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Abstract—Mean-field theory is a significant recent develop-
ment in the field of stochastic optimal control. By allowing the
optimal control functions to take into account not only the state
of the individual agent, but also the common state of an entire
ensemble of mutually inter-dependent agents, mean-field theory
allows us to model ensembles of autonomous agents pursuing
individually optimal trajectories in a shared environment. In
this paper, the application of stochastic optimal control has
been shown for a very standard problem of cellular networks,
the optimum resource allocation problem. In modern cellular
networks, the optimal resource assignment for individual cells
has to take into account the loading of the entire network, since

user stations are free to adjust transmission rates and migrate
among cells and cells, while cells can also trade bandwidth
between themselves. The problem is to achieve an optimal
matching of available resources to the individual demands for
capacity, taking into account the temporal and spatial variation
in demand. By modelling the demand and capacity and their
mutual interaction using mean-field theory, it has been shown
that the matching problem can be cast as a distributed optimal
control function. We have used a novel method to solve the
corresponding mean-field game and demonstrated that the
solution provides an effective mechanism for demand regulation
and capacity assignment.
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I. INTRODUCTION

Stochastic optimal control is a powerful technique to

control time-varying systems with a random component in

the inputs. Developed over the last fifty years from the base

of variational inequality and dynamic programming, it has

been applied in multiple disciplines ranging from finance

to oil exploration and medical trials. By leveraging the

fundamental strength of stochastic calculus and optimization

theory, stochastic optimal control can help in developing the

control law which is used to control live processes in the face

of unknown, time varying inputs.

Wireless cellular networks have to deal with the problem

of efficient resource allocation, and it is well known that

this can be modelled as an optimal control problem [1].

In modern cellular networks the network resource allocation

function has to deal with varying adaptive user demand as

well which is also a stochastic processes. Application of

stochastic optimal control to wireless networks, however, has

been sporadic [2][3][4]. The immediate reason for this is

that optimal control problems do not easily yield analytic

solutions. In fact, most of the work in optimal control theory

is limited to linear and linear quadratic state equations.

Wireless protocol stacks are based on more complex laws.

However, there is a second, more difficult problem to solve.

In the cellular wireless world, there is the problem of inter-

node interdependence. This was recognized even in the 2nd

generation wireless networks, which were designed to be

interference constrained. Wireless networks of the 4th and

5th generation have taken this one step further. They are

built around the principles of dynamic inter-cell coordination

and cooperation for managing resources and matching them

to demand. The need for cooperative resource management

protocols is driven by two factors. The first is the ability

of individual user terminals to use larger and larger bands of

spectrum, while the overall network is spectrum-conservative;

hence network nodes must be able to deploy spectrum

flexibly in response to hotspots of demand, while minimizing

the overall spectrum deployment. The second is the need for

networks to dynamically adapt to large variations in demand,

both spatially and temporally. Cellular networks are being

moved towards newer and newer business cases such as wide-

area connectivity for cellular networks supporting Internet

Of Things, connected vehicles, etc. Most of these use cases

are dependent on network nodes being able to flexibly adapt

to new patterns in user behaviour. Hence, the paradigm of

dynamically shared resources and network node cooperation

is here to stay. There is wide-spread theoretical and practical

interest in Coordinated Multipoint networks in 4G, Hetnets

and Inter-Cell Interference Coordination (ICIC/eICIC). In-

deed, the 3rd Generation Partnership Project (3gPP) has

introduced the X-interface between network nodes as an

explicit means of inter-node coordination in real-time, in

order to make coordinated network operation possible.

A. Optimal Control for Wireless Networks

Network nodes are independent, yet coexisting agents,

tied together by the constraints of shared resources and

shared environments. In this situation, an optimal control

law which treats the network node or cell as an individual

agent and optimizes its performance in an isolated manner is

not very useful and can result in severely degraded network

performance. To apply optimal control theory to wireless

network resource allocation problem, one would need to

model the impact of resource usage by one node on the

rest of the network. One solution is to try to solve the

problem simultaneously by constructing as a N -dimensional

control equation for all network nodes, i.e., the network state

becomes a vector of states, one for each agent. This however

leads to the dimensionality problem as the number of degrees

of freedom increase as O(n2). It also requires a degree of



2

International Journal on Advances in Telecommunications, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/telecommunications/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

simultaneous coordinated control that is not feasible in most

wireless networks.

A strictly adversarial approach (such as used in game the-

oretic techniques) has also been used with interesting results.

In reality, network nodes cannot afford to be completely

adversarial, since they are not operating in cooperation,

not competition of each other. For example, it may make

sense for a given node to hand over load to another node

or to take over load from another node cooperatively. In

these situations, the objective is to optimize overall network

capacity, not individual node capacity. However, it is still

possible to solve this problem as a game, by writing the utility

function to take this into account. A second problem is that

game theoretic approaches require inter-node negotiation,

which requires a very large amount of signaling between

nodes and their neighbours. This makes the game-theoretic

solutions analytically difficult and hard to scale to a large

number of nodes.

What is needed then, is a way to abstract the bulk state

of the network and construct a common model for demand

and capacity and their mutual interaction. The model should

take into account both the effect of the network state on the

individual agent, as well as the effect of the independent

actions of the nodes and how it impacts the bulk network

state in turn. As shall be seen below, the mean-field model

provides exactly that.

B. The Mean-Field Extension to Stochastic Optimal Control

Mean-field theory originated in particle physics, where it is

used to model the behaviour of a large number of particles

within a single field. The states of the individual particle

follows statistical laws, which is controlled by the field itself.

However, its application to optimal control theory is relatively

recent. It was only in the first decade of the 2000s that Lasry

and Lions [5] and independently, yet nearly simultaneously,

Minyi Huang and his team [6] kicked off a concerted

research effort on optimal control of multiple interacting

stochastic processes by modeling their interactions through a

shared global variable called a mean-field constraint. Optimal

control problems of this nature are called Mean-Field Games

(henceforth MFG). The term field here is similar to the use of

field in classical physics; a common, network-wide influence

which modulates individual nodes in the field and is also

modulated by them, under the control of a universal field

equation.

The authors above showed that MFGs can be modelled as

an extension to stochastic optimal control theory, by allowing

the empirical distribution of individual network node states

to be included in the transition and cost functions. This

provides us a mechanism for incorporating the network state

variables into individual node decision control algorithms.

For example, Huang et al. in [7] use mean-field stochastic

control as a way of optimal power control in wireless

networks. Wireless nodes have to set transmission power

so as to maximize the Signal to Interference Ratio (SIR),

yet minimize cross-neighbour interference. In this case, the

latter is modelled in terms of the empirical power distribution

across the network.

C. Objective and Structure of the paper

In this paper, stochastic control with mean-field constraints

has been applied to the problem of cellular resource al-

location. The focus is to model the demand capacity gap

in a multi-cellular environment and how this has to be

incorporated into a dynamic model for aggregate demand in

the per-cell level. By using rate adaptation models from the

existing literature, this interaction and the resultant demand-

capacity allocation problem has been modelled as a stochastic

game, which can be solved to get a common optimal control

law. A closed-form analytic solution has been worked out for

a non-linear stochastic MFG which, to our knowledge is the

first that has been presented in the existing literature.

The rest of the paper is organized as follows. In Section II,

we introduce the problem in more detail. In the next Section

III, we review the existing state-of-the-art in the area of

cellular resource management and establish the contribution

of this paper in contrast to the current literature. In Section

IV a mathematical model has been defined for modelling

adaptive user traffic, which is going to be the basis of the

theoretical model. Section V contains an introduction to

stochastic optimal control and its extension to the mean-field

constrained game, along with the adjoint equation technique

that shall be used as a basis for the solution of this game.

In Section VI, the model demand regulation problem is

introduced as a mean-field stochastic game and a closed form

solution is presented. The success of the demand regulation

algorithm is established through simulations in SectionVII.

Finally, Section VIII contains the conclusion, analysis and a

roadmap for future work in this area.

II. PROBLEM STATEMENT - DYNAMIC RESOURCE

MANAGEMENT IN WIRELESS CELLULAR NETWORKS - A

SURVEY OF EXISTING LITERATURE

The resource management problem of cellular networks

has been studied as part of dynamic network optimization

since a long time and is seen as a fundamental component of

the Self Optimizing Network (SON) [8],[9]. The problem is

briefly described as follows: there is a network consisting

of (possibly overlapping) cells in a given coverage area.

Each cell is controlled by a network node (base-station).

Within each cell, there are a number of active UEs (User

Equipment), which have a requirement for network capacity;

they communicate these resource requests to the base-station

on a frame by frame basis. Each individual network node

aggregates these per UE requests for capacity, into an ag-

gregate demand which is the state variable of the network

node, X i
t , appropriately normalized. This term is frequently

referred to the demand or the load of the cell. The network

nodes also have a certain amount of capacity to handle this

load, based on the resources available to it. A scheduling

algorithm distributes the capacity to the individual UEs on a

frame-by-frame basis.

The resources available in each cell are a combination

of various different physical and computational resources,

such as spectrum, power and backhaul capacity. All of these

combine to determine the overall load handling capacity Ck
t
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of a given cell. Clearly, one would like to minimize the gap

between the available resources Ck
t and the resources which

would be required to service the aggregate demand. The task

of the resource optimization algorithm is to ensure an optimal

deployment of resources per cell, so that the demand-gap

(difference between capacity demand and capacity available)

is minimized for all the cells in the network.

Since loading patterns vary dynamically in both temporal

and spatial dimensions, the network has to be load-following.

