, a consumer and routers maintain a rate, in 
which Interest packets are transmitted contiguously.  The rate 
is determined heuristically by use of congestion notification 
[11]-[13] or by the explicit rate reporting [14]-[16].   

In NDN, the Round-Trip Time (RTT) between an Interest 
packet and the corresponding Data packet changes largely 
because of the Data packet caching at routers.  The window-
based congestion control approach needs to determine a 
window size corresponding to the delay and bandwidth 
product, but the delay changes in NDN.  Therefore, it is 
pointed that the window-based approach is not suited to NDN 
and that the rate-based approach is more appropriate for NDN 
congestion control.   

From the viewpoint of implementation, however, the rate-
based congestion control approach has some problems.  Since 
the transmission speed in recent data links becomes high, such 
as 1 Gbps, the fine-grained clock management is required in 
the rate-based congestion control.  For example, if the Data 
packet size is 10,000 bits and the link speed is 1 Gbps, the 
interval of Interest packet transmission is 10 micro seconds 
(corresponding to 100 MHz) when Interest packets are 
transmitted in a line speed.  If the rate is 0.5 Gbps or 0.3 Gbps, 
the Interest transmission interval will be 20 micro seconds (50 
MHz) or 33.33 micro seconds (30 MHz), respectively.  In 
order to handle these cases, it is supposed that higher precision 
clock with shorter tick, such as 1 micro second (1 GHz), will 
be required to control the Interest packet sending timing.   

On the other hand, the fine-grained clock management is 
hard to implement in off-the-shelf computers.  TCP 
implementation uses 200 msec and 500 msec clocks for the 
delayed acknowledgement and retransmission, respectively 
[17].  So, it is considered that implementing rate-based 
mechanism with micro second order clock is extremely hard.   

We pointed out this issue and discussed how a coarse-
grained clock system influences the NDN rate-based 
congestion control, in our previous paper [1].  We adopted the 
Stateful Forwarding [11] as a target system of evaluation, 



136

International Journal on Advances in Telecommunications, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/telecommunications/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

because it is implemented in ndnSIM [18], which is a widely 
used network simulator of NDN.  Moreover, we proposed a 
method to send Interest packets more smoothly even in the 
coarse-grained clock environment.   

Although our previous paper gave some level of steady 
discussions and proposals, it has some problems in terms of 
the details of performance evaluation.  The performance 
evaluation in our previous paper used a simple network 
configuration where one pair of consumer and producer 
connected via two routers using 10 Mbps links.  The coarse-
grained clock system used 50 msec through 200 msec tick 
intervals.  This means that our previous paper provides only a 
trivial performance evaluation.  In this paper, we revisit the 
issue of the impact of system clock granularity on the 
performance of NDN rate-based congestion control, with 
practical evaluation conditions.  We add some evaluations on 
the maximum depth of token bucket used for rate control [19] 
in the evaluation described in our previous paper.  We also 
provide some results of performance evaluation using a 
dumbbell network configuration with 100 Mbps links.  The 
tick interval is 1 msec through 10 msec.  Those evaluation 
results also show that the coarse-grained system clock gives 
some performance degradation of the rate-based congestion 
control and the proposed smoothening method improves the 
performance.   

The rest of this paper is organized as follows.  Section II 
explains the related work on NDN congestion control and 
discusses the system clock management.  Section III describes 
the simulator-based performance evaluation of the Stateful 
Forwarding over a coarse-grained clock system.  Section IV 
gives our proposal of smooth Interest packet sending even if 
the coarse-grained clock management is used.  Section V 
provides the performance evaluation results using a dumbbell 
network configuration.  In the end, Section VI concludes this 
paper.   

