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Abstract—Fast and accurate beam shaping mechanism is the
key enabler in the use of millimeter-wave in the 5th Generation
cellular systems in order to achieve low latency and high data
rate requirements. Recent advances in Deep Learning (DL) has
shown that Deep Learning (DL) based techniques can play a
significant role in efficient beam shaping. For effective operation,
it is essential that the ML based beam management algorithm
should be deployed at the place in network where all the relevant
input parameters needed for beam management are available
continuously as well as the output of the beam management
can be applied instantly. In this paper, we shall demonstrate
how an edge-based Deep Learning program can be used to
implement adaptive mm-wave beam-shaping, so as to optimally
use millimeter wave channels.
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I. INTRODUCTION

The millimeter wave (mmWave) frequencies offer the

availability of huge bandwidths to provide unprecedented

data rates demand for Fifth Generation (5G) applications.

However, mmWave links are highly directional and are

susceptible to severe free space pathloss and atmospheric

absorption. To address these challenges, the base stations

and the mobile terminals use directional antenna arrays and

dynamic phase shifting to achieve sufficient link budget in

wide area networks. Directional links, however, require fine

alignment of the transmitter and receiver beams, achieved

through a set of operations known as beam shaping. These

operations are fundamental to the performance of a variety of

control tasks . For example, one of these tasks is the Initial

Access (IA) for idle-mode users, which allows a mobile

User Equipment (UE) to initiate and establish a physical link

connection with a gNB (5G base station). A second operation

is Beam tracking, which enable beam adaptation schemes,

or handover, path selection and radio link failure recovery

procedures for connected millimeter wave user terminals

[1,2].

In figure 1, we show a few steps in the beam management

procedure for 5G Stand Alone (SA) scheme. In existing

Long-Term Evolution (LTE) systems (using spectrum in 3-

5 GHz), these control procedures are performed using om-

nidirectional signals, and beamforming or other directional

transmissions can only be performed after a physical link

is established, for data plane transmissions. However, in

mm-wave access, due to the extreme directionality of the

channels, it is essential to exploit the antenna gains even

during initial access and for all control operations, even

though they require a very small amount of data exchange.

(a) Standalone beam-management procedure

(b) Sequential Beam Sweeping

Fig. 1. Beam Management options in 5G networks

Hence, there is a need for precise alignment of the transmitter

and the receiver beams while minimizing the time taken

in beam acquisition and training. The initial access in 5G

millimeter wave is a time-consuming search to determine

suitable directions of transmission and reception. For exam-

ple, in the cell discovery phase, one approach is sequential

beam sweeping by the base station that requires a brute force

search through many beam-pair combinations between UE

and gNB to find the optimum beam-pair i.e., the one with

the highest reference received signal power (RSRP) level,

as shown in Figure 1b. The sequential search may result

in a large access delay and low initial access efficiency. It

also consumes a fair amount of energy in the receiver, which

makes it unsuitable for energy constrained receivers, such as

Internet of Things (IoT) endpoints.

Even if we use the existing LTE techniques of having a

wide area beam for initial attachment and then data connec-

tion on the mm-wave beams, the beam shaping problem is

only deferred to the PDSCH selection phase. Additionally,

the PDSCH requires far better alignment than the PDCCH,

because of the higher datarates required.

In existing LTE systems, DL channel quality is estimated

from an omnidirectional signal called the Cell Reference Sig-
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nal (CRS) [3] for beam alignment and selection in connected

state. CRS is regularly monitored by each UE in connected

state to create a wideband channel estimate that can be

used both for demodulating downlink transmissions and for

estimating the channel quality [4]. In 5G mmWave networks

CRS-based estimation is challenging due to the directional

nature of the communication, thus requiring the network and

the UE to constantly monitor the direction of transmission

of each potential link. Tracking changing directions can

decrease the rate at which the network can adapt and can be

a major obstacle in providing robust and ubiquitous service

in the face of variable link quality. In addition, UE and gNB

may only be able to listen to one direction at a time, thus

making it hard to receive the control signaling necessary to

switch paths. Recent studies by [5] and others establish that

the typical millimeter wave channel has multiple rays, but

each ray has a very narrow boresight, hence offering very

small degrees of error tolerance. From the above description,

it is apparent 5G networks should support a mechanism by

which the users and the infrastructure can quickly determine

the best directions to establish the mmWave links. These are

particularly important issues in 5G networks and motivate

the need to extend current LTE control procedures with in-

novative mmWave-aware beam management algorithms and

methods. In this paper, we have proposed a Deep Learning

based algorithm for predicting channel parameters based on

user location. Combined with a simple offset based precoder,

we have shown how our Deep Learning algorithm allows us

to acquire optimal channels relatively quickly as compared to

conventional search based techniques. We have justified this,

using simulation results using real-life data from a ray-tracing

model developed by [30], It has been observed that the online

DL based techniques gives superior performance than offline

DL based techniques. Online DL techniques efficiently adapt

themselves to support high mobility in mmWave systems.

