
14

International Journal On Advances in Telecommunications, vol 1 no 1, year 2008, http://www.iariajournals.org/telecommunications/

Modeling Systems with Multi-service Overflow Erlang
and Engset Traffic Streams

Mariusz Głąbowski
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Abstract

The article proposes analytical methods for determining
traffic characteristics of hierarchically organised telecom-
munication networks which are offered multi-service traf-
fic streams. The article proposes a method for determin-
ing occupancy distribution in the group servicing multi-
service overflow traffic. This method is based on modifi-
cation of the Kaufman-Roberts recursion – elaborated for
the full-availability group with Poisson calls streams – and
uses Fredericks & Hayward approximation. Additionally,
a method for determining parameters of the traffic overflow-
ing from primary groups servicing PCT11 and PCT22 traffic
streams is also presented.
Keywords: overflow traffic, PCT1, PCT2, multi-rate traffic

1. Introduction

Modeling telecommunication networks employing the
strategy of redirecting traffic via alternative routes, i.e. sys-
tems with traffic overflow is a complex issue. This problem
comes down to resolving the two following basic problems,
namely: to a determination of traffic characteristics of traf-
fic that overflows from direct (primary) groups (with high
loss coefficients usually), and a determination of the num-
ber the so-called Basic Bandwidth Units (or channels) in al-
ternative groups (with low loss coefficients usually), where
the loss coefficients will not exceed the assigned value.

Systems with overflow traffic have been widely dis-
cussed e.g., in [8,22,35]. The above mentioned works, how-

1PCT1 – Pure Chance Traffic Type One – type of traffic in which we
assume that the service times are exponentially distributed and the arrival
process is a Poisson process. This type of traffic is known as Erlang traffic.

2PCT2 – Pure Chance Traffic type Two – type of traffic in which we
assume that the service times are exponentially distributed and the arrival
process is formed by the limited number of sources. This type of traffic is
known as Engset traffic.

ever, have dealt with single-rate traffic only, i.e. with tradi-
tional single-service telephone networks. There have been
developed both exact [4,14,25,36] and approximate [15,35]
models of the full-availability group with overflow traffic
assuming Poisson distribution of calls streams and the ex-
ponential distribution of holding time for calls offered to
the primary groups. The problem of modeling the groups
with overflow traffic under assumption of hyper-exponential
distribution of the holding time has been described in [27]
while single-rate traffic systems with overflow traffic and fi-
nite number of traffic sources (PCT2) have been considered
e.g., in [26].

The basic method for determining traffic characteristics
of multi-service systems employs the so-called Kaufman-
Roberts formulas (KR) [19, 24]. These equations allow to
reliably model systems with PCT1 streams that are offered
directly to the primary groups of telecommunication net-
works. The traffic that is not serviced in such groups is
overflowed to an alternative group. This part of traffic is
called the overflow traffic. However, even if the streams
that are offered directly to the primary groups are of type
PCT1, the calls stream overflowing from the primary group
does not agree with the Poison distribution [35].

Overflow calls can appear only in the occupancy time
of all Basic Bandwidth Units of the primary group. This
means that the overflow stream is more "concentrated"
in certain time periods, i.e. is characterized by greater
"peakedness" as compared with PCT1 traffic. If identical
values of offered traffic and the congestion are assumed,
then a greater number of Basic Bandwidth Units (BBUs)
is required for servicing overflow traffic than that required
for servicing PCT1 traffic.