II. RELATED WORK 

A. Related work on NDN congestion control 

As described above, the congestion control methods in 
NDN are categorized as the window-based and the rate-based 
methods.  The Interest Control Protocol (ICP) [8] and the 
Content Centric TCP (CCTCP) [9] are examples of the 
traditional TCP like window-based methods, where a 
consumer sends Interest packets with the limitation of window 
size, and the window size is changed according to the AIMD 
mechanism triggered by Data packet reception and congestion 
detected by timeout.  The Chunk-switched Hop Pull Control 
Protocol (CHoPCoP) [10] is another window-based method.  
It introduces the explicit congestion notification with random 
early marking instead of the timeout-based congestion 
detection, and the Interest sending control is done at a 
consumer with the window size changing according to the 
AIMD mechanism.  Although the window-based methods are 
simple, the window size itself may not be optimum when 
many Data packets are cached in different routers.   

On the other hand, the rate-based methods are classified 
into the non-deterministic scheme, which uses the AIMD 
mechanism in determining the Interest sending rate, and the 

explicit rate notification scheme, in which intermediate 
routers report the optimum Interest rate to a consumer.  The 
Stateful Forwarding (SF) [11] is an example of the former 
scheme.  SF introduces a negative acknowledgment (NACK) 
packet, which has a similar packet structure with Interest, as a 
response to an Interest packet.  NACK packets are generated 
when a router detects congestion.  A consumer and a router 
manage the Interest sending rate locally by AIMD, and it 
decreases the rate when a NACK packet is received.  The 
Stateful Forwarding with NACK suppressing [12] is a 
modification of SF.  It resolves a problem that SF suffers from 
excessive rate reduction invoked by continuous NACK 
packets generated within one congestion event.  The Practical 
Congestion Control (PCON) scheme [13] uses the CoDel 
active queue management scheme [20], which watches out the 
delay of packets in sending queues, to detecting congestion.  
When congestion is detected, a router signals it to consumers 
and downstream routers by explicitly marking Data packets.  
In respond to this reporting, the alternative path forwarding or 
the rate reducing is performed by downstream routers or 
consumers, respectively.   

In contrast with those non-deterministic methods, new 
methods have emerged that enable routers to report a 
maximum allowed Interest sending rate.   In the Explicit 
Congestion Notification (ECN) based Interest sending rate 
control method proposed in [14], a consumer uses a minimum 
rate among the reported rates from all intermediate routers.  In 
the Hop-By-Hop Interest Shaping (HoBHIS) [15], routers 
decide the maximum allowed Interest sending rate 
independently and accordingly shape Interest packet.  The 
maximum allowed rate is also reported to a consumer and this 
allow a consumer to send Interest packets without invoking 
congestion.  The Multipath-aware ICN Rate-based 
Congestion Control (MIRCC) [16] introduces a similar per-
link Interest shaper at every router and rate reporting to 
consumer.  It takes account of the case that a flow uses 
multipath transfer.  In those methods, the maximum allowed 
rate is calculated from the parameters including link capacity 
and utilization, queue size, inflated Interest rate, and average 
RTT.  They are able to control Interest transmission so as to 
suppress congestion, and as a result they can provide higher 
throughput compared with other rate-based methods.   

B. Discussions on clock management 

Although the rate-based congestion control methods are 
capable to provide better performance than the window-based 
method, they have implementation issues.  In order to control 
the timing to send Interest packets, timers need to be 
implemented that expire when Interest packets are sent out.  If 
the link speed is high and there are a lot of content retrieval 
flows, the timeout values of those timers become small and 
the timeout timing will be random.  In order to implement 
those timers over off-the-shelf computers, the fine-grained 
clock mechanism and multiple timers realized by timer 
interrupt handler are required.  However, they will introduce 
large processing overhead and reduce processing throughput 
drastically.   

In order to avoid this problem, TCP protocol processing 
uses very rough clock mechanism, as described above.  The 
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Asynchronous Transfer Mode (ATM) [21], a legacy scheme 
standardized in the framework of broadband integrated 
services digital network, uses rate-based control for sending 
ATM cells.  However, they do not use clock mechanism but 
adopt a way that null cells are inserted between user data cells 
in order to pace user data cell flows.   