Deployment strategy for the training of these deep learning

algorithm has been explored in this paper. and it has been

proposed that wireless edge is the appropriate place for the

deployment of these DL based algorithm for beam manage-

ment. Since our proposed algorithm runs in realtime, we shall

show that is suitable for deployment in a hybrid form, with

the training being done in the cloud and the actual prediction

taking place in the wireless edge. The remainder of this paper

is organized as follows. Section II discusses the literature

survey of traditional (non- ML/DL) as well as ML/DL based

beam management techniques which have been proposed in

recent years. In Section III we introduce the formal model

of the mm-wave channel and propose a simple offset based

algorithm which can be used for beam-shaping, once the

channel parameters have been estimated. In Section IV we

discuss the design of the deep learning algorithm, the data

set used for training and testing the associated challenges

of implementation. Finally, in Section V we provide our

simulation results, discuss the deployment considerations at

the edge and finish with our the conclusions.

II. LITERATURE SURVEY

In the following section, work related to traditional (Non-

ML/DL) and ML/DL based beam management has been

captured.

A. Traditional (Non-ML/DL) based beam management

Several approaches for directional based schemes has

been proposed in the literature, to enable efficient control

procedures for both the idle and the connected mobile ter-

minals. Most literature on Initial Access and tracking refers

to challenges that have been analyzed in the past at lower

frequencies in ad hoc wireless network scenarios or, more

recently, referred to the 60 GHz IEEE 802.11ad WLAN

and WPAN scenarios (e.g., [6,7,8]). However, most of the

proposed solutions are unsuitable for next-generation cellular

network requirements and present many limitations (e.g., they

are appropriate for short range, static and indoor scenarios,

which do not match well the requirements of 5G systems).

In [9,10], the authors propose an exhaustive method that

performs directional communication over mmWave frequen-

cies by periodically transmitting synchronization signals to

scan the angular space. The result of this approach is that

the growth of the number of antenna elements at either

the transmitter or the receiver provides a large performance

gain compared to the case of an omnidirectional antenna.

However, this solution leads to a long duration of the Initial

access with respect to LTE, and poorly reactive tracking.

Similarly, in [11], measurement reporting design options

are compared, considering different scanning and signaling

procedures, to evaluate access delay and system overhead.

The channel structure and multiple access issues are also

considered. The analysis demonstrates significant benefits

of low-resolution fully digital architectures in comparison

to single stream analog beamforming. More sophisticated

discovery techniques are reported in [12,13] to alleviate

the exhaustive search delay through the implementation of

a multi-phase hierarchical procedure based on the access

signals being initially sent in few directions over wide

beams, which are iteratively refined until the communication

is sufficiently directional. In [14], a low-complexity beam

selection method by low-cost analog beamforming is derived

by exploiting a certain sparsity of mmWave channels. It is

shown that beam selection can be carried out without explicit

channel estimation, using the notion of compressive sensing.

The issue of designing efficient beam management solutions

for mmWave networks is addressed in [15], in which the

author designs a mobility-aware user association strategy to

overcome the limitations of the conventional power-based

association schemes in a mobile 5G scenario.

Other relevant papers on this topic include [16], in which

the authors propose smart beam tracking strategies for fast

mmWave link establishment the algorithm proposed in [17]

takes into account the spatial distribution of nodes to allocate

the beam width of each antenna pattern in an adaptive fashion

and satisfy the required link budget criterion. Since the pro-

posed algorithm minimizes the collisions, it also minimizes

the average time required to transmit a data packet from the
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Fig. 2. Beam Sweeping in sparsely distributed UE Scenario

source to the destination through a specific direction. In 5G

scenarios, some papers [9,10,11] give some insights on trade-

offs among different beamforming architectures in terms of

user communication quality. Finally, in [18,19], the authors

evaluate the mmWave cellular network performance while

accounting for the beam training, association overhead and

beamforming architecture. The results show that, although

employing wide beams, initial beam training with full pilot

reuse is nearly as good as perfect beam alignment.

B. ML/DL based beam management

The recent progress in Machine learning and Deep Learn-

ing has raised interest in applying these techniques to com-

munication system related problem [20,21,22,23,24,25,26].

On the same lines compared to the traditional beam manage-

ment approaches data-driven Deep learning-based approaches

has been used for efficient beam management. The key idea is

that ML/DL is used to make recommendations of promising

beam pairs based on the various system parameters as well

as past beam measurements. Within the mm-wave systems,

ML/DL have been discussed for three specific functions.

The first is beam-sweeping (Figure 2), which refers to the

generic problem of determining how the coverage area is to

be swept by the pilot beam(s), so as to optimize coverage and

capacity. There are various papers which focus on predicting

the proposed Beam sweeping pattern based on the dynamic

distribution of user traffic. In [27], a form of recurrent neural

networks (RNNs) called a Gated Recurrent Unit (GRU) has

been proposed. In this paper, the spatial distribution of users

is inferred from data in Call Detail Records (CDRs) of the

cellular network. Results show that the spatial distribution of

the user population and their approximate location (direction)

can be accurately predicted based on CDRs data using

GRU, which is then used to calculate the sweeping pattern

in the angular domain during cell search. In [28] beam

sweeping pattern based on Gated Recurrent Unit (GRU) is

compared with random starting point sweeping to measure

the synchronization delay distribution. Results shows that this

deep learning beam sweeping pattern prediction enable the

UE to initially assess the gNB in approximately 0.41 of a

complete scanning cycle with probability 0.9 in a sparsely

distributed UE scenario. In Figure 2 it has been demonstrated

that in case of sparsely distributed UE scenario, DL based

techniques can help to reduce the number of beams to be

traversed during beam sweeping. As a result, it will reduce

the sweeping time drastically.