The following parameters can be used for statistical eval-
uation of the overflow stream: the mean valueR of overflow
traffic (the first moment of the probability distribution of
the number of calls) and the second moment with the corre-
sponding variance σ2. With the help of those two parame-
ters it is possible to determine "unevenness" of the overflow
stream by the introduction of the concept of the peakedness
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coefficient Z that is equal to the ratio of the variance σ2 to
the mean value of overflow traffic R:

Z = σ2/R. (1)

The "unevenness" of the overflow stream can also be evalu-
ated by the application of the parameter D that is the differ-
ence between the variance and the mean value of overflow
traffic:

D = σ2 −R. (2)

It is noticeable that the parameters Z and D take the fol-
lowing values for the offered traffic, serviced traffic and the
overflowed traffic:

• for offered traffic: Z = 1 and D = 0,

• for serviced traffic on the primary group (smooth traf-
fic): Z < 1 and D < 0,

• for overflow traffic: Z > 1 and D > 0.

The service process of a Poisson calls stream in a full-
availability group can be thus characterized by four parame-
tersA, V,R, σ2 (σ2 can be replaced by Z orD). The stream
offered to the group is here determined by one parameter A
– the mean value of the offered traffic, whereas the overflow
traffic stream by two: the mean value of the overflow traffic
R and its variance σ2.

Having the above in mind, we can come to a conclusion
that the KR equations in their basic form (devised with the
assumption of the exponential distribution of time gaps be-
tween calls) cannot be applied to determining call blocking
coefficients in multi-service traffic in the alternative group.
The problem of modeling the full-availability group with
overflow traffic with known value of parameter Z was taken
in [7], and then in [20, 34]. The methods for modeling the
systems with multi-service overflow traffic (under the as-
sumption of infinite number of traffic sources) including
the methods for determining parameters of overflow traf-
fic, an occupancy distribution in alternative groups and di-
mensioning systems with multi-service overflow traffic was
presented in [10, 11, 13].

The other group of methods, enabling modeling the
systems with overflow traffic, are the methods based on
Markov-Modulated Poisson Processes, published in [6, 17,
21]. Among this group of methods, the highest accuracy,
in case of multi-service systems, assures the method pro-
posed in [6]. The accuracy of this method is related to high
computational complexity of the process of calculating the
variance of overflow traffic based on analysis of multidi-
mensional Markov process in the system composed of two
groups, i.e. the primary group and the alternative group. Ex-
ponential order of computational complexity (in function of
number of classes of calls) makes practical application of
this method very difficult.

The purpose of the article is the proposition of a con-
sistent methodology for determining traffic characteristics
of systems which are offered overflow multi-service traffic
streams, generated both by finite and infinite source popu-
lation. On the basis of author’s earliest results [10–13]), the
method for determining occupancy distribution in the group
servicing multi-service overflow traffic will be presented.
The proposed method is based on the appropriate modifica-
tion of the Kaufman-Roberts recursion [19,24] – elaborated
for the full-availability group with Poisson traffic – and uses
the idea of Fredericks & Hayward approximation.

In order to keep consistency of the considered problems,
we start considerations from presentation of basic analyti-
cal dependencies for systems with single-rate overflow traf-
fic in Section 2. In Section 3 it is presented the method
for determining occupancy distribution in groups servicing
multi-service overflow traffic. Section 4 includes the de-
scription of the method for determining parameters of the
traffic overflowing from primary groups servicing multi-
service PCT1 and PCT2 traffic streams. Comparison of an-
alytical and simulation results of blocking probability in al-
ternative groups servicing multi-service overflow traffic is
performed in Section 5. Section 6 concludes the paper.

2. Modeling systems with overflow single-rate
traffic

2.1. Overflow traffic parameters

The traffic that overflows from the direct group which
is offered PCT1 traffic can be characterized with the help
of the following two parameters: the mean value of over-
flow traffic R and its variance σ2 (or the coefficient Z or
the coefficient D). In order to evaluate analytically these
parameters we will consider the following model: a full-
availability group with the capacity of V Basic Bandwidth
Units (the primary group) is offered traffic of the type PCT1
with the mean intensity A:

A =
λ

µ
. (3)

The next assumption is that the traffic that is not carried be-
cause of the occupancy of all the BBUs of the considered
group overflows to a next full-availability group (the alter-
native group) with an unlimited number of BBUs. The val-
ues to be determined are: the average number of busy BBUs
R in the alternative group (mean value of overflow traffic)
and its variance σ2 (variance of overflow traffic).