Yamamoto [22] tackled a similar issue for high speed TCP 
data transfer.  He pointed out that the TCP over Gigabit link 
requires the rate control as well as the window control but the 
clock-based rate control provides large processing overhead 
for terminals.  So, he introduced pause packets over Gigabit 
Ethernet, corresponding to null cells in ATM, that are used 
only between end nodes and switching hubs.  This method can 
be adopted only over the dedicated link and cannot be applied 
to the shared media type link like high speed wireless LAN.    

Kato and Bandai mentioned a similar issue on the 
processing overhead of fine-grained clock management for 
the rate-based congestion control, but they took a method that 
exploits a hop-by-hop window control [23].   

III. FUNDAMENTAL PERFORMANCE EVALUATION WITH 

COARSE-GRAINED CLOCK 

Based on the discussions in Section II.B, we evaluate how 
the rate-based NDN congestion control works when the clock 
granularity is coarse.  We adopt SF [11] as a target rate-base 
scheme because it is implemented by its proposer over 
ndnSIM version 1.0 [18], which uses C++ as a programming 
language.  This section discusses the fundamental 
performance evaluation when the clock management becomes 
coarse-grained.   

A. Software implementation 

Currently, ndnSIM has several versions; 1.0, and 2.0 
through 2.6.  Although SF is proposed by the research group 
who is maintaining ndnSIM, we believe that SF is 
implemented only in ndnSIM 1.0.  Moreover, there are some 
bugs and problems in ndnSIM 1.0.  For evaluating the 
influence by coarse-grained clock system, we added the 
followings to the current ndnSIM software.   
 Support of AIMD like rate control 

SF mentions the rate control using AIMD as one 
possible candidate, but ndnSIM does not implement it.  So, 
we implemented it in the module managing Interest and 

Data packets (the ForwardingStrategy class) in the 
following way.  The start value of Interest sending rate is 
given manually.  When a router receives a Data packet, it 
increases the rate by one, under the limitation that it does 
not exceed the link speed at the outgoing interface.  When 
receiving a NACK packet, it halves the current rate, under 
the limitation that the minimum value of Interest sending 
rate is 1 packet/s.   

It should be noted that the intermediate routers do not 
provide a shaping function that transmits Interest packets in 
a fixed rate.  Instead, it provides a policing function that 
checks whether the Interest sending rate exceeds the limit 
or not.  In order to handle a variable sending rate, the 
policing is performed by use of a token bucket as described 
above.   

 

 Use of constant bit rate (CBR) type consumer 
ndnSIM 1.0 provides three types of consumers: rate-

based (the ConsumerCbr class), window-based (the 

ConsumerWindow class) and batch-type (the 

ConsumerBatches class).  We decided to use the 

ConsumerCbr class and added the AIMD like rate 
control on it.  This class uses a protected static variable 

m_frequency as the Interest sending rate.  We changed 
the variable in the same way described above in the 

OnData() and OnNack()methods, which are the 
methods called when a Data packet and a NACK packet is 
received, respectively.   

 Emulation of coarse-grained clock system 
In NDN, the rate control is implemented in the classes 

Consumer and ConsumerCbr; the Consumer class is 

the superclass of ConsumerCbr.  The sending of Interest 

packets with a specific rate is implemented in the 

ScheduleNextPacket() method of the 

ConsumerCbr class.  In this method, the 

SendPacket() method of the Consumer class is 

invoked periodically, every 1.0/m_frequency seconds.  

The SendPacket() method sends one Interest packet 
actually.   
We emulated a course-grained clock system in the 

Consumer class in the following way (see Figure 1).   
 A clock system with longer tick, such as 100 msec, 

is implemented in the Consumer class.  It calls itself 

periodically with the Schedule() method of the 

Simulator class.   
 We also introduced a queue storing Interest packets 

temporarily.  This queue is implemented using the 

list class.   