It must be able to use the reported aggregate load from

each cell as a basis for spectrum allocation, reallocation and

cooperative load-balancing. There are multiple mechanisms

for this as has been reported in the literature. For example,

in a dynamic network, real-time trading of spectrum may be

possible within cells belonging to a group or cluster, under

the control of a central controller. Alternately, cells may use

power as a resource; in [10], the authors use a strategy of

adjusting the transmit power of individual cells so as to let

less loaded cells expand their coverage area to take more

load. More cases shall be discussed in Section III-A. In a

cellular network, the bulk of the cell-level resources (if not

all) are shared resources, with either soft or hard constraints

on their deployment in the network. No individual node can

unilaterally change its deployment without affecting others.

In many cases, the impact of reconfiguration of an individual

resource may be network-wide. For example, a network node

increasing its transmit power will cause interference among

its immediate neighbours, whereas a network node deploying

additional spectrum will cause co-channel interference with

other nodes reusing that spectrum. Thus, a cell can only add

spectrum or increase transmit power if other cells are willing

to reduce the one or the other. Thus, adapting to load involves

cooperation between network nodes.

However, solutions to the resource allocation problem are

inadequate unless they are extended to incorporate the prob-

lem of modelling of behaviour at the user-level. This is a cru-

cial, yet often overlooked factor. User applications, especially

the data-hungry applications which dominate modern cellular

usage, are autonomously adaptive, seeking to optimize their

utility from the network by adapting to the environment that

they experience. They continuously sense the ability of the

network to service their requirements, and adapt their service

requests to this, both at the micro and the macro level. At

the macro level, they will move from heavily loaded cells to

lightly loaded cells by initiating handovers. The handover

triggering decision traditionally only used signal power;

however, with the increased density of cells, actual network

load is being increasingly used as an input. At the micro

level, they implement sophisticated rate control algorithms

so that the demand they generate will rise and fall based on

the capacity available as measured by them individually. The

mechanism for rate control is based on standard congestion

control algorithms deployed in the transport layer. There is

a near universal consensus, in modern congestion control

theory on end-to-end congestion control algorithms similar

to TCP or equivalents (Dynamic Adaptive Streaming over

HTTP (DASH), TCP Friendly Rate Control (TFRC), etc.).

This family of algorithms have widespread deployment in

transmission stacks and have proven themselves over a long

period of time extensively in a vast variety of environments

[11]. While the basic algorithm is simple (computationally)

to implement, its rather challenging to model; this shall be

discussed further in Section IV-A.

In conclusion, the resource allocation problem can be

cast as a dynamic optimization problem, but two separate

issues have to be considered. The first is the problem of

allocation of resources in a fair manner, which has been

addressed in the literature. The second, relatively unsolved

problem, is that of anticipating user behaviour, both in terms

of mobility as well as in terms of demand variation in

response to this allocation. In general, user behaviour is

hard to model and takes time to converge to an equilibrium.

On the other hand, capacity-allocation/de-allocation on the

fly (by moving spectrum from one cell to the other, for

example) is also complex problem with unexpected impacts

network-wide. When the two occur together, they can have

significant impacts on network stability and user perceived

QoS. In this paper, the two variables, demand (load) and

capacity are mutually interdependent. Only by considering

the ones impact on the other and vice-versa, can a stable

operating equilibrium be achieved and an optimal control law

be derived. The need, then, is for a joint model of capacity

allocation and demand regulation, which shall be described

in subsequent sections.

III. PREVIOUS WORK

The existing literature in multi-cellular resource manage-

ment in wireless networks is focussed around the problem

of resource allocation and load balancing. A relatively recent

survey of the problem and analysis of the current status and

open areas is given by Andrews et al. [12]. In this work, the

authors also discuss the myths surrounding cell loading and

QoS. One of the myths identified by the authors is that the

capacity of a cell is rarely a property of the link SIR, but

also has to take into account the loading of the cell itself.

This underlies the need to do real-time resource planning as

a network management strategy.

A. Survey of existing research in multi-cellular resource

management

The approaches to multi-cellular resource management, as

found in the existing literature, can be divided broadly into

two categories. One set of research tends to focus on user

distribution, using intra-cellular and inter-cellular handovers

[13][14]. While handover optimization has been an area of

study for a long time, the use of handovers as a strategic

tool for resource optimization is somewhat more niche area.

In these papers, the handover decisions are typically taken at

the endpoints with the network nodes providing information

about current loading. In [15], the authors provide a complete

mathematical framework for this kind of re-direction, inte-

grating both the equilibrium loading as well as the resources

required for re-direction in the general analysis.

The second category focusses on dynamic resource deploy-

ment between cells. In some cases, the network nodes con-

trolling the cells operate autonomously to learn the optimal
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loading limit individually and then act to achieve this, without

needing any active inter-node coordination. For example, in

[16], the authors propose reinforcement learning techniques

for network nodes to tune specific configuration parameters

to achieve the optimal load. The cooperative approach using

explicit coordination between cells is discussed in a series

of papers by Bigham and Lin [10],[17,[18], where coverage

is used as a metric for load and power is the resource

variable to be optimized. The authors formalize a method

of structured direct negotiation between a network node

and its neighbours. The decision function optimizes the

allocation of coverage to individual network nodes by jointly

selecting the appropriate transmission signal power for each

network. The coverage area, broken into tiles is treated as

the resource. The equivalent, but more modern challenge of

coverage optimization for the multi-antenna case is treated

in the work of [19],[20]. Other approaches to the dynamic

resource planning problem involve migration of spectrum

[21]. This work is interesting because it allows both hard

and soft channel blocking strategies (channel blocking with

and without locking). The approach is extended in [22]

by incorporating support for variable demand multi-media

traffic. In this paper, the cells with multimedia traffic are

marked in terms of their potential peak traffic, not just the

current demand. By marking a cell in this state, it is taken

out of the borrowing/lending pool of cells, since this may

cause thrashing between peak and safe states. Finally, there

is a fair amount of literature, where resource management

is not cooperative, but adversarial. For example, a game

theoretic approach is found in papers such as [23]. Here the

authors model the negotiation process as a game between an

individual loaded cell and underloaded neighbour cells, with

each cell autonomously trying to maximize its own utility.

B. Contribution of this paper

Optimal resource planning in cellular networks is about

matching capacity to demand. Looking at a cluster of cells,

which are under a common optimization framework, it is

desirable to find those cells which have surplus capacity

and match them against cells which have excess demand.

Algorithms as available in the existing literature typically

tend to focus on optimization of this demand-capacity gap

and balancing it, either by moving demand to where capacity

is available (handover) or by moving capacity to where

demand exists (spectrum/power redeployment).

As discussed earlier, our focus, in this paper is on a

different problem; that of demand regulation at the cell-level

and how it interacts with optimal resource planning at the

cluster or network level. The motivation for this arises from

the fact that the demand for resources in a cell is not merely

a function of the coverage or the number of UEs (above a

certain limit), but the availability of capacity in the cell. In

other words, while capacity follows demand, demand adapts

to existing capacity (see the simulation results in Figure 3).

Hence, the need for a closed-form model which incorporates

the dynamics of both.

To this end, a demand-regulation algorithm has been pro-

posed that operates at individual cells, yet takes into account

the availability of capacity within and without the cell, at

the cluster and possibly the network level. The algorithm has

two simultaneous purposes. One is to provide feedback to the

users within the cell optimally and the other is to model the

true demand of each cell and incorporate it into higher level

resource optimization algorithms. It has been then shown how

this demand-regulation algorithm can fit into existing models

of resource allocation to provide a seamless whole which

manages a cluster of cells at one time.

The problem of demand regulation vis-a-vis capacity lim-

itations has been studied for many years in the context of

the Internet and there are well- understood models of rate

adaptation, which have been used for many years in the

wired world. There are also existing models for modelling

the aggregate behaviour of bandwidth adaptive TCP based

applications as a stochastic process, which has been used in

this paper. The key novelty in our paper is the incorporation

of network-wide capacity and adaptive demand as part of a

single demand management algorithm, and the solution of

the resultant optimal control problem as a stochastic mean-

field game. By using the outcome to drive both user-level

rate-adaptation as well as macro resource management, it

will be shown that it is possible to deliver stable, con-

trollable capacity levels in a multi-cellular cluster which

adapts automatically to the available capacity. Further, this

algorithm works smoothly with macro-resource optimization

and UE initiated optimal network attachment strategies (such

as handovers) to smoothen demand and allow load-balancing

over an ensemble of cells.

A key term that that shall be using repeatedly through

this paper is congestion. Congestion, in our approach is a

key metric of the twin problems of demand management and

resource allocation problem. It is equally applicable to the

end-point users as a metric of the ability of the network

to respond to variations in demand, as well as external

network management or resource allocation functions, as a

metric of utilization of resources. In other words, its scope

is both local (within the cell) and global (across a cluster of

cells). Our demand management algorithm provides a way

to compute the congestion level which is both globally and

locally applicable.

A model for solving the multi-cell resource management

as a mean-field game has been described in a previous paper

[1]. Using a simple linear model for demand and capacity,

this previous work has shown how cells could choose a

stable operating point for resource utilization, both at the

network level as well as the cell-level, which would take

into account both the variations in resource allocation, as

well as the variations in demand. In this paper, the existing

approach is extended by providing a practical usable close-

form solution to the coordinated resource management prob-

lem. The solution moves from the simplified static demand

models to widely used models for dynamic data traffic, which

dominates wireless traffic today. To this end, the bandwidth

adaptive endpoints have been modelled as demand generating

agents using TCP-like bandwidth hunting algorithms and the

solution framework has been reformulated as a mean-field

stochastic optimization problem. The mean-field game solved
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in this paper is not of the standard linear quadratic form; to

our knowledge, this is the first paper to provide an analytical

solution for a non-linear mean-field game in the available

literature.