The process going on in the system presented in Fig-
ure 1, composed of two full-availability groups, is deter-
mined by the the two-dimensional discrete Markov chain:
{ω(t), ρ(t)}, where ω(t) is the number of busy BBUs in
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primary group alternative group

Figure 1. Model of a system with overflow
traffic

the original group at the point of time t, whereas ρ(t) is the
number of busy BBUs in the alternative group at the point
of time t. The state probabilities of the system under con-
sideration are denoted with the symbols [pω,ρ]V,∞ and are
defined in the following way:

[pω,ρ]V,∞ = lim
t→∞

P {ω(t) = ω, ρ(t) = ρ} , (4)

where: (0 6 ω 6 V ) and (0 6 ρ 6 ∞). The probabilities
[pω,ρ]V,∞ can be determined on the basis of the system of
state equations that, for the considered process, takes the
following form:

. . .

−(λ+ ρµ) [p0,ρ]V,∞ + µ [p1,ρ]V,∞+

+(ρ+ 1)µ [p0,ρ+1]V,∞ = 0
. . .

−(λ+ ωµ+ ρµ) [pω,ρ]V,∞ + λ [pω−1,ρ]V,∞+

+(ω + 1)µ [pω+1,ρ]V,∞ + (ρ+ 1)µ [pω,ρ+1]V,∞ = 0

. . . (5)

−(λ+ V µ+ ρµ) [pV,ρ]V,∞ + λ [pV−1,ρ]V,∞+

+λ [pV,ρ−1]V,∞ + (ρ+ 1)µ [pV,ρ+1]V,∞ = 0

. . .

∞∑
ρ=0

V∑
ω=0

[pω,ρ]V,∞ = 1

Once the system of equations (5) has been solved, it is
possible to determine all essential properties of the system
with traffic overflow. A determination of the parameters R
and σ2, related to the alternative group with unlimited ca-
pacity, can be, however, simplified as compared to the sys-
tem (5). This possibility of simplification is connected with
the fact that for a determination of parameters R and σ2 the
knowledge of all probabilities [gρ]∞ is not necessary, but it
is sufficient to know only those probabilities [gρ]∞ that re-
late to the alternative group only, regardless the occupancy
state of the primary group, i.e.:

[gρ]∞ =
V∑
ω=0

[pω,ρ]V,∞. (6)

Knowing the occupancy [gρ]∞, it is possible to determine

the parameters to be found, i.e. R and σ2:

R =
V∑
ρ=0

ρ [gρ]∞, σ2 =
V∑
ρ=0

ρ2 [gρ]∞ −R
2. (7)

Derivations of Equation (7) will be omitted here (they are
to be found in, for example, [1, 4, 35]), by giving the final
result derived by J. Riordan [35]:

R = AEV (A), (8)

σ2 = R [A/ (V + 1−A+R) + 1−R] . (9)

In calculational practice, instead of the variance σ2 the pa-
rameter D is often used. Hence, on the basis of Equa-
tion (2), (8) and (9) we obtain:

D = R [A/ (V + 1−A+R)−R] . (10)

Formula (8) is intuitively self-evident since it is only traf-
fic lost in the original group that can be the offered traffic
and, at the same time, be carried by the infinite alterna-
tive group. It should be noted that, quite predictably, for
V = 0 (zero capacity of the original group), R = σ2 = A,
since all the PCT1 traffic is directed to the alternative group.
Generally, for each value of the parameters A and V of the
full-availability group, the parameters of overflow traffic R
and σ2, or R and D can be unequivocally determined.