A second area of usage is in fast-beam alignment (Figure

3) for which the position information may be leveraged.

Fig. 3. Beam Management based on Position Information

Inverse fingerprinting is one approach to exploit position

information [29], which works in Non-Line-of Sight (NLOS)

channels. There are multiple research papers [30,31,32]

which focus on using machine learning to make recom-

mendations of promising beam pairs based on the location

of the UE position relative to the gNB and past beam

measurements. The UE location and past beam measurements

can be input into a learning algorithm that learns to rank

promising beam directions. By prioritizing beam training in

top-ranked directions, the training overhead can be reduced.

Figure 3 shows the steps of beam management based on

Position Information.

In [31], the author proposes UE position-based beam

alignment in the context of vehicular communication. that

this inverse fingerprinting method is efficient. However, the

proposed approaches have some limitations. First, the ap-

proach is offline, which means its use is delayed until the

database is collected. Second, also due to being offline, its

performance depends entirely on the accuracy of the collected

database, which may become stale over time. To overcome

these shortcoming Online approaches have been proposed. In

the online approach it has been proposed to keep collecting

new observations during operation, making it possible to

improve the database. Machine learning tools combined with

awareness of the proximity situation has been proposed in

[33] to learn the beam information (power, optimal beam

index, etc.) from past observations. In this paper, situational

awareness that are specific to the vehicular setting including

the locations of the receiver and the surrounding vehicles has

been considered. The result shows that situational awareness

along with machine learning can largely improve the pre-

diction accuracy and the model can achieve throughput with

little performance loss with almost zero overhead.

Finally, we have coordinated beamforming, where multiple

base-stations or radio-heads simultaneously try to optimize

their beams so as to target a user or a population of users.

A coordinated beamforming solution using deep learning

was proposed in [34]. In this paper, the received training

signals via omni-reception at a set of coordinating Base

Stations (BSs) are used as the input to a deep learning

model that predicts the beamforming vectors at those BSs

to serve a single user. These coordinated beamforming

deep learning techniques are based on supervised learning

techniques, which assume an offline learning setting and

require a separate training data collection phase. However,

there are papers which focus on online learning algorithms

using the Multi Armed Bandit (MAB) framework, which

is a special class of Reinforcement Learning (RL). Further,

the work in [32,35,36] propose beam alignment techniques

using Machine Learning. Position-aided beam prediction was

proposed in [32,35]. Decision tree learning was used in [35],
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and a learning-to rank method was used in [32]. The work

in [32,35,36] shows that machine learning is valuable for

mmWave beam prediction.

III. THE PROBLEM OF CHANNEL ESTIMATION

In order to implement any kind of beam-shaping, we must

first understand the relevant channel characteristics. In this

section, we consider the specifics of the mm-wave channel

in more detail. On the basis of multiple empirical studies

[5,37] the currently most widely accepted channel model for

mm-wave systems is the clustering model proposed by ITU-

T. Here, the signal is assumed to be received in K clusters;

each cluster is modelled in terms of a power fraction, an

angle of arrival/departure, the beamspread (which measures

the dispersion of the AoA/AoD) and a delay spread. In [38],

the authors make an empirical measurements based on this

cluster model for the 28Ghz and 73Ghz channels. The data

shows that a typical channel has 1 ≤ K ≤ 4 clusters, where

the strongest cluster component contains approximately 60%
of the total power. The horizontal angular spread was of the

order of 1◦. In other words, the clusters have highly specific

beam directions, with relatively tight angular dispersion.

A. DFT based beam-shaping for directional channels

In this section, we introduce the a mathematical model of

the multi-antenna transceiver for the mm-wave channel. We

consider a linear array of receivers with inter-receiver spacing

d, receiving a signal of wavelength λ. The receive signal has

wavelength λ. The transmit signal has a spatial amplitude

distribution given by s(θ), −π/2 ≤ θ ≤ π/2, where θ is an

angle of arrival (with respect to the normal of the antenna

array) in the plane of the array. The corresponding intensity

of the recieved signal as a function of any arbitrary direction

θ in (1) of (1).