 In the SendPacket() method, Interest packets are 
stored in the queue, instead of being sent actually.   

 When the longer clock tick is invoked, all the queued 
Interest packets are transmitted actually.   

 Specifying bucket maximum depth explicitly 
In ndnSIM 1.0, a token bucket is implemented in the 

LimitsRate class.  We introduce a constant which 
manages the maximum depth of the bucket.   

time

1/m_frequency sec

queuing Interest packets

long term clock

sending queued 
Interest packets

sending queued 
Interest packets  

Figure 1.  Implementation scheme of coarse-grained clock system.  
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B. Performace evaluation with simple network 

As a fundamental performance evaluation, we conducted 
the evaluation described in this section.   

 (1) Experimental setting 
The network configuration used in this evaluation is 

shown in Figure 2, which is a linear configuration where one 
consumer (C), two routers (R1 and R2), and one producer (P) 
are connected via 10 Mbps link with 50 msec propagation 
delay.  The length of a Data packet is 1250 bytes, and the link 
speed corresponds 1,000 packets/sec.  As described above, a 
consumer and routers maintain a token bucket for policing the 
Interest packet flow.  The arriving Interest packet is thrown 
into the token bucket conceptually, and, if the depth of the 
bucket becomes larger than the maximum value, a NACK 
packet is replied for the Interest packet.  In our experiment, 
the maximum depth is set to 50 packets.   

Under these conditions, we evaluated the cases that the 
coarse-grained clock has 50 msec, 100 msec, and 200 msec 
tick intervals.  In all the evaluation runs, the consumer starts 
from 200 packets/sec as the Interest sending rate.  Each 
evaluation run takes 10 sec.   

Figure 3 shows the time variation of the sequence number 
contained in the name of requested content.  It corresponds to 
the number of content request in a content retrieval flow.  Each 
value is plotted when the corresponding Interest packet is sent.  
Figure 4 shows the time variation of the Interest sending rate 
at the consumer.  In this figure, each value is plotted when the 
consumer receives a Data or NACK packet and it changes the 
value of Interest sending rate.   

The orange lines in Figures 3 and 4 show the results of the 
original SF implementation.  The sequence number is 
increasing steadily.  The Interest sending rate starts from 200 
packets/sec and goes to 1,000 packets/sec, the maximum 
value corresponding to the link speed.  These results show that 
the rate-based congestion control works well.   

The gray line in Figures 3 and 4 show the results when the 
coarse-grained clock system is used and the tick interval is 50 
msec.  The sequence number is also increasing steadily, but 
there are several drops in the Interest sending rate.  The rate 
starts from 200 packets/sec and goes to 1,000 packets/sec, but 
it drops to 500 packets/sec at 3.2 sec.   This is triggered by a 
NACK packet generated locally inside the consumer.  That is, 
the consumer also maintains the token bucket for policing the 
Interest packet flow.  When the Interest sending rate is 1,000 
packets/sec and the tick interval is 50 msec, fifty Interest 
packets are generated in one moment by the application, and 
rush into the bucket.  Since the maximum depth of the bucket 
is 50 packets, all of them are stored in the bucket and leaked 
in 1,000 packets/sec (actually they are transmitted to R1 in a 
line speed).  But in some timing, fifty Interest packets are 

generated in the situation that there are some packets 
remaining in the bucket.  Then, a NACK packet is generated.   

The yellow lines and the black lines in Figures 3 and 4 
show the results when the tick interval is 100 msec and 200 
msec, respectively.  In these cases, the increase of the 
sequence number is suppressed, and the Interest sending rate 
is limited up to 600 and 300 packets/sec, respectively.  This is 
because the number of Interest packets transmitted back to 
back is increasing.  These results show that, when the tick 
interval becomes large in the coarse-grained clock system, the 
rate-based congestion control does not work correctly.   