IV. MODELING OF USER LEVEL DEMAND

Modern communication networks are dominated by data-

traffic. Analysis depends on an understanding of how data

connections behave in a dynamic environment. Our task is

simplified by the fact that the majority of modern data-

based applications use the Internet Transport Control Protocol

(TCP) as the backbone transport protocol. This is true for

Internet browsing, as well as video streaming using Dy-

namic Adaptive Streaming over HTTP (DASH). To accu-

rately model the traffic patterns seen in a modern wireless

system, one has to start by understanding how TCP protocol

stacks work. It is well known that TCP connections are

explicitly designed to be simultaneously bandwidth hunting

and bandwidth-conservative. A TCP data source constantly

increases demand as its current demand is met and it senses

that there is surplus bandwidth in the network. On the

other hand, if it detects a lack of bandwidth, it reduces its

bandwidth demand aggressively. The combined behaviour is

approximated by Additive Increase and Multiplicative De-

crease (AIMD). The multiplicative decrease ensures that TCP

behaviour is cooperative. The success of the TCP bandwidth

hunting algorithm is such that even non TCP connections

are nowadays required to maintain TCP like transmission

rate management protocols. For example, the TCP Friendly

Rate Control [24] is now an Internet standard for bandwidth

control of media flows such as those proposed in Web real-

time communication (WebRTC).

A. Modelling TCP dynamics at the cellular level

In order to model the load balancing problem mathemat-

ically, there is a need to select a suitable model for TCP

connection dynamics, which incorporates both the traffic

model, as well as its reaction to network feedback. It would

be preferable to have a model which can aggregate a number

of TCP flows, approximating the aggregate demand seen by

a single cell. After the landmark work done by Paxson et

al [25], there has been a large amount of interest in the

modeling of the kind offeedback-sensitive traffic seen in

TCP and there is now a large corpus of work available for

modelling both TCP [26],[27],[28],[29] and TCP like traffic

[30],[31]. These models are complicated by the asymmetric

nature of the AIMD algorithm and are much too complex for

us to use directly. Further, most of these models are time-lag

systems, because individual TCPs are crucially dependent on

the round-trip time. Analysis requires transformation to the

Laplace domain, and is highly complex.

However, if one switches to modelling aggregate be-

haviour, then the job becomes easier. In the modelling of

the collective behaviour of a number of independent TCP

connections, the discontinuities tend to smoothen out; further,

the effect of round-trip time in the aggregate can be abstracted

out. These are known as mul-TCP models [32],[33],[34],

which aim at modeling bulk-traffic reacting independently

to congestion signals.

1) Kelly’s model for aggregate TCP flows: The rest of the

paper shall use the model proposed by Kelly in his landmark

work [32]. The Kelly model is simple enough to be used

in analysis and has an intuitive structure. What it proposes

is simply this. At any given point of time t, the demand

is measured as an aggregate variable Xt, which reacts to a

congestion state Ut of the network (which is treated as the

control variable). At any instance of time, a fraction Ut of

the members of the ensemble of users in the cell are given a

congestion signal; these react by multiplicatively decreasing

their transmission rate. The rest of the users, who do not

receive a congestion signal, increase their transmission rate

additively, by a single segment. If the total number of users

is W , the resultant dynamics is given by (1).

dX̃ i
t =

(
W i ∗ (1− U i

t )− X̃ i ∗ U i
t

)
dt+ σidBt

=
(
W i − U i

t (W
i + X̃ i)

)
dt+ σidBt (1)

It is to be noted that W i is also a cell specific term (because

each cell may have a different number of active users) and

captures the elasticity of demand within the cell. X̃ i can be

replaced by X i =W i + X̃ i to simplify the notation above.

dX i
t =

(
W i − U i

tX
i
t

)
dt+ σdBt (2)

The model in (2) is simple, yet rich with possibilities.

Readers would notice that it matches the form of the clas-

sical Ornstein-Uhlenbeck diffusion process (3). A physical

interpretation of Ornstein-Uhlenbeck diffusion is that of a

spring with spring constant k and damping coefficient γ,

where θ = k/γ and mean-position µ, starting from a rest

position and moving under the effect of thermal fluctuations.

In our particular case, one can see that due to Ut being an

externally computed optimization variable, it is effectively

manipulating both the mean rest position µ as well as the

spring constant k. It can be argueid that this is because of

the difference in the feedback between the two cases. In the

case of a Hookean spring, the feedback for a given value of

Xt is necessarily linear to Xt −µ. In our case, the feedback

will be a function, but it may not necessarily be linear.

dXt = θ (µ−Xt) dt+ σ2dBt, Xt|t=0 = x0 (3)

A standard Ornstein-Uhlenbeck diffusion is mean-reverting;

in the long term, the value of Xt converges towards µ.

Further, its probability distribution converges to a Gaussian

distribution. These are very useful properties, because they

show the way for us to stabilize our particular model. If it

can be demonstrated that our model ((2)) behaves approx-

imately like a Ornstein-Uhlenbeck diffusion in a suitably

chosen domain of Xt, it is reasonable to assume that the

convergence properties of the classical Ornstein-Uhlenbeck

diffusion model should hold, intuitively. As it happens, this

turns out to be correct in this case.

B. Congestion signaling and feedback in the context of TCP

The TCP protocol has a rate-adaptation mechanism which

operates on the basis of a built-in mechanisms of measuring
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congestion. The primary among these are packet drops and

variations in round trip time for acknowledgements from

the receiver, which feed into its sliding window mechanism

for controlling transmission rate. These mechanisms were

introduced in TCP Reno and are universally acknowledged as

having successfully solved the network congestion problem.

The algorithms have been fine-tuned over the years and more

modern versions of TCP (such as Vegas and Westwood)

use more sophisticated functions of the round-trip time and

other indicators to augment the basic feedback. However,

selective packet dropping using dynamic buffer management

has been the tool of choice for congestion signaling in the

wired internet. Routers and switches in the WAN routinely

use probabilistic packet dropping as a way of controlling end-

point traffic; for example, Random Early Dropping (RED)

is an Internet standard which selectively drops packets at a

given target drop rate in order to force end-users to use rate-

control on the incoming interfaces to stay below the capacity

of its outgoing links.

In the wireless world, queue management is typically

done in the core network, but it is directly effected by the

bandwidth deployed in a cell and the manner of allocation.

If there is a large amount of destination traffic dit for a

given cell, whereas the bandwidth deployed results in a

capacity cit, over-time the queue builds up as the accumulated

difference of the two qit =
∫ t1

t0

(
dit − cit

)
dt. As the queue

builds up, packet dropping takes place (RED packet dropping

is assumed), which in turn acts as a congestion signal for the

endpoint. Packet dropping also happens naturally in wireless

communications, due to link errors. However, with modern

encoding techniques such as Low Density Parity Check

(LDPC) and Turbo, the incidence of packet dropping per flow

is typically of the order of 10−5 or less and has very little

impact on the TCP throughput.

In our particular situation, the congestion is dynamically

controlled by introducing artificial packet drops at a com-

puted rate p(t). By doing so, the feedback to the end-point

rate-adaptation protocols is controlled and hence, the demand

at a cellular level. The feedback has to be continuous, not a

discrete jump from congestion to no congestion. To do this,

the base-station continuously tracks the expressed demand

and sets the target congestion rate to the adaptive buffer

management system, as the solution of our optimal control

algorithm requires. This relation between demand, capacity

and congestion is given by the concept of effective bandwidth

[35],[36], [37]. The effective bandwidth of a channel of a

given buffering capacity B in the face of a variable traffic

source X(t) is the packet clearing rate r required to limit the

probability of buffer overflow to some value ǫ. This can be

expressed functionally as in (4).

Q(t)=

∫ τ

0

(X(t)− c)+dt

ǫ= Pr [Q(t) > B] ∀0 ≤ t ≤ T (4)

A simple application of effective bandwidth in our case

may work as follows. There are a number of agents N , a

clearing capacity C and a buffer of size B (all units are in

segment sizes). At a given point t, there is a feedback of p

broadcast to the agents. Each agent takes a random decision

whether to transmit or not, based on p. The number of

outcomes in which the transmissions exceeds C at any given

point of time is given by Xp =
∑N

k=C+B+1NCN−k
(1 −

p)kpN−k. This is precisely the tail probability of a binomial

distribution. By the Chernoff-Hoeffding inequality, it can be

that shown that the probability of X exceeding the buffer

size can be approximated as in (5).

Pr {Xp > (1 + δ)C} ≈

(
1− exp

{
−
C(1 + δ2)

3

})
(5)

If the required clearing rate is set to C and the buffer to

be δC, then the achieved drop rate is given by the equation

above. In other words, by limiting the clearing rate and the

drop rate, the system can drop packets at the appropriate rate.

This gives us a simple method to relate the allocated capacity

C and the congestion feedback p.

Further, this formula also gives us a way to compute the

surplus capacity in a cell and associate it with the target

congestion rate p. The surplus capacity is nothing but the

difference between the allocated bandwidth Ck
alloc in each

kth cell and the equilibrium demand rate Xk. This can be

used as a way to redistribute resources. This shall be explored

in the simulations below.