G(θ) = s(θ)

M−1∑

m=0

ejkωwk (1)

ω = 2π
d

λ
sin(θ) (2)

I(θ) = [s(θ)G(θ)]2 = s2(θ)

(
1− ejMω

1− ejω

)2

(3)

Typically, d/λ is standardized to a fraction df which is

usually set to 0.5 or 0.25, tuned for the particular spec-

trum we are interested in. The maximum intensity is at

Mω = −π/2 ⇒ θ = sin−1
(

1
2Mdf

)
. In most cases, the

transmit signal comes from a specific direction θd, which

means that the function s() can be represented as a Dirac

delta function s(θ) = δ(θ − θd) or possibly a sharp pulse

function like a root raised cosine function s(θ) = rrc(θd, β).
The receiver needs to ensure that the equation (3) has a

maximum at θ = θd, so as to gather the signal from the

optimal direction. In that case, we add a artificial phase shift

Ψ =
[
1 eψ e2ψ . . . e(M−1)ψ

]
between successive

elements of the array. The equation (3) gets converted to (4),

by introduction of the phase shift vector.

ω= πdf sin(θd) + ψ = −
π

2M

ψ= −
π

2M
− πdf sin(θd)

≈ −πdf sin(θd),M →∞ (4)

The double-directional channel is a straightforward exten-

sion of this, except that each of the transmitter and the re-

ceiver have to independently choose their optimal phase shifts

tuned to their specific directions. The mm-wave channel is a

combination of L > 1 double directional channels or paths,

each path associated with a delay τl, complex attenuation

βl and a specific pair of AoD/AoA angles φl,t, φl,r, where

1 ≤ l ≤ L. As stated above, we need to beamshape

the transmit/receive arrays independently so as to achieve

the optimum directional tuning; because we have L paths

and not just one, the optimization is a more challenging

problem. To this end, we introduce the beamshaping vector in

each direction as Bt =
[
b1,t b2,t/r . . . BN,t

]
and the

equivalent for the receive side, where ‖Bt‖ = 1 to maintain

the power transmission constraint. The transmit signal can

now be written as in (5)

Gt(θt) =

N∑

k=1

bk,te
ωt,k (5)

B. Beamshaping by choosing an appropriate offset angle

In this section, we shall outline a simple beamshaping

algorithm which can be implemented in real-time for a

multiple-cluster channel, based on the beam-directions (an-

gles of arrival and departure). It has much lower computation

load than the traditional optimization algorithms and its

performance improves as the number of transmit/receive

antenna (the size of the MIMO) increases. We first define the

function g(θ) = exp{−j2πθ} and note that by our definition

that g() has the following properties.

g∗(θ)= g(−θ)

g(θ1).g(θ2)= g(θ1 + θ2)

g(θ).g∗(θ)= 1 (6)

We then define the column vector αN (θ) as in (7)

α(θ) =




1
g(θ)
g(2θ)
. . .

g((N − 1)θ)




(7)

We note that the transmit channel α(θt) and the beamforming

matrix M =
[
α(θ1) α(θ2) . . . αN (θM )

]
should be

such that the vector product of the two has just one of the

entries to be non-zero; in [39], the authors introduce a metric

of dispersion which measures precisely this. We can achieve

this if M is orthonormal and α(θ) is aligned to one of the

columns in M. Orthonormality for M is equivalent to the
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condition α(θi)
H .α(θj) = 0 for i 6= j. From (7), we get the

expression for the vector product as in (8)

α(θi)
Hα(θj)=

N−1∑

k=0

g(−kθi)g(kθj)

=

N−1∑

k=0

g(k(−θi + θj))

=
1− g(N(−θi + θj)

1− g(−θi + θj)
(8)

=
1− ej2π(θi−θj).N

1− ej2π(θi−θj)
(9)

Setting the last expression of (8) to 0, we get that the condi-

tion is effectively that θi−θj = l/N for any non-zero integer

l. A suitable choice for θi =
k
N + φ,−N/2+ 1 ≤ k ≤ N/2.

We note that this is equivalent to the product of the N
point DFT matrix W and a diagonal phase-rotation matrix

Dφ = diag
[
g(φ) g(φ) . . .

]
.

We now consider a single ray defined by the 3-tuple

〈β, θt, θr〉 corresponding to the fading, the angle of departure

from the transmitter and the angle of arrival to the receiver

respectively. The corresponding channel matrix is defined

in terms of the matrix product H = β
(
α(θr)α(θt)

H
)
. We

assume that the transmitter has P antennae and the receiver

Q antennae.

We now show a simple technique by which to beam-

shape the transmission, so that the virtual channel matrix

Hv has minimum dispersion of channel energy. To imple-

ment this, we find, for each of the transmitter and receiver,

0 ≤ p, q ≤ N − 1 , so that p/P ,q/Q are the closest to θt, θr
amongst all possible values of p, q. We then choose phase

angles φr, φt such that q/N + φr = θr, p/N + φt = θt.
If we then construct transmit and receive precoding matrices

Vt =WPDφt
,Vr =WQDφr

, we can show that the resultant

virtual channel matrix has non-zero entries only on the p and

q diagonal entries. Because the phase angle shift is constant,

the orthonormality of the DFT matrix is retained due to the

nature of (9). We note that p does not necessarily have to

be the smallest value; any value of p, q is adequate provided

that |θt − p/P | ≤ 1/P and equivalently for θr, q, Q.