Table I gives a summary of the results.  The Data packet 
throughput is the total content size transferred during an 
evaluation run divided by ten seconds.  In the case of the fine-
grained clock (Original in the table), the throughput is 8.75 
Mbps and there are no NACK packets transferred.  In the case 
of the coarse-grained clock with 50 msec tick, the Data packet 
throughput decreases slightly, because the rate goes to 1,000 
packets/sec and there are no contiguous NACK receiving.  
However, the cases with 100 msec tick and 200 msec tick, the 

TABLE I.  SUMMARY OF RESULTS WITH COARSE-GRAINED 

CLOCK. 

Data packet 
throughput (Mbps)

Number of NACK 
packets

Original Tick = 50 
msec

Tick = 100 
msec

Tick = 200 
msec

8.75 7.72 3.12 1.50

0 7 20 27
 

C R1 R2 P

speed: 
10Mbps
delay:

50 msec

10Mbps

50 msec
10Mbps

50 msec

 Data packet: 1250 Bytes --- 10Mbps => 1000 packets/sec
 Max. depth of token bucket = 50 packets  

Figure 2.  Network configuration and conditions in fundamental evaluation.  

 
Figure 3.  Time variation of Interest sequence number. 

 
Figure 4.  Time variation of Interest sending rate. 
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number of NACK packets increases and the Data packet 
throughput decreases largely.   

We also investigated how the token bucket depth changes.  
Figure 5 shows the time variation of the token bucket depth at 
the consumer.  Figure 5 (a) is the result for the tick interval of 
50 msec.  In this case, the bucket depth increases up to 50 
packets, which is the maximum depth, and then it keeps the 
value for around 0.5 sec.  In the case that the tick interval is 
50 msec, fifty Interest packets are transmitted in a group when 
the rate is 1,000 packets/s, the maximum value corresponding 
to the line speed.  This is the same as the maximum bucket 
depth.  Therefore, a group of Interest packets transmitted in 
the line speed pile fifty tokens in the bucket, which are 
released from the bucket just before the next group are 

generated.  This procedure is repeated for around 0.5 sec, and 
in some timing, a token exceeds the maximum depth.  This 
generates a NACK packet and the Interest sending rate is 
halved.   

Figure 5 (b) shows the result for the tick interval of 100 
msec.  In this case, it is possible to send up to 100 Interest 
packet in a group, but when the rate becomes 510 packet/s, the 
Interest packet burst contains fifty one packets and the bucket 
overflows.  Since multiple NACK packets are generated, the 
rate is reduced to 1 packet/s.   

Figure 5 (c) shows the result for the tick interval of 200 
msec.  In this case, when the rate becomes 255 packets/s, the 
generated Interest burst will make the bucket overflow.  
Although the frequency of the bucket overflow is similar with 
the case of 100 msec tick, the throughput will be lower since 
the number of Interest packets sent is smaller than the case of 
100 msec tick.   

IV. PROPOSAL TO SMOOTHEN INTERST PACKET SENDING 

A. Proposed method 

In the SF mechanism with the coarse-grained clock system 
described in Section III, we supposed that Interest packets are 
transmitted only in response to ticks.  As a result, Interest 
packets were sent in a burst and this triggered the overflow in 
the token bucket.   

Here, we propose an Interest control method that utilizes 
the Data and NACK packet receiving timing.  When a 
consumer receives a Data or a NACK packet, the receiving 
processing is triggered by a hardware interrupt mechanism, 
and it does not give large overhead to computers, different 
from the software based timeout mechanism.  So, the 
receiving timing is a good chance to proceed the Interest 
packet sending.  So, we have added the following mechanism 
in the coarse-grained clock system described in Section III.A.   

 When a consumer receives a Data or a NACK packet, 
it processes the received packet and then tries to send 
the Interest packets stored in the Interest queue.   

 This procedure is implemented in the OnData() 

and OnNack() methods in the Consumer class.   

B. Perforamce evaluation results in simple configuration 

We have conducted the performance evaluation of the 
proposed method in the same configuration and conditions as 
the previous section.  Figure 6 shows the time variation of the 
Interest sending rate at the consumer implementing the 
proposed method.   