In real life, the TCP model is more complex than this,

because a TCP endpoint will emit a number of packets

depending on the current state of its window; an exact Cher-

noff bound for multiple TCP endpoints is hard to compute.

However, it is strictly speaking not necessary; rather, the

buffer management system can simply directly use RED

to achieve the target drop rate, as long as it maintains a

clearing rate greater than the anticipated demand rate Xk
t .

The difference between Xk
t (or equivalent bandwidth thereof)

versus the capacity actually available to the kth cell Ck is the

surplus capacity and is what is available for redistribution to

other cells.

V. STOCHASTIC OPTIMAL CONTROL AND MEAN FIELD

GAMES

This section covers the basics of mean-field stochastic

optimal control. For the rest of this paper the following

mathematical conventions are followed. Variables are in up-

percase Xt and functions in lower case b(Xt). The subscript

Bt indicates a variable changing with time. Functions are

Lipschitz continuous and adapted wherever applicable. E()
represents the expectation function.

A. Fundamentals

The basic stochastic optimal control problem is as follows.

Consider a system described by a state variable Xt, which is

controlled by the transition function (6) given below

dXk
t = b(Xk

t , Ut)dt+ σ(Xk
t , Ut)dB

k
t (6)

The variable Ut = u(Xk
t ) is the output of a control function

u(), which only depends on the state variable Xt. As is

standard for stochastic calculus, it is assumed that all pro-

cesses are adapted adapted to the filtration generated by the
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stochastic process Bk
t , which is a Brownian motion. Further,

b() and σ() are Lipschitz continuous bounded functions as

required for the standard definition of a Wiener process.

The system governed by this equation has a long term cost

function as in (7), and the initial value of Xt is known.

Φ
(
x0, Ut, T

)
= E

[
g(XT ) +

∫ T

0

f
(
Xk

t , Ut

)
dt

]

X(0)= x0 (7)

The aim is to find the optimal control function u∗(t) from a

set of possible control functions u of Lipschitz continuous,

bounded and adapted functions, so as to minimize the ex-

pected minimum total cost Φ(x0, a, T ), over the time period

[0, T ], including the termination cost g(Xt).
The general solution techniques are derived from the

corresponding deterministic optimal control problem. There

is, however, one important difference which increases the

complexity of the problem. In a deterministic control prob-

lem, the state variable corresponding to each choice of u()
can be forecast. In a stochastic control problem, one is

faced with uncertainty in the future. At each point t, the

value of u(t) has to be based on the information as known

up to then, i.e., Xs ∀0 ≤ s ≤ t. This is known as the

filtration of the process variable, Xt. A solution of the form

u(Xt) = (1/2) (Xt +XT−t), for example, is not acceptable,

because XT−t cannot be forecast at time t. In a deterministic

setting, on the other hand, this would be perfectly acceptable.

In other words, in a stochastic setting u() has to be non-

anticipatory.

There are two techniques which are used to solve stochas-

tic optimal control problems, both of which have analogues

from the world of deterministic optimal control. The first is

the Hamilton Jacobi Bellman formulation, briefly described

in Section V-C1, which extends the equivalent Bellman Ford

technique of optimal control. The second is the adjoint

equation technique, described in Section V-C2, which extends

the Pontryagin Minimum Principle for the stochastic case.

B. Adding the Meanfield Constraint

The stochastic control problem is now extended by adding

the mean-field constraint. This extends a one-off optimization

problem to a multi-agent optimization which involves N
agents, (where N is fairly large) trying to solve the same

stochastic control problem in parallel. Each agent starts

from a different starting value xi0, 1 ≤ i ≤ N . The N
optimization problem becomes a game when their reward

and cost functions are incorporate a common mean-field

term, which is a function of the empirical distribution of

the state-variable Xk
t , 1 ≤ k ≤ N at each point t. Hence,

the optimization problems are entangled with each other.

Consequently, for each separate optimization problem, the

equations (6), (7) change to the form given in (8). The

term X̂t = h(µX
t ) is the mean-field term, where µX

t is the

empirical distribution of Xt over all N agents participating in

the game. In the simplest case, X̂t is simply the average value

of Xt. However, more complex functions are also possible.

In general, any integrable expression of the type
∫ T

0
f(x)µX

t

is admissible.

dXk
t = b(Xk

t , Ut, X̂k
t )dt+ σ(Xk

t , Ut, X̂t)dB
k
t

Φ
(
x0, U

)
= E{g

(
XT , X̂t

)
+

∫ T

0

f
(
Xk

t , Ut, X̂t

)
dt}

µX
t (Y ) =

1

N

N∑

j=1

IXj=Y

X̂tt =

∫ T

0

h(x)dµX
t (8)

Since the actions of each agent in the game impacts the

others, solving the game requires taking into account the

global ensemble of states. Thus, when computing the optimal

strategy U∗ for an individual agent, one has to forecast how

this will affect the empirical distribution µX
t of the individual

state variables Xk
t , 1 ≤ k ≤ N .

1) Solvability of a mean-field game: Before the actual

solution technique, the solvability of the problem given in (8)

has to be established. There are two specific considerations,

each of which have been addressed in the literature. The first

concerns the existence of a solution. The second is tied to

its robustness.

In order to demonstrate the existence of a solution, it has

to be shown that the equilibrium mean-field term µX
t and the

optimal strategy are consistent with each and self-reinforcing.

As per the expression in (8) the empirical distribution µX
t

directly affects the cost Phi() and hence the outcome of the

transition function b(). In turn, because all the N agents all

independently execute the same control function, the entire

ensemble of Xk
t and consequently their empirical mean X̂t

are driven by the choice of u∗(Xk
t , µ

X
t ). In other words,

there is a direct relationship between the choice of u∗()
and the consequent µX

t . Equilibrium is established when

the partial derivatives of each respect to the other is zero.

Thus, our optimal solution must anticipate the evolution

of the mean-field distribution µX
t itself as a function of

t. Ideally, a subspace of Umfg ⊂ U of the domain U of

possible optimal control functions can be found, such that

a choice of optimal control strategy u∗t (Xt) ∈ Umfg will

drive the empirical distribution µX
t in such a way that X̂t

stabilizes to an independent variable. At this point the mean-

field optimization problem reverts to a standard stochastic

optimization problem with an added variable X̂t.

Typically, convergence in optimal control is solved by the

variational inequality approach. An optimal control function

u∗t is a stable equilibrium if it can be shown that a small

perturbation ǫ to u∗t will lead to a linear degradation in the

Hamiltonian of the cost function Φ() proportional to ǫ. The

problem here is that this means differentiating the Hamil-

tonian with respect to the empirical distribution µX
t . The

mathematical foundation of this has been discussed by Lasry

[5], using the Wasserstein space of probablity measures. By

using a suitably defined lifting function µ̂() which can replace

the term µX
t in the Hamiltonian, a derivative with respect to

ut is possible.
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The second associated problem is that of robustness. Recall

that the underlying assumption is that all N agents are execut-

ing the same optimal control function u∗t . But this assumption

only holds if the optimal solution itself is deviation proof. In

other words, no individual agent can get better results by

executing a separate strategy at any time-period 0 ≤ t ≤ T .

This is the Nash equilibrium or Nash Certainty Equivalence

principle described in [6]. The authors demonstrate that NCE

solutions are possible in mean-field games, which can be

solved by taking the limiting value of N (N → ∞) and

converting the empirical distribution of the ensemble to the

expected distribution of Xk
t for each k as the stochastic game

evolves. It shall be shown in the case of the solution technique

in the HJB-KFP approach Section V-C1 below. The NCE

has very interesting properties. For example, the robustness

property holds even in the case where the number of agents

are small as long as the agents cannot track the individual

states of other agents. In this case, it has been shown that

it is the optimal strategy for each agent to follow the Nash

equilibrium strategy, because deviation is punished as long

as the others are following the same strategy.

C. Solution techniques for the Stochastic Mean-field Game -

overview and comparision

Due to the above issues, solutions for stochastic optimal

control problems with mean-field games are more complex

than the standard stochastic control problem. There are two

main techniques, both of which depend on solving Forward

Backward Stochastic Differential Equations (FBSDE). To

date, most of the research in solutions of MFGs pertain

to a special class of MFGs, the so-called Linear Quadratic

MFG [38][39][40]. There two main approaches that shall

be discussed below, which have been studied mostly in the

context of LQMFGs. Recently, a paper has been published by

Pham and Wei [41], which discusses a dynamic programming

solution to these games. However, it is not covered here.

Of the two widely used methods for solving general mean-

field games, this paper shall focus more on the adjoint

approach. A brief description of the HJB technique in Section

V-C1 is provided for completeness. In both cases, the solution

is in the form of an FBSDE. This is due to the afore-

mentioned essential difference between the deterministic and

stochastic problems, that a deterministic differential equa-

tion is time-reversible, but a stochastic one is not. For a

deterministic differential equation, the backward equation can

be re-cast as a forward equation, simply changing the sign

of the variable. The resultant solution holds true for either

case. However, the stochastic optimal control law cannot

be anticipatory, i.e., it can only use the information about

Xt upto the time t and no further [42]. Hence the forward

and backward versions of the same stochastic differential

equation may have different solutions.

1) The HJB-KFP approach: The classic way to solve

a stochastic optimal control problem is to construct the

Hamilton Jacobi Bellman (HJB) equation, which, for the

above problem is given in (9).