1) The effect of error: We consider the scenario where the

estimated transmit angle θ̂t = θt+ δt. The corresponding ψ̂t
will also change; the change is not linear in the error term,

because of the implicit modulus over 1/P .

α[θt]α
∗[θt + δt] =

∑

k

g(kθt)g
∗(kθt).g(kδt)

=
∑

k

g(kδt) =
1− g(Pδt)

1− g(δt)

A similar equation holds for the orthonormal columns in

the DFT matrix, except that for them, there is an additional

integer multiple of 2π, as shown in (11).

α[θt]α
∗[θt + (l/P ) + δt] =

∑

k

g(kθt)g
∗(kθt).g(kδt)

=
∑

k

g(kδt) =
1− g(l+ Pδt)

1− g(δt)
(11)

Fig. 4. Variation of SINR with the error term

Fig. 5. Optimal Offset Calculation

1: procedure FINDBESTPHASE(L, β[], a[], P ) ⊲ Cluster

size, β values, angles, number of antenna

2: Sort a[] in decreasing order of β
3: Ψ← 0
4: for each angle in the cluster j do ψ∗ ← 100 ;

5: r ← β[j]
Σmβm

6: for each antenna slot 0 ≤ k < P do

7: φ← |a[]− k/P |
8: if φ < ψ∗ then

9: ψ∗ ← ψ
10: end if

11: end forΨ← Ψ ∗ (1− r) + ψ∗ ∗ r
12: end for

13: end procedure

The chart in Figure 4 shows the impact of the error on the

SINR. As is expected, the chart is asymptotic with a cutoff

at approximately 1% of error.

2) Handling multiple clusters: We now consider the prob-

lem of handling multiple cluster elements, each having an

individual pair of arrival and departure angles 〈θit, θ
i
r, β

i
r〉. We

wish to continue to use the offseting approach from III-B.To

do this, we need to find a single common pair of shifts ψr, ψt
which works for all L clusters. Assuming that all the cluster

angles fall within the range [2π−N/2−1
N , 2π−N/2+1

N ], this can

be done by find pl, ql for each pair, so that the corresponding

residual is mapped into a common ’slot’ and then choosing a

phase shift for that slot applicable to all the pairs. How this

works is shown in the procedure given in Figure 5.

IV. ESTIMATING CHANNEL DIRECTIONS USING MACHINE

LEARNING

From the discussion in Section III, we have established

that given a good estimate of the angles of arrival and

departure of the mm-wave channel, it is possible to construct

beam-shaping precoders/decoders for the mm-wave channel.

However, the challenges of doing blind estimation of these

parameters using conventional search techniques is well-

established [39,40]. Because the boresight is very tight, a
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detailed search (typically heirarchical) is required to get a

good first fix, after which iterative improvement is possible.

This requires multiple sweeps of the channel using by both

transmitter and receiver and can considerably delay the chan-

nel lock time. Of course, if one of the two are mobile, then

the problem is even more challenging, because the channel

angles change rapidly with the environment.

Machine learning has been suggested in a multitude of

works [28,30,31] as a suitable technique by which to get a

quick estimate of the 〈AoA,AoD〉 pairs for a cluster of mm-

wave double-directional paths. As has been identified in the

literature, the key to the successful use of ML is to find the

optimal fingerprint to use as the input to the ML algorithm.

Since ML algorithms operate on the basis of training, we

have to find some parameter which has a constant mapping

to the AoA/AoD pairs, within the highly variable mm-wave

environment; if we can’t, then the entire basis for an ML

based algorithm is moot.

A. Applicability of Machine-Learning techniques to the prob-

lem of beam selection

Machine learning techniques operate in two stages [41].

The first learning phase, the ML engine is fed a sequence of

training data; each data-set consists of a two parts; the data

domain identifier (also called the finger print), the action and

the outcome. The task of the ML-engine is to develop an

association between the fingerprint, the set of actions and

the outcome, which is implicitly stored in its model. In the

second application phase, the ML-engine is fed a real set of

data, consisting of the identifiers; for each such identifier, it

uses its internal model to suggest the action which will give

a good outcome.

We can write this as a formal model, where the identifier

i is taken from a space I, the action a is from the set A and

the outcome o is from the space O. The physical process is

represented as a function f given by f() : I × A −→ O.

We assume that the outcome space O consists of a small

number outcomes {o1, o2, . . . , oK}, where each ok is an

open ball in O. If f() is an onto-map, we can then as-

sume that the domain I × A is a union of individual sets

Γ1 = f−1(o1),Γ2 = f−1(o2), . . .. The purpose of Machine

Learning, is to determine the structure of sets Γk, based on a

certain number of observations or training inputs vtj = f(itj),
without explicitly knowing the structure of f(). We further

assume that f() changes slowly enough with time, so that for

any given period |t · · · t+∆|, the change in f() due to time

is either negligible or can be linearly interpolated. We recall

that this is one of the reasons why ML cannot be used in the

standard sub-6Ghz MIMO case, since the channel changes

rapidly on a frame-to-frame basis.

Even with the above quasi-stationarity condition, there are

three possible structures for
⋃
k Γk, of which only one is

amenable to the Machine Learning space. In the first case,

each Γk is an open ball in I × A and fk : Γk → ok the

restriction of f() to the kth set in I×O is a continuous map.