Different from the results given in Figure 4, all the cases 
when the tick interval is 50 msec, 100 msec, and 200 msec 
give the similar results with the fine-grained clock system.  
That is, the Interest sending rate starts from 200 packets/sec, 
goes to 1,000 packets/sec straightly, and keeps in this level.  
This means that there are no NACK packets generated.  These 
results mean that the proposed method is effective for 
smoothening the bursty Interest packet sending caused by the 
coarse-grained clock system.   

Table II shows a summary of the results.  There are no 
NACK packets in all the cases of three tick interval values.  

 
(a) tick = 50 msec. 

 
(b) tick = 100 msec. 

 
(c) tick = 200 msec. 

Figure 5.  Time variation of token bucket depth in consumer. 
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The Data throughput are also similar for three cases, and the 
value is close to that of the fine-grained clock based SF.   

V. PERFORMANCE EVALUATION WITH REALISTIC  

ENVIRONMENTS 

The performance evaluation conditions described in 
Sections III and IV are too simple because of linear network 
configuration, relatively low link speed and relatively long 
tick intervals.  In this section, we provide the results of 
performance evaluation in more practical conditions.   

A. Evaluation conditions 

Figure 7 shows the network configuration used by the 
performance evaluation described in this section.  It is a 
dumbbell network.  Ten consumers (C1 through C10) are 
connected to router R1, which is connected to another router 
R2.  Ten producers (R1 through R10) are connected to router 
R2.  All the links have the link speed of 100 Mbps and the one 
way transmission delay of 50 msec.  The size of a Data packet 
is 1,250 bytes, i.e. 1Kbit.  The line speed corresponds to 10 

Kpackets/sec in terms of Data packets.  The detailed 
evaluation conditions are as follows.   

 One consumer is supposed to retrieve a dedicated 
content from the corresponding producer, e.g., C1 
from R1.  This means that no Data packet caching is 
used.   

 In the evaluation, we changed the number of 
consumer/producer pairs from 1 to 10.  In the case of 
the number of pairs is one, it is a linear network 
configuration.  In this case, the token bucket in the 
consumer will overflow, as in the evaluation 
described in Section III.  When it is more than one, 
the link between R1 and R2 becomes the bottleneck 
link and the token bucket in router R1 will overflow.   

 The initial value of Interest sending rate is set to the 
maximum rate (10 Kpackets/sec) divided by the 
number of consumer/producer pairs.  For example, 
when the number of pairs is two, the initial Interest 
sending rate is 5 Kpackets/sec for two consumers.   

 The sending of Interest packets will start at the same 
time among the consumers.  That is, the Interest 
sending will be synchronized at least in the beginning 
of the evaluation runs.  This is a very heavy condition, 
but, since the token buckets are prepared for 
individual consumer/producer pairs, the overflow 
will occur independently and at different timings for 
different pairs.  So, the impact of this condition 
seems to be not large.   

 The maximum value of token bucket depth is set to 
50 packets, 100 packets, or 500 packets.  Since the 
congestion is invoked by the overflow at the token 
bucket, we tested for different maximum values.   

 The tick interval vales are selected from 1 msec, 5 
msec, and 10 msec.  We believe that these values are 
reasonably small to be implemented in off-the-shelf 
computers.   

In the case of the evaluations in Sections III and IV, there 
was only one Interest packet flow.  So, we used the Interest 
sending rate limit assigned for individual outgoing interface.  

This is called PerOutFaceLimits implemented in the 

LimitsRate class in ndnSIM 1.0.  In the case of this 
evaluation, however, the rate limit needs to be prepared for 
individual Interest flow as well as for outgoing interface.  This 

is realized by PerFibLimits implemented in the same 
class.   It should be mentioned that there is a bug for 

PerFibLimits in ndnSIM 1.0.  In the method 

NotifyNewAggregate() in the LimitsRate class, 
which is called just after the instance is created, the 

LeakBucket () method needs to be scheduled in order to 
start the periodical token release.  However, this is done only 

for PerOutFaceLimits, and not for 

PerOutFaceLimits.  So, we modified this part of 
program in ndnSIM 1.0.   