∂φ

∂s
(y, u) + b (y, u)∇xφ+

σ2 (y, u)

2
∇2

xφ+ f (y, u) = 0

⇒
∂φ

∂s
(y, u) +H (b,∇xφ, f, u) +

σ2

2
(y, u)∇2

xφ = 0

φ (Y ) = g (Y ) (9)

The value of u = u∗ which solves this equation for all y
gives the optimal value of u. Note the second derivative

term, which makes the solution rather complex. The function

H(y, b, f, x, u) = 〈y(x, u), b(x, u)〉 + f(x, u) is called the

Hamiltonian; the solution to the above equation depends, to

a very large extent, on the structure of the Hamiltonian.

To extend the HJB technique for the stochastic mean-

field case, one makes the fundamental assumption that as

the number of agents becomes large, the empirical distribu-

tion for the states of the individual agents approaches the

probability distribution for the state of each of the individual

agents, i.e., instead of taking an empirical distribution over

N players, the distribution of Xk
t can be modelled directly,

based on the known starting distribution of the agents. In

[6], Huang et al. have shown that this assumption leads to a

Nash equilibrium. The probability distribution of the state

variable Xt for an individual agent evolves according to

the Kolmogorov Backward equation (sometimes called the

Kolmogorov Fokker Planck or KFP equation). By combining

this together with the HJB equation, as shown below (10),

together with the probability distribution of the starting state,

the optimal control u∗ can be derived so as to drive the two

equations into a mutual equilibrium. In a stable equilibrium,

the long term probability distribution of Xk
t under the Fokker

Plank equilibrium should match the empirical distribution of

Xk
T as T → ∞, leading to a stable solution for the HJB

equation and thereby making the equilibrium self-sustaining.

In this situation, it is postulated that Xk
T → X̂t as the

distribution evolves, for large values of T .

dφt =
σ2

2
∇2φ+H(∇xφ, b, f,X

k
t , ut, X̂t)

dX̂t = −b()∇xX̂t +
1

2
σ2(x)∇2X̂t, X̂t|0 = E

[
Xk

0

]

φT = g (XT )

X̂t = E
[
Xk

t

]
, Xk

0 = x0 (10)

The HJB equation is a backward stochastic differential equa-

tion, whereas the KFP is a forward equation. Once again,

the value of u which solves both equations simultaneously

is the optimal control function. The KFP-HJB technique has

been used successfully for LQMFGs in many papers; a good

example is that of Bardi [38].

2) The Adjoint Equation Approach: A second method is

the direct analogue of the Stochastic Maximum Principle

[43], which in turn is conceptually similar to the Pontrya-

gin maximum principle for solving deterministic optimal

control problems. The approach requires us to convert the

constrained optimization problem into a generic optimization

problem involving the state variable and its dual. In the SMP

case, there are two duals, one for the drift term and the other



9

International Journal on Advances in Telecommunications, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/telecommunications/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for the diffusion term. Hence, two stochastic variables Yt, Zt

have to be found such that the equation pair (11) holds.

− dYt= ∇xH
(
Yt, Zt, b, f,X

k
t , u
)
dt+ ZtdB

k
t

YT= ∇xg (XT ) (11)

In this equation, the Hamiltonian takes the extended form

defined as in (12).

H(Y, Z, b, f, x, u)

= 〈Y, b(x, u)〉+ tr
{
ZT .σ(u)

}
+ f(x, u)

∂uH(p, q, b, f, x, u∗) = 0 (12)

The expression for u(Xt) which gives a joint solution of

Xt, Yt, Zt (if it exists), provides an optimal control function

u∗. Note, once again, that the equation involving Yt, Zt

is a backward stochastic differential equation since only a

termination value of Yt is provided. The expression above is

true for a simplified version of the SMP, where the function

σ() is independent of Xt. If σ() is a function of X , then

one needs to add a second pair of variables to take care of

the additional risk of modifying the diffusion term in dXk
t .

The interested reader should consult Yong [42, Section 3.1]

for more information. The rest of this article only considers

problems where σ() is independent of both x and u.

By incorporating the two additional variables and the

mean-field term µX
t , the extended Hamiltonian is as shown

in (13). It is required to extend the adjoint equation approach

to the mean-field case, in a way that takes into account the

evolution of the mean-field term in (11), as shown in (13).

Here µX
t is the distribution at time t for the state variable

Xt.

H̃
(
X, y, z, X̃, u

)
= H

(
X, y, z, µX

t , u
)

(13)

As Xt changes, the nature of µX
t also changes and this has to

be taken into account in the solution to the adjoint equation.

In general, the problem may not require µX
t directly, but

typically a moment of µX
t . For example, many stochastic

control problems deal with the average values of Xt, which

can be expressed as E (Xt) =
∫
Xtdµ

X
t . The existing litera-

ture offers multiple approaches within the general Stochastic

Maximum Principle framework. The first method can be used

if the mean-field term can be expressed as a simple integral

of the form
∫
f().dXt(). In this case, the Hamiltonian can be

differentiated directly, by writing the extended Hamiltonian

H̃ as a lifted version of the standard Hamiltonian, allowing us

to take the derivative with respect to the distribution µX
t . For

example, if the function H(x, µX
t ) involves the distribution

µX
t in the form of 〈m(x)µX

t 〉 =
∫
m(x)dµX

t , then the

derivative of the Hamiltonian H(x, 〈m,µX
t 〉) with respect to

µX
t becomes ∂µX

t
H = ∂mHµX

t .

The full expression for the stochastic Maximum Principle

is then an FBSDE as shown in (14).

dXk
t = b(Xk

t , Ut, X̂
k
t )dt+ σdBk

t , X
k(0) = x0

−dYt = ∇xH
(
Xk

t , Ut, Yt, Zt, µ
X
t

)
dt

+ E

[
∂µH(Xk

t , Ut, Yt, Zt, X̂t)
]
+ ZtdB

k
t

YT = ∇xg (XT ) + E [∂µg (XT )] (14)

D. Analytical approach to solving the adjoint problem

In general, FBSDEs are difficult to solve analytically,

though numerical solution techniques exist. However, if one

is just interested in finding the optimal control term, then

an analytical approach is possible. The trick to an analytical

solution is to make a good guess at the domain from which

a possible mean-field optimal solution U∗ must come, the

afore-mentioned Umfg. Recall that there are two conditions

that must be satisfied; one that U∗ must stabilize the mean-

field term X̂t and two, that U∗ must be optimal in the Nash

sense. If not, it gives one of the agents an incentive to deviate

(possibly after X̂t has stabilized), which violates the Nash

equilibrium requirement.

One possible approach is a variational inequality technique

as suggested by Bensoussan in [39]. This approach considers

the situation that all of the agents, other than the kth agent, is

using the optimal strategy and only the kth agent is deviating.

The solution then looks at finding a deviation proof solution.

The optimal strategy, if it is deviation proof, will lead to

a fixed point solution, where by Xt = E [Xt|g(zt)] = zt,
where g(zt) represents the moment of the distribution that is

incorporated into the value function. Because the problem is

linear quadratic, the transition function for X̂t can be directly

derived by taking the expectation of the transition function of

Xk
t and removing diffusion term. This leads to the condition

for existence of a stable equilibrium which is deviation proof.

This approach is extended in [44], which is the one

followed in this paper. In this, first the class of the optimal

control function u∗t is computed, by solving the stochastic

control problem assuming X̂t is an independent variable.

By substituting the general element of this class back into

the transition function and taking expectations, the specific

members of the class for which a stable equilibrium arises

can be isolated. Since all members of the class are optimal in

the generic sense, this gives a range in which the mean-field

game has a stable solution. Hence, this solution technique

may be implemented in three steps. Only the first and second

steps require an analytic solution.

1) First solve the stochastic optimal control problem (11),

using a deterministic variable zt in place of the mean-

field term.

2) Use the solution for the optimal strategy U∗
t and

rewrite the expression (11) as the evolution of the

mean-field term by taking expectations over µX
t on

both sides. The stochastic optimal solution becomes a

deterministic solution, with the diffusion term gone and

can be solved using standard numerical techniques. The

outcome is an expression for the mean-field term as

an evolution in time, given the known optimal strategy

u∗t . The advantage of having a deterministic differential

equation for the mean-field term is that it can be

computed individually by each agent, as long as the

starting value is known. This crucial factor shall be

used in the current implementation.

3) Substitute this in the first equation and now solve

simultaneously for a final solution of Xt.

The technique can be extended to cases where X̂t is an
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arbitrary function of Xt, as long as the expectation of

the terms on the right hand side of (14) is defined and

computable.

VI. APPLICATION TO THE DEMAND REGULATION

PROBLEM

The analysis can now return to the original demand-

regulation model, by casting it as an MFG. The overall

system model is as follows. There is a cluster of cells, which

are integrated into a common resource management unit as

seen in Figure 1. The initial analysis is restricted to the single-

cell case. Here, each cell has a set of active, independent

end-users Nk of dimensionality Nk. These end-users are

continuously requesting the network node within the cell

for bandwidth allocations, so as to make forward or reverse

transmissions. In this paper, the focus is on the forward link,

which represents the bottleneck in most cellular systems. The

results hold with appropriate modification, for the reverse

link as well. The network node controlling the cell allocates

resources based on an algorithm that adjusts measures the

aggregate demand and provides congestion feedback to the

end-users within the associated cell. The congestion feedback

is automatically used by the end-user rate control algorithms

to adjust their resource requirements. The purpose of the

proposed algorithm is to ensure that the aggregate demand

in the cell reaches a stable equilibrium at a set point relative

to the capacity available to that cell.