This is the simplest case to consider, and does not typically

require an ML based solution. The second case is when

the sets Γk are ǫ-dense in each other i.e. ∀x ∈ Γk, δ∃y ∈
Γj 6=ksuch that|y − x| ≤ δ. As ǫ → 0, the function f()
becomes chaotic, because of the impossibility of measuring x
finely enough in the training period. The case where Machine

Learning works is when Γk is suitably complex, but has some

kind of internal structure which can be determined as the

outcome of the training process.

B. Fingerprinting the mm-wave channel

Choosing the domain I of the ML algorithm is equiv-

alent to the choice of the fingerprint and it is crucial to

our approach. In signal-processing literature, research has

focussed on two or three categories of fingerprints for the

mm-wave channel. The first is RSSI fingerprinting, typically

measured simultaneously by multiple receivers or radio-

heads. The second is multi-path fingerprinting, where the

focus is on multi-path characteristics (such as Power Delay

Profile (PDP)) rather than signal strength. The last is the

respective positions of the transmitter and receiver . Other

innovative techniques utilize metrics such as the channel

covariance metric or other measures which attempt to capture

some aspect of the channel multipath profile.

In this paper, we use the location of the UE with respect

to the gNodeB as the fingerprint. We argue that this choice

meets our criteria as listed previously. It is well known that

the relation between location and beam-angles is extremely

non-linear because of the nature of the mm-wave propaga-

tion path; detailed simulation models based on ray tracing

techniques and empirical validation thereof seem to confirm

this [5,42]. The validity of the second criterion is possible to

demonstrate by considering the extreme linearity of the mm-

wave channel and the tight angular spread; it is very likely

that the signal quality at a particular location and direction

are very tightly correlated, since a small change in angular

spread would give rise to a very large variation in the RSSI

readings.

However there are some associated issues with the choice

of location as the input parameter. The UE location is not

directly observable by the gNodeB, but has to be reported

by the UE (unlike, for example, RSSI, which is directly

measured at the gNodeB). This implies that there has to

be a separately established channel for communicating the

location-beam mapping between the UE and gNodeB. For

example, assuming that the UE knows its own position,

the gNodeB can broadcast the table of optimal beams with

respect to the different locations within the coverage area

separately and allow the UE to select the ones that match

its own current location. Further, directly using location as a

finger-printing technique means that the input domain is very

large. We would like to decrease the granularity of location,

without choosing arbitrary boundaries. We shall subsequently

demonstrate this in our simulation results in section V-A

below.

C. Choice and design of the Machine Learning Algorithm

In this paper, we have chosen a deep learning based model

based on supervisory learning. Supervised learning-based
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Fig. 6. Deep Neural Network for beam prediction

model is used which take ray tracing related information as

input and labeled optimal beam pair indices as output. For

solving optimal beam pair as a classification problem, we

can quantize the angles using vector or scalar quantization.

If the latter is used, the angles can be quantized into four

indices according to their dynamic ranges in the training set.

These indices can be eventually converted to a single label

for traditional classification. The quantized values are then

mapped into the range [1 . . .M ], where M is the number of

known beams.

A deep neural network (DNN) with L layers describes a

mapping of an input vector to an output vector through L
iterative processing steps. This mapping depends not only on

the output vector from the previous layer but also on a set of

parameters (i.e., weights and biases). In a DNN, many units

are deployed in each hidden layer, and the output can be

generated based on the output of these units with the aids

of activation functions. The activation function introduces

a non-linearity which gives advantage of stacking multiple

layers on top of each other. In this paper we have used a

Convolutional DNN framework as shown in Fig. 6. Here, in

the input layer will take the training data.

As can be seen from Figure 6, our DNN has 11 hidden

layers between the input and the two output layers. As is well

known in the literature [43], the presence of the convolutional

and pooling layers helps the CNN focus on local correlations

between the inputs avoiding, among other issues, the over-

training problem. [44] provides an excellent introduction to

the theory of convolutional deep neural networks for the

interested reader.

The neural network that we use is trained using supervisory

learning, using a labeled training data set i.e., a set of input-

Parameter Name Parameter Value

batch size 32

epochs 100

validation
fraction

1

learning rate 0.0001

optimizer SGD (lr=learning rate, momen-
tum=0.9)

regression loss mean squared error

regression metric mse

classification loss categorical cross entropy

classification
metric

accuracy

TABLE I: DNN Hyper-parameters

output vector pairs. A certain loss function, such as square

error or cross entropy, must be established for the network

to produce a value that is close to the expected one as much

as possible. The goal of the training process is to minimize

the loss with respect to the parameters. The number of

samples of training data taken for computing this loss at each

time interval is called as batch size. The back-propagation

algorithm has been proposed as an efficient method for

training the network with optimization algorithms such as

Stochastic Gradient Descent. Although the trained network

performs well in the training data, this network may perform

poorly in the testing process because of over-fitting. To avoid

overfitting and to achieve favorable results in training and

testing data schemes such as early stopping, regularization,

and dropout have been used. The table I shows the top-level

parameters of the D-CNN we have used.