B. Performance evaluation results of SF under coarse-

grained clock 

We conducted performance evaluation of SF under the 
conditions described above.  The execution time of one 

 
Figure 6.  Time variation of Interest sending rate in proposed method.  

TABLE II.  SUMMARY OF RESULTS WITH PROPOSED METHOD. 
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Figure 7.  Network configuration and conditions in practical evaluation.  
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evaluation run is 10 sec similarly with the evaluation 
described in Sections III and IV.  Figure 8 shows the results 
of Data packet throughput.  The graph indicates the sum of 
Data packet throughput of individual consumer/producer pairs.  
So, the limit is 100 Mbps.  The horizontal axis of the graph is 
the number of consumer/producer pairs; 1, 2, 5, and 10.  The 
figure shows the three cases with different maximum values 
of token bucket depth; 50 packets, 100 packets, and 500 
packets.  Figure 9 shows the total number of NACK packets 
generated in individual consumer/producer pairs.  We can 
discuss the following from those results.   

 Figure 8 shows that, when there are multiple Interest/ 
Data packet flows, the total Data packet throughput 
decreases.  This is because SF itself has some 

performance problem in the case of multiple flows 
[12].  In the dumbbell network, the Interest sending 
rate of individual flow increases to the maximum 
value corresponding to the line speed between a 
consumer and the bottleneck router.  This triggers 
network congestion at the bottleneck router, and 
generates a number of NACK packets.  So, the Data 
throughput degradation and the increase of NACK 
packets in the case of multiple flows come from 
factors other than the coarse-grained system clock.   

 In the case of a single Interest/Data flow between one 
pair of consumer/producer, the coarse-grained clock 
degrades the Data throughput.  When the maximum 
bucket depth is 50 packets (Figure 8 (a)), the tick 

   
 (a) max. bucket depth = 50 packets. (a) max. bucket depth = 50 packets. 

   
 (b) max. bucket depth = 100 packets. (b) max. bucket depth = 100 packets. 

   
 (c) max. bucket depth = 500 packets. (c) max. bucket depth = 500 packets. 

 Figure 8.  Data throughput under practical evaluation conditions.   Figure 9.  Number of NACK packets under practical evaluation conditions.   
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interval of 5 msec degrades the throughput slightly, 
and the tick interval 10 msec induces a heavy 
throughput degradation.  When the maximum bucket 
depth is 100 packets, a slight throughput degradation 
is observed for the tick interval of 10 msec.  There 
are no throughput degradations for a single flow 
when the maximum bucket depth is 500 packets.   

 When there are multiple Interest/Data flows, the 
affects by the coarse-grained clock is clearly given in 
the case that the maximum bucket depth is 50 packets 
(Figure 8 (a)).  According to the tick interval’s 
increasing, the total Data packet throughput is 
decreasing.  In the case that the maximum bucket 
depth is 100 packets or 500 packets (Figure 8 (b) or 
8 (c)), the Data throughput of SF with fine-grained 
clock is higher than that under coarse-grained clock, 
except the case of tick interval = 10 msec and 
maximum bucket depth = 100 packets.     

 As for the fairness among multiple Interest/Data 
flows, Figure 10 shows the Data packet throughput 
of individual flows in the case of tick interval = 1 
msec and maximum bucket depth = 50 packets.  For 
individual cases of consumer/producer pairs, the 
Data throughput of individual flow is similar with 
each other.   

C. Performance evaluation results of SF with smoothening 

Inerest packet sending under coarse-grained clock 

Figure 11 shows the evaluation results when the proposed 
smoothening Interest sending rate method is used under the 
coarse-grained clock.  In this case, the results are different for 
the case of single Interest/Data flow and for the case of 
multiple flows.   