Figure 1. Cluster of cells under a common resource management
framework

In the multi-cell case, external resource allocation algo-

rithms can compare the congestion in different cells to iden-

tify over-loaded and under-loaded cells and then reconfigure

the resources appropriately. Thus, if capacity is suddenly

made available to one cell, the congestion metric in all

cells will reflect the change and can be used to trigger

handovers or resource reallocation. The core aspect of the

proposed algorithm is the common function, which computes

the congestion metric at the cellular level. As seen from

the literature survey in Section III-A, this kind of joint

optimization that takes into account the user behaviour as

well as the availability of resources, is novel in the published

literature.

A. Demand regulation as an optimal control problem

The aggregate demand in each cell is due to the collective

dynamics of a large number of TCP connections, coexisting

in a shared channel of fixed capacity. This is modelled at

the cell-level by the state variable Xk
t for the kth cell. The

TCP and TCP-like connections enter and leave at various

times; however, since they share the same resources, their

collective behaviour is affected by the overall capacity of the

system. The coupling between the endpoints and the system

comes through packet drops. The packet drop rate is under

the control of the cell-level demand regulation mechanism.

The objective is to create an algorithm for regulating

aggregate demand as the cell level by setting the optimal

packet drop rate as a function of aggregate demand Xk
t

and cell-capacity Ck
t . The packet dropping is a congestion

signal, which acts to expose the state of network resources

to the UEs. By adjusting it as needed, and knowing how

the endpoints react to this signal, the aggregate demand (and

consequent throughput) Xk
t is driven to its desired value. It

is to be noted that packet dropping is processed individually

at each endpoint. However, it is still possible to control it so

as to influence the aggregate behaviour, as shall be shown.

The optimal level of Xk
t is a function of how much

capacity Ck
t is available and how close the aggregate demand

is allowed to come to it, i.e., the cell-level load factor. Ideally,

it should be allowed to be as close to the available capacity

as possible, without exceeding it, so as to keep utilization

high. However, allowances have to be made for the variation

in demand. The variation in demand is based on two parts.

One is the natural variation (connections terminating and new

ones arriving), captured through a random diffusion term. The

second is the variation of demand due to packet dropping; this

is captured in the model in (2). High level of packet dropping

can cause significant oscillations in Xk
t due to simultaneous

back-off by a number of endpoints; this is something to be

avoided by appropriate algorithm design.
1) Setting an optimal reward function: For a TCP connec-

tion, the instantaneous bandwidth is not of interest. Rather,

the total number of bytes transferred is what counts, which

is the integral of the instantaneous bandwidth variable. How-

ever, the cost of the deployed resources has also to be

incorporated. The optimization problem, as given in (15),

hence becomes choosing the optimal congestion response

u(Xt) to the current state, so as to minimize the integrated

cost function Φ(Xt, u(Xt)). The cost function will have

two parts, one of which handles the capacity demand gap

and the second the congestion signal. It is to be noted

that congestion signaling is a real cost, in the sense that it

comes from the deliberate packet drops in the core. Hence,

it has real consequences in terms of resource utilization. The

termination cost g(Xt) is of relatively little significance and

can be selected so as to enable us to solve this FBSDE, while

still being intuitively valid.

dX i
t=
(
W i − U i

tX
i
t

)
dt+ σdBt

U∗,i
t = arg0≤Ut≤1 minΦ(x0, Ut)

Φ(x0, Ut, rt)=

∫ T

0

{
φ(X i

t .U
i
t , rt)

}
dt+ g(X i

T ) (15)
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The variable rt is a set-point that is used as the target

capacity, and as of now, it is assumed that it is an independent

external variable supplied by the network management func-

tion. It has to be incorporated into φ() in such a way that cost

rises with |Xt−rt| . In the mean-field case, this variable will

contain the mean-field term, as shall be seen in Section VI-D.

The selection of the appropriate form Φ(x, u, r) is deferred,

till the form of the differential equation to be solved has been

established.

B. Existence of a solution - independent cells with target

congestion

The analysis starts with the non mean-field case, and is the

resultant solution is then extended to the mean-field case,

as suggested by [45]. The initial algorithm starts with the

standard form of the stochastic Hamiltonian (16). The suffix
i is dropped in the rest of this section, because the entire

analysis is only in the context of a single cell.

H(x, u, y) = y.b+ f = y(W −XtUt) + φ(XtUt, rt)(16)

There are two conditions that have to be fulfilled by the

optimal control function u. The first one, in (17), simply

requires that the derivative of the Hamiltonian is zero.

∂uH = 0⇒ −YtXt +Xt∂zφ(z)|z=XtUt
= 0

⇒ Yt = −∂zφ(z)|z=XtUt
(17)

The second one is the condition for the dual of Xt. Specif-

ically, it dictates that the optimization problem in (15) can

be solved if the variables Yt, Zt can be found such that (18)

holds [42].

dYt= −∂xH(Xt, Ut) + ZtdBt

= − (YtUt + Ut∂zφ(z)|z=XtUt
) dt+

∂xψ(Xt, rt) + ZtdBt

YT= ∂xh(Xt)|t=T (18)

Substituting the value of y from (18) in (18), we get (19).

dYt = −∂xψ(Xt, rt)dt− ZtdBt (19)

Our method takes a novel approach in the search for so-

lutions of Yt, Ut. Instead of solving the stochastic PDE

directly, it is converted to the equivalent functions in Xt, i.e.,

Yt = y(Xt), Ut = u(Xt), By Ito’s formula, y(Xt) can be

differentiated directly as given in (20). The advantage of this

approach is that it moves from derivatives in t to derivatives

in terms of Xt and it is possible to choose appropriate forms

of y() and u(). Direct solution of the FBSDE is not required.

dYt= ∂xy(Xt)dXt +
1

2
∂2xy(Xt)(dXt)

2

= ∂xy(Xt) ((W −Xtu(Xt)) dt+ σdBt) +
σ2

2
∂2xy(Xt)dt

=

[
∂xy(Xt) (W −Xtu(Xt))) +

σ2

2

]
dt+ (σ∂xy(Xt)) dBt

(20)

Comparing the terms with dBt from (19) with the above,

Zt = σ∂xy(Xt). Collecting the terms for dt from (20) and

(19), we get the identity in (21).

∂xy(x) (W −Xtu(Xt)) +
σ2

2
∂2xy(x) = −∂xψ(x, r)

(21)

1) Appropriate solutions for Yt: First, it is to be empha-

sized that the expression in (21) has no direct dependence on

t. Hence, it is only necessary to solve Yt and Ut as a function

of Xt. For this purpose, the previous relation between Yt and

U∗
t can be used, as y(x) = −∂zφ(Xt, u(Xt))|z=Xt.u(Xt)

from (17). There is another consideration, however, that

needs to be taken care of. The chosen solution should

degenerate to the non-stochastic case as σ ↓ 0. One way

of achieving this is to ensure that ∂2xy(x) to be of the

same form as ∂xy(x) (W − xu). Essentially, this means

that the expression on the left hand side of (21) becomes(
1− σ2/2

)
∂xy(x). Obviously, if σ ↓ 0, only the constant

multiplier changes.

To provide a solution, an appropriate form for the two

components of the reward function φ() and ψ() is proposed

as in (22). As discussed before, the first term incorporates the

aggregate demand and the congestion as the product XtUt

and the second term incorporates the gap between Xt and rt
as a cost;

φ(XtUt)= −
1

2
X2

t U
2
t

⇒ Yt= −XtUt(Xt)((17)) (22)

How can the form of φ() be justified as a cost function as

given in (22)? It can be seen that φ() decreases as XtUt rises.

In other words, if a high value of achieved bandwidth Xt can

be maintained in the face of high congestion Ut, the solution

is preferable. Since reduction of the congestion metric can

only be achieved by adding to the available resources within

the cell/network, it makes sense to reward the combination of

high congestion Ut and high bandwidth Xt. For the second

reward, the corresponding form of ψ(Xt, rt) is as given in

(23).

ψ(Xt, rt)= α
(
η − e−

Xt
rt

)2

∂xψ(Xt, rt)=
α

rt
e−

Xt
rt

(
η − e−

Xt
rt

)
(23)

The expression ψ(X, r) is designed to penalize deviation

of (Xt/rt) from the fixed term η. Xt/rt is the classical

utilization term and log(1/η) becomes the target value. β
is a discount factor with respect to the growth term W . W
and β are taken common in the rest of the expansion, but

actually can be scaled on a per-cell basis, as long as the ratio

W/β is maintained. As shall be seen subsequently, β can

be expressed in terms of η. η becomes the crucial operator

supplied constant, which controls the demand regulation

function. The higher its value, the tighter the regulation. The

system response to set values of η shall be demonstrated in

the Section VII when the simulation results are presented.
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2) Analytic solution of the FBSDE: It is now necessary

to use the forms of φ() and ψ() as given in (22) and (23) to

solve the stochastic PDE equation in (21). The deterministic

case is solved first and then the stochastic case is solved as

an extended form of the deterministic case. Hence the first

step to propose a form of y(x) such that ∂2xy(x) is of the

same form as ∂xy(x) or y(x)∂xy(x).
In this article, the latter approach is chosen; y(x) =

−β
(
1− e−

x
rt

)
as given in (24). Recall that rt is an inde-

pendent, but deterministic variable with known values at each

time t. By the second equation in (22), Yt = −Xtu(Xt). By

taking Yt as proposed in (24), the value of u(x) = y(x)/x
is well defined for small values of x. In fact, as x → 0, the

congestion term becomes ≈ β/rt.