D. Simulating against real-life data

There is a lack of authentic set of data from real communi-

cation systems or prototype platforms in actual physical en-

vironments. So far, simulations results [30,32,34] prove that

the recently proposed DL-based communication algorithms

demonstrate a competitive performance. However due to the

lack of standardized data, benchmarking of the performance

is a real challenge.

For the purpose of this work, we took input data as

generated using ray-tracing based on a scenario based on

region of Rosslyn, Virginia, from the authors of [30] 1. The

method used by the authors is as follows. The Ray tracing

(RT) area of study is a rectangle of approximately 337×202,

with a road on the north side and a second road perpendicular

to it from the south, intersecting it at the top. A transmitter

is located at the RSU on Kent Street, approximately at

the middle of the area and receivers are placed on top of

10 receivers. The ray-tracing outputs are periodically stored

as snapshots (or scenes) with a sampling interval Tsam.

A total of N scenes are combined to form an episode.

After this processing, we obtain a dataset, containing 116

episodes, with each episode having 50 scenes per episode.

The episodes are sliced into Nsce individual scenes of a

fixed duration τepi, to improve the scene diversity and reduce

computational load. Within each episode, we store informa-

tion based on the transmitters, receivers and Mobile Object

1We acknowledge the help given us by the authors in this regard
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Fig. 7. Grid of positions

(MOBJs). This includes dimensions of all MOBJs, mappings

between transmitters/receivers and MOBJs, coordinates of

the RT study area and number L of rays per transmitter

/ receiver pair. After the ray-tracing, the scene is updated

with the information related to each transmitter/receiver pair

(m,n). These are the average time of arrival τm,n, total

transmitted and received powers P tm,n, P
r
m,n, and for the lth

ray 1 ≤ l ≤ M , the channel Γl,m,n characteristic associated

with that ray, comprising of the complex channel gain, time

of arrival and AoD,AoA angles respectively.

Γl,m,n =

〈βl,m,n, τ l,m,n, φDl,m,n, φ
A
l,m,n, θ

D
l,m,n, θ

A
l,m,n〉

(12)

In the equation (12) φ and θ correspond to the azimuth and

elevation for departure and arrival respectively. As shown in

the section III-B, we are at this point only interested in the

azimuth angles θA, θD.

E. Preparation of the data-set

To test out our ML algorithm, we use the individual data

sets as described above, along with the location fingerprint to

train the model for prediction the channel parameters for each

new input fingerprint. The data-generation model assumes

that the communication channel between the transmitter

and receiver for sharing location/beam-parameters is pre-

established. The position and identity information is then

represented as a matrix. In order to quantize the location data,

the coverage area with area 23×250 sq.m, broken into a grid

with resolution of 1× 1 sq.m. . This can be represented by a

matrix Qs of dimension 23×250 grid points for each scene s.
The training data baseline is generated by ray-tracing. Each

grid point is occupied by either a receiver or an interferor

of known height. This is represented in the matrix by a

negative or positive value at each grid point. A negative

element in Qs indicates that the corresponding location is

occupied (even partially) by an obstruction. The magnitude

of this negative value indicates the obstructor’s height. A

positive integer value r at a given position indicates that the

rth receiver is in that position in Qs. 0 denotes the position

is not occupied. Figure 7 illustrates an example where the

receiver is blue and the surrounding obstructions are yellow.

When training classifiers, one can then conveniently represent

the labels with one-hot encoding to facilitate training neural

networks. We pose the beam-selection as a classification task

in which the target output is the best beam pair index î. The

input features correspond to the matrix described as Qs,r, a

modified version of Qs for each receiver r, assuming a value

+1 for all Qs elements corresponding to the target receiver r,
while all other receivers in the given scene s are represented

with -1 (instead of their original positive values in Qs). For

our particular case, we have a total of 5300 entries, out of

which a third are used for testing. For each receiver that is

part of a given data-set a classification example is obtained,

leading to a total of 41,023 examples for training and test.

Among the examples, there is LOS in 25, 174 cases and

NLOS in 15,849. Transmitter and receivers had 4×4 uniform

planar antenna arrays (UPA), such that Nt = Nr = 16. From

all the possible beams the authors have identified M = 61
classes (optimum beam pairs)s, within which the search is to

take place.

V. SIMULATION RESULTS AND CONCLUSION

Using the dataset generated as described in IV-D and

IV-E, we have tested out our deep-learning algorithm. The

algorithm was used to predict appropriate beams for a total

of 13000 random sample-points. For each sample-points, we

took the top N << M best beams as predicted by the Deep

Learning algorithm and compared it with the results of the ray

tracing exercise for the associated location. It should be noted

that the total number of mapped beams M = 61 are based

on a clustering exercise and hence, not tuned to the model.

By reducing these, we may get better prediction results, but

then the relative coarseness of beam selection will give rise

to higher deviation between the predicted beam parameters

and the actual parameters based on ray-tracing. These issues

will be considered in more detail in a subsequent paper.