When there is only a single flow, the total Data packet 
throughput is improved by the proposed method.  For example, 
in the case of tick interval = 5 msec and maximum bucket 
depth = 50 packets, the total Data throughput increased to 91 
Mbps from 74 Mbps.  In the case of tick interval = 10 msec 
and maximum bucket depth = 50 packets, the throughput 
becomes 30 Mbps, which was 16 Mbps without the 
smoothening method.  In the case of tick interval = 10 msec 
and maximum bucket depth = 100 packets, the throughput 
increased to 91 Mbps from 75 Mbps.  That is, it can be 

concluded that in the single Interest/Data flow case, the 
proposed smoothening method is effective to increase Data 
throughput when a coarse-grained clock is adopted.   

However, when there are multiple Interest/Data flows, the 
proposed method does not improve the total Data packet 
throughput.  The throughput in Figure 11 is similar with the 
corresponding results in Figure 8.  The reason for this result 
will be that SF has other performance problems, such as the 
excessive rate reduction by continuously transmitted NACK 
packets [12], and they cancel the effects of the Interest sending 
smoothening.   

 
Figure 10.  Individual Data packet throughput at tick interval = 1 msec and 

max. bucket depth = 50 packets.   
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(a) max. bucket depth = 50 packets. 

 
(b) max. bucket depth = 100 packets. 

 
(c) max. bucket depth = 500 packets. 

Figure 11.  Data throughput with Interest sending smoothening. 
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VI. CONCLUSIONS 

This paper revisited an issue on how the coarse-grained 
clock system influences the NDN rate-based congestion 
control, which was pointed out in our previous paper [1].  
Currently, the rate-based congestion control is considered to 
be effective in NDN.  However, the rate-based control over 
high speed links requires highly precious clock management 
and this gives a serious processing overhead to off-the-shelf 
computers.  So, we think that commodity based consumers 
need to use a coarse-grained clock system.   

In the fundamental performance evaluation using Stateful 
Forwarding as a target system, we showed the following.  
Even if the network does not cause any congestion, the tick 
intervals such as 50 msec, 100 msec, and 200 msec generate 
some NACK packets.  Especially, in the cases of 100 msec 
and 200 msec ticks, the Data throughput decreases largely.  
These results mean the NDN rate-based congestion control 
has some problems when it is used with a coarse-grained clock 
system.   

This paper also proposed a scheme to smoothen Interest 
sending, which allows a queued Interest packets for sending 
to be transmitted when any Data or NACK packets are 
received.  As the result of fundamental simulation evaluation, 
the proposed method did not generate any NACK packets 
even if 50 msec, 100 msec, and 200 msec are used as tick 
intervals.   

This paper also showed the evaluation results using more 
practical network configuration, with higher link speed, 
multiple Interest/Data flows, and shorter tick intervals such as 
1msec through 10 msec.  In this evaluation, the results were a 
little different in a single flow case and a multiple flow case.  
When there is only one Interest/Data flow, the coarse-grained 
clock induced the Data packet throughput, even the tick 
interval is 1 msec.  The proposed smoothening method also 
recovered the Data throughput, as in the fundamental 
evaluation.   

However, when there are multiple Interest/Data flows, the 
situation changed.  In this case, the link between intermediate 
routers in a dumbbell network becomes the bottleneck.  
Stateful Forwarding itself degrades the Data throughput in this 
case.  Although the coarse-grained clock degrade the 
throughput in some conditions, the issue of Stateful 
Forwarding has a larger impact.  The proposed smoothening 
method did not increase the throughput, either.   

Recently, several rate control methods with explicit rate 
reporting are proposed.  They will resolve the non-
deterministic rate selection which Stateful Forwarding relies 
on.  It is considered that we need to apply our methodology to 
those new types of rate-based congestion control methods in 
the future.   
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