Yt = −β
[
1− e−

xt
rt

]

∂xYt = −
β

rt
e−

Xt
rt

∂2xYt =
β

r2t
e−

Xt
rt (24)

Substituting this against the identity in (21), and taking

advantage of the fact that Xtu(Xt) = −Yt, the expression

in (25) are derived.

−∂xψ(Xt, rt)

=

[(
W − β

(
1.0− e−

Xt
rt

))(
−
β

rt
e−

Xt
rt

)
+
σ2

2

β

r2t
e−

Xt
rt

]

= −
β

rt
e−

Xt
rt

[
W − β −

σ2

2rt
+ βe−

Xt
rt

]

⇒ ∂xψ(Xt, rt) =
β2

rt
e−

Xt
rt

[(
β − (W − σ2

rt
)

β
− e−

Xt
rt

)]

(25)

By taking the corresponding form of ψ(Xt, rt) as given in

(23), the relationship between the operator supplied control

factor η and the corresponding values of β, α is as in (26).

η=

(
β + σ2

2rt
−W

)

β
,

β=

(
W − σ2

2rt

)

1− η
, α = β2 (26)

Hence, the appropriate form of the optimal control function

for the stochastic optimal problem as posed in this section,

as given in (27).

u∗t=
β

Xt

[
1− e−

xt
rt

]

β=

(
W − σ2

2rt

)

1− η
(27)

C. A practical justification of the proposed model

While there exists a solution to the given problem, it is still

necessary to justify the solution in practical terms. Starting

with the form of u∗t as given in (27) above, the original

state equation as given in (2) is examineded by taking the

computed form of yt and substituting the optimal value of

Xtu
∗
t (Xt) = −Yt. On doing this operation, we get the

transition function as given in (28).

dX i
t =

(
W i − β

(
1.0− e−

Xi
t

rt

))
dt+ σdBt (28)

It is to be noted that the term W i − β(1.0 − exp−
Xi

t

rt
) is

just W i for X i
t = 0 and reduces gradually, till it changes

sign for a particular value of X i
t , the transition value ((29)).

If the capacity available in a cell is known, it can be used in

the formula in (29) to set the appropriate value of β. Even

though W i can usually not be directly controlled, it can be

estimated from the number of UEs in the cell, since each UE,

in the uncongested case, simply increases transmission rate

by 1 segment per round trip time. Equilibrium in a cell can

be maintained simply by controlling the transition point, at

which the capacity change term in (28) turns negative. This

in turn gives us the practical capacity limit per cell (29).

Xc,i
t = rt log

(
β

W − β

)
= rt log

(
1

1− η

)
(29)

In other words, the terms W i and β play no role in the

equilibrium; they only control the elasticity of demand as

congestion changes. This is very important for the subsequent

analysis, because each cell will have a different combination

of users and the value of W i will vary from cell to cell.

Let us now consider the form of the optimal congestion

function u∗(X i
t) as given in (27). For small values of Xt/rt,

u∗t ≈ β/rt and the transition function starts behaving like a

standard Ornstein-Uhlenbeck diffusion problem.

Once again, η turns out to be the crucial external param-

eter that controls the equilibrium operating point. From the

expression of φ() and the relation between β and η in the

second equation in (26), it can be seen that η is a measure of

how close the current load Xt can be allowed to approach the

effective capacity rt. Adjusting this value means adjusting

value of β, which in turn controls the discounting of the

congestion term in (27) to the growth term W .

D. Extension to multiple cells - the mean-field problem

The control problem is extended in this section to incor-

porate the multi-cell case. The multi-cell case works on a

cluster of cells Nc whose capacity allocations are integrated

with each other, and allocations/deallocations of capacity are

done for the cluster as a whole. Further, the cells in the

cluster are geographically close to each other, and all users

have visibility of all the cells in the cluster; this is frequently

how hotspots are configured in urban areas. This assumption

allows us to implement joint allocation of resources and allow

movement of users between cells within the cluster. There is

no restriction to the size of the cluster, or the number of cells

in it, as long as the above restrictions hold.

Within the cluster, the demand regulation algorithm must

ensure that the cells are utilized evenly (load balancing) and

the congestion metric ukt gives both the UEs and the resource

management algorithm a good approximation of the overall

utilization within the cluster as well as the utilization within
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each cell. This is necessary to provide appropriate feedback

both to the UEs and to the resource management operating for

the cluster as a whole. The individual UEs freely move within

the cluster to optimize their QoS, based on the congestion

feedback. External resource management in turn uses the

congestion metric to compare relative utilization of capacity

and urgency of demand within the cells of the cluster.

Mathematically, the demand regulation algorithm has to

be modified so that the congestion metric tracks both the

cell-specific resource loading as well as the average loading

within the cluster. A cell with high load, but relatively less

metric is a signal to the UEs that there is surplus capacity

in some other cell within the cluster. On the other hand, a

cell with high load and a high metric indicates to UEs that

there is no surplus capacity in the entire cluster and that UEs

should pull back their demand so as to reduce loading within

the immediate cell. It is proposed to make this happen by

adding a cluster average term to the reward function. Recall

that the consolidated stochastic control problem is given as

in (30), for each jth cell in the cluster, and the corresponding

optimal congestion function is given in (31).

Minimize

∫ T

0

f(Xj
t , rt, u

j
t)dt+ g(Xj

T , r
j
T )

where dXj
t =

(
W −Xj

t u
j
t

)
dt+ σdBt

f(Xj
t , r

j
t )= β2

(
η − e

−
X

j
t

r
j
t

)2

−
1

2
(Xj

t u
j
t)

2 (30)

g(Xj
t , r

j
t )= β2

(
η − e

−
X

j
t

r
j
t

)2

Xt|t=0= x0

u∗,jt =
β

Xj
t

(
1− e−

Xt
rt

)
(31)

The term β
(
η − exp{−

X
j
t

r
j
t

}
)

penalizes the deviation of the

fraction Xj
t /r

j
t from the target value η, where rjt denotes a

kind of threshold level of resource usage within the cell. A

second factor is now introduced into rjt , which is the ratio

between the empirical average of Xt among all the cells in

the target cluster C, as shown in (32).

X̂t=
1

NC

NC∑

k=1

Xk
t

rt=
C1C2

X̂t

X̂t=
1

N


∑

j∈C

Xj
t




⇒
Xj

t

rjt
=
Xj

t

C1

X̂t

C2

(32)

Effectively, problem has been converted in to a mean-field

optimization problem, with the mean-field term being the

Figure 2. Evolution of the empirical mean for different values of W , η
and C

empirical average X̂t. For any individual jth cell, the con-

gestion signal ujt is then affected by both the cell’s own

bandwidth level Xj
t /r

j
t and the empirical average value.

Since rt is a part of the reward function, this turns the Nc

separate optimization problems (one per cell) into a game.

It is clear that the game has to be solved cooperatively.

For example, any individual cell raising Xk
t will cause the

empirical average to rise; this, in turn may cause one or more

of the other cells to cross the threshold term in the term ψ(),
which will force it to reduce its own Xj

t , j 6= k.

1) Solving the mean-field demand regulation problem:

The next step in the mean-field analysis is to compute

the function X̂t∀t. To do this, it is necessary to solve the

expectation of the original diffusion (2), substituting the

optimal value of ut as computed in (31). The corresponding

deterministic differential equation is given in (2). Note that

the diffusion term is no longer present; however, rt is also

no longer an independent variable.

dX̂t =

(
W −

β

X̂t

X̂tu(X̂t)

)
dt

=

(
W −

1

X̂t

(
W

1− η
−

σ2X̂t

2

2C1C2 (1− η)

)
X̂tu

∗
t (X̂t)

)
dt

=Wdt−

(
W

1− η
−

σ2

2CtC2 (1− η)
X̂t

)(
1− e−

X̂2
t

C1C2

)
dt

(33)

The differential equation in (33) can be solved numerically.

However, it is easy to see that a stationary point exists, where

dX̂t → 0. For small values of σ2, the stable point should

be at X̂ ≈
√
(C1.C2. ln(1/η)). The parameter W dictates

the rate of convergence. This is demonstrated in Figure 2,

which shows the evolution of X̂ for different combinations

ofW, η and C. As noted earlier, the value of W has no impact

on the final equilibrium achieved, only the equilibrium rate.

Hence, one can also model heterogeneous populations within

cells, where different cells have different numbers of UEs

and further, different UEs have different traffic generating
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patterns facing different round trip times. At the top level,

the combination of these just add up to different values of

W for each cell. Since the value of W plays no part in the

optimal control term given in (27), it is also not something

that needs to be estimated.

In the final step, the mean-field term is inserted back

into optimal transition function to get the mean-field optimal

control law. The optimal control thus occurs in two steps

at each time t at each cell. First the current value of X̂t is

estimated, either by directly sampling it from all cells within

the cluster, or by each cell computing the current value from

(33). It is then inserted back into (27) so as to get the optimal

congestion metric ut for each cell. The congestion metric is

used to set the buffer value based on the dynamic given in

(4) and (5).

VII. SIMULATION RESULTS

In this section, the performance of the mean-field demand

regulation algorithm through simulation is shown. There are

two primary purposes to the simulation. One is to show

how the simulation stabilizes the performance of the entire

system by providing appropriate feedback in each cell. The

second is how the simulation allows cooperative resource re-

distribution to take place, by providing the appropriate signals

to the end-user and the network resource allocation function.