A. Simulation results

The Figure 8 captures the beam prediction accuracy based

on the N best beams predicted. If we take only the best

beam i.e. N = 1, then the accuracy of prediction is of

the order of 64%. But if we consider the top N = 3
beams in terms of accuracy then the chances of prediction

is approx. 85%. Hence, instead of best prediction if we can

have top 3 prediction than it will help use in improving the

beam prediction capability. The search space is significantly

reduced in this manner. Clearly, even choosing the topM = 5
beams offers a vast performance improvement over a brute-

force search for each location over the full search space

of 61 possible beams. As discussed above, the selection of

the beam dictionary and broadcasting this dictionary (and

associated location mapping) is an area of open research.

B. Does diversity improve performance?

A strong reason to go to the edge would be if using multi-

ple transmitters instead of one improve per-location beam

prediction accuracy. Given that the cumulative prediction

accuracy for a given transmitter seems to saturate after 3 best

beams, it may make more sense to take, say the top 2 beams

from 4 sites, rather than using more beams from a given
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Fig. 8. Success of predicting beam-sets

Fig. 9. Error rate over different beams

site. However, this only works if the prediction accuracy

of a given location with respect to different transmitters is

uncorrelated with each other. There is not much information

or study on the nature of the error in DNN type of models;

i.e. whether the error is truly random or whether there is

correlation between errors. Obviously, if there is correlation

between the different sites in a multi-site gNodeB, then our

diversity gains will be limited. To study this, we looked at

the prediction error of a given DNN indexed across locations

for within a single data-set (Figure 9). Since the beams are

mapped onto locations, we can use the beam-index as a proxy

for location data. The preliminary investigation shows that

prediction accuracy varies as a function of beam index (and

hence location) for the same training data. In future work, we

shall analyze the source of this error, given that the training

data was more or less evenly distributed over all locations

and the terrain chosen was uniform. Prima facie, we can say

that using multiple transmitters from different sites should

give us a diversity gain, as opposed to the idea of running a

single transmitter.

C. Machine Learning at the edge - Deployment considera-

tions

The majority of the existing literature focus on centralized

ML/DL (as shown in Figure 10a) whose goal is to improve

the communication performance assuming a well-trained ML

model as well as full access to a global dataset. It also

assumes massive amount of storage and computing power

is available. However, the development of the 5G network

and the new model for RAN development, provides the

possibility of implementing the beamforming algorithm, both

the training and the application part right at the edge. The

new generation of mobile platforms shall offer the possibility

of executing these algorithms in a containerized environment

on a general purpose (GPU equipped) hardware platform on

the same platform in which the physical layer is running.

The advantages are clearly, manifold. The algorithm has

immediate access to all the measurements available to the

gNB and can provide near instantaneous feedback to the

beam-former in terms of the optimal beam-shaping matrices.

On the other hand, the availability of processing power at the

edge is limited and thus, we need to come up with a way to

fit our ML (especially the training part of it) into the limited

resources available. The DNN that we have implemented for

our beam prediction algorithm has a total of 934235 separate

parameters and consumes a fair amount of processing power

during the training phase. Being able to fit it into the

restricted resources available would be a challenge. In our

simulations, we have plotted the GPU loading and memory

utilization for the training algorithm, as shown in Figure 11.

The data has been generated by Google Collab. As can be

seen, each run of the training algorithm consumes nearly the

full available GPU and associated memory resources.

The third and possibly most practical architecture is a

hybrid model, whereby the training is implemented in a

centralized location (with access to large computing power)

and the actual inference engines are present on the wireless

edge. This is the model we have used in this paper, leveraging

the Mobile Edge architecture proposed in the latest O-

RAN specifications [45] (Figure 10b). In this model, the

computational load problem is replaced by the problem of

communicating large amounts of data. It is notable that

the training models have to be seperate for each edge site,

since the fingerprint is highly site specific; hence the training

outcome has to be individual in nature.

D. Conclusions

In this paper, we have studied the mm-wave beamforming

problem and implemented a simple solution using super-

visory learning. We have verified our algorithm against a

ray-tracing implementation and seen that we get about 90%

accuracy in predicting appropriate beam parameters. We have

shown how we can use multiple RRHs working in tandem to

increase the prediction accuracy and how a hybrid edge-cloud

model can be used to implement this scheme. Machine Learn-

ing is a fairly young discipline, with very recent applications

to the field of wireless channel management. In terms of the

mm-wave channel, the literature is very new. There is a lack
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(a) ML Centralized deployment (b) ML Edge deployment

Fig. 10. Deployment strategies for ML based beam forming algorithms

(a) GPU utilization

(b) Memory utilization during
training

Fig. 11. GPU computing and resource utilization during training

of simulation data, especially given that ML is a very data-

hungry discipline and the testing of new ML models require

lots of observations. Further, there are practical challenges

in ML deployment; ML algorithms use a lot of processing

power, especially during training and this is constrained in

a wireless network, where digital processing consumes the

maximum amount of CPU. Hence, we believe that the focus

should be on using simple ML algorithms in an inventive

manner.
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