The mean-field based demand regulation algorithm has

been simulated on a six-cell cluster, each cluster being

allocated a set of UEs and a set of resources Each UE

is downloading data using a simplified TCP-Reno protocol

stack, with a Maximum Segment Size (MSS) of 1200 bytes

and a maximum window size of 64. It is assumed that the

round-trip time is approximately 50ms, which means that

each UE has a saturation transmission rate of 12.3 Mb/s.

The cells each have a capacity of about 50Mb/s. Congestion

signalling is performed by each cell by fair dropping (as used

in RED), using the dropping rate computed by the demand

regulation algorithm. In the case where there is no dynamic

congestion signaling, a buffer of approximately 1MB is avail-

able to each cell, subject to Random Early Dropping. The

base stations/eNodeBs use a simple fair-sharing scheduling,

using Scott Shenker’s fair sharing protocol, with bandwidth

delay trade-off. There is a baseline packet drop rate of 10−5,

with minor or no impact on the system.

A. Comparison against the default situation - no demand

regulation

The first scenario compares the performance of the pro-

posed algorithm against the situation where there is no

demand regulation algorithm working. The first three cells

start out with 24 active UEs each and the second three cells

with 12 active UEs each. Each cell is allocated capacity

equivalent to 100Mb/s. The comparative results for aggregate

bandwidth utilization are presented in Figure 3. There are

three congestion cases presented with operator supplied η
value of 0.3, 0.5 and 0.6 corresponding to the graphs in

Figures 3b, 3c and 3d respectively.

Two things stand out very clearly from the above. First,

it is clear that bandwidth hunting TCPs operating in a cell

with limited capacity will drive the bandwidth utilization

to saturation, regardless of the number of users [Figure

3a]. Second, congestion feedback is an effective tool to

regulate the behaviour of TCPs in this regard. Recall from the

discussion in VI-B that the parameter η regulates the impact

of the mean-field term on the generic control function. For

small values of η, mean-field demand regulation is switched

off. As η approaches 1, the effect of mean-field demand

regulation starts dominating overall performance. The result

can be seen in the demand regulation cases shown in the

Figures 3b, 3c), 3d. As the value of η rises, sharply rising

congestion feedback forces users in congested cells to back-

off in order to avoid saturating the cell. Further, recall that

β is approximated by W/(1 − η). Hence, for larger values

of W , the demand regulation algorithm is more aggressive

in communicating congestion to the end-users as is expected

from the model.

An alternative scenario is given in the second set of graphs

in Figure 4, where the number of users in each cell is

the same (20 users per cell), but the capacity allocation is

different. The first three cells have 50Mb/s capacity each,

whereas the last three cells have 36Mb/s. The unregulated

demand case and the case where demand is regulated by

setting η to 0.3 is presented in Figures 4a and 4b respectively.

The congestion metric for the second case is presented in

Figure 5. It is clearly seen how the congestion metric clearly

separates out the two different cells, so that the lower capacity

cells see a higher congestion metric, even though the capacity

utilization value is the same. This allows the system to

handover cells from lower to higher capacity cells, using the

congestion metric as a guide.

B. Performance in conjunction with macro level resource

management

In this section, it is shown how the demand regulation

algorithm works when coupled with external resource man-

agement. The simulation is extended to include both user

initiated network assisted handover (based on congestion)

and dynamic resource swapping between cells. The macro-

resource management entity is treated as an external module,

which has visibility into the basic runtime statistics of each

cell; number of UEs, allocated channels and (in the cases

where demand regulation mechanism is active) the computed

congestion metric. The resource management as well as

handover is continuously active. At each frame it selects pairs

of cells and moves a unit of spectrum from one to the other

with a probability proportional to the gap between the load

metrics. The load metric for a cell is either the computed

congestion metric, if available, or the number of UEs in

the cell. The same metric is communicated to UEs that are

considering handover, by network signaling. The UEs use the

same probabilistic approach to choose when to handover. It

may be argued that this is an overly simplistic mechanism

for macro-resource management. Our position is that the

specifics of the mechanism may be kept simple, because the
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(a) No demand regulation (b) Regulated demand, η = 0.3

(c) Regulated demand, η = 0.5 (d) Regulated demand, η = 0.6

Figure 3. Simulation results - six cell cluster, comparative capacity utilization, variable users per cell, no handovers

focus is on how useful the proposed demand regulation is in

working with this or any other macro-resource management

algorithm.

For the simulation, the six cell scenario is retained, but

now each cell start with a variable number of users and

a variable amount of bandwidth per cell. To make matters

interesting, the cells with the maximum capacity available

have the minimum number of users to start with. The

first three cells have 100 Mb/s of capacity and 10 users

each. The last three cells have 50Mb/s of capacity and 20

users each. The comparison is between the default case (no

demand regulation) and the cases where the proposed demand

regulation algorithm is running with η values of 0.3 and

0.5. The simulation starts off with the macro level resource

management disabled for the first 4000 frames and then is

switched on. The transition can clearly be seen in the two

figures.

Figure 6 shows the comparative bandwidth utilization

between the default and the demand regulation algorithm. It

can be seen that macro-resource optimization is working in

both the cases; however, whereas the default case still shows

different levels of utilization in the cells after rebalancing

(Figure 6a), the managed demand/congestion cases provide

an extremely tight balancing with respect to the default case.

In both the η = 0.3 case (Figure 6b) and η = 0.5 (Figure

6c) cases, the capacity utilization stabilizes to a similar level

of 90% after the rebalancing takes place.

To understand the reason for the difference, note how the

congestion signal is computed in Figure 7a and Figure 7b

below, corresponding to the η = 0.3 and η = 0.5 cases

respectively. The default case does not use the congestion

metric for feedback; rather it uses the number of UEs in

each cell. In this situation, the number of UEs per cell is

quickly balanced. However, each UE has its own rate-control

and when one moves to another cell, it takes a long time

to adjust its current state based on the new environment.

Hence, even within the same cell, there is large variation

in the performance between UEs. On the other hand, the

congestion-metric computed by the demand regulation metric

already takes network state into account. This means that
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(a) No demand regulation for variable capacity cells (b) Demand regulation for variable capacity cells, η = 0.3

Figure 4. Simulation results - six cell cluster, comparative capacity utilization with variable spectrum allocation per cell

Figure 5. Congestion metric value, η = 0.3

all UEs have similar rate-control states once equilibrium

is reached and they tend to have very similar performance

subsequently. One of the purposes of demand regulation is

provide fair allocation of capacity. The fairness of allocation

is measured in terms of a metric γ that measures the spread

of allocations (achieved throughput) per UE in a given cell.

The metric is computed as in the equation (34) where t(m)
measures the throughput of the mth UE and Nk is the set of

UEs in the kth cell.

γk =
maxj∈Nk

t(j)−minj∈Nk
t(j)

maxj∈Nk
t(j)

(34)

Figure 8 shows the allocation fairness for each of the

simulated cases. Since fair scheduling has been implemented

within each cell, the difference is purely because of the dis-

balance between allocated capacity and per-cell demand. This

simulation shows the difference in the starkest terms. Because

the congestion metric takes into account the global state, it

forces the per-UE allocation into a tight band, with complete

fairness between cells.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated the application of

mean-field stochastic optimal control to the problem of

optimal resource management in a wireless cellular network,

one of the most demanding problems of wireless network

control. We have demonstrated that we can apply mean-

field control to regulate demand within individual cells, in

keeping with cell-specific and network wide capacity levels.

Consequently we have demonstrated that an integrated load-

balancing and resource deployment solution can be achieved,

with significantly superior performance, as opposed to the

standard case where demand is not regulated and resource

allocation uses external metrics such as the number of UEs

in a cell. As part of the theoretical framework, we have also

derived a closed form analytical solution for a non-linear

mean-field model, which is novel in the MFG literature.

As we have shown, this algorithm is implementable by

incorporating it directly the dynamic buffer management at

the cellular and system level. This is sufficient to provide the

appropriate feedback to the end-users. We also show how

the same dynamic buffer management algorithm works with

macro-resource optimization algorithms to achieve stability

and fair load-balancing, across multiple cells. The application

of stochastic control techniques, and stochastic games in

general, has rich potential application in the wireless and

cellular domain.

In future work, this shall be extended to more advanced

problems, such as coordinated multi-point, multi-user Multi-

Input Multiple Output (MIMO) and dynamic network slicing

for 5th generation networks. Here, a key extension will be

to track the UE when it is a member of more than one

cell at any point of time. In this situation, the mean-field

control will apply not just to the cell, but to the UE as

well. A second possible area of work is in application to
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(a) No demand regulation (b) Regulated demand, η = 0.3

(c) Regulated demand, η = 0.5

Figure 6. Simulation results - six cell cluster, comparative capacity utilization with handovers and channel swapping

heterogeneous environments, such as leader-follower envi-

ronments, as studied in [7]. This kind of environment occurs,

for example, when there is a single macro-cell and multiple

small-cells; the macro-cell follows its own individual control

law, to which the small cell has to adapt. This gives rise

to interesting one-sided equilibriums, which are not readily

solved using the Nash Certainty Equivalence principle. These

shall be considered in future work.
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(a) Regulated demand, η = 0.3 (b) Regulated demand, η = 0.5

Figure 7. Simulation results - six cell cluster, congestion metric feedback to macro resource controller

(a) No demand regulation (b) Regulated demand, η = 0.3

(c) Regulated demand, η = 0.5

Figure 8. Simulation results - six cell cluster, allocation fairness with handovers and channel swapping
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