In telecommunications networks, calls streams from
several high-usage full-availability groups most frequently
overflow to one alternative path. If we assume that PCT1
streams offered to high-usage primary groups are statisti-
cally independent, then the streams that overflow from these
groups will also be independent. In such a case, the param-
eters of the total overflow traffic offered to the alternative
path are determined by the following formulas [31]:

R =
υ∑
s=0

Rs, σ2 =
υ∑
s=0

σ2
s , D =

υ∑
s=0

Ds, (11)

where: υ – number of primary group, Rs – mean value of
overflow traffic from s-th group, σ2

s – variance of overflow
traffic from s-th group.

2.2. Method of equivalent random traffic

Analysing Formulas (8) and (10) we can notice that the
parameters A and V determine unequivocally the parame-
ters of the overflow trafficR andD of a given group. Conse-
quently, these formulas can be used to solve a reverse prob-
lem, i.e. to determine unequivocally the parameters of the
original groupA and V on the basis of the parameters of the
traffic that overflows from this group: R and D [31]. This
conclusion has been applied to the ERT method (Equivalent
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Random Traffic), which has been worked out independently
by R. I. Wilkinson [35] and G. Bretschneider [4].

The ERT method consists in finding such an equivalent
PCT1 traffic with the mean value A∗, that when offered to
a fictitious equivalent group with the equivalent capacity of
V ∗, will cause an overflow of traffic with identical mean
value and variance as the actual traffic offered to a given al-
ternative group [31]. In this way, the traffic initially defined
by the pairs of parameters: As and Vs (the alternative group
usually services traffic overflowing from a few high-usage
primary groups), will be described by one pair of parame-
ters only (A∗, V ∗).

The parameters A∗ and V ∗ of the equivalent group can
be determined on the basis of the obtained values R and D,
solving the set of Riordan equations [35]:

R = A∗EV ∗(A∗), (12)

D = R [A∗/ (V ∗ + 1−A∗ +R)−R] . (13)

Such equivalent traffic, determined by the pair of the pa-
rameters (A∗, V ∗), requires V ∗ + Valt BBUs for servicing
calls with assigned quality B. The required capacity of the
alternative group can be obtained on the basis of Erlang-B
formula, written in the following form:

E = B = E(V ∗+Valt)(A
∗), (14)

where E is the blocking probability, and B is the loss prob-
ability in the alternative group.

Summing up, the ERT method, presented graphically in
Figure 2, can be written in the form of the following algo-
rithm:

Algorithm 1 ERT Method

1. Determination of the mean value Rs and the param-
eter Ds of each of υ (s = 1, . . . , υ) traffic streams
that overflow to the alternative group (Equations (8)
and (10));

2. Determination of the parameters of the total stream
that overflows to the considered alternative group, as-
suming statistical independence of overflow streams
(Equation (11));

3. Determination of the parameters A∗ and V ∗ of the
equivalent group on the basis of the obtained param-
eters R and D; these parameters can be determined by
providing solution to the Riordan system of equations
(Equation (13));

4. Determination of the required capacity of the alterna-
tive group for the assigned quality of service in the sys-
tem equal to B (Equation (14)).

A1

R1, D1

A2

R2, D2

A3

R3, D3

A∗

R, D

1

2
. . .

V1

1

2
. . .

V2

1

2
. . .

V3

1

2
. . .

V ∗

1

2
. . .

Valt

1

2
. . .

Valt

Figure 2. Graphical representation of the ERT
method

The determination of the parameters of the equivalent
group (A∗, V ∗) is a complex issue and requires the appli-
cation of complex, iterative computational programs [23,
31]. Therefore, to simplify the calculations, special nomo-
grams have been developed [28] that present in graphic
form dependencies between pairs of parameters (A∗, V ∗)
and (R,D). If, however, the above graphic dependencies
are unavailable, then to determine the parameters (A∗, V ∗)
one can use the approximate solution of the system of equa-
tions (12) and (13), proposed by G. Rapp [22]:

A∗ = σ2 + 3
σ2

R

(
σ2

R
− 1
)
, (15)

V ∗ = A∗
(R2 + σ2)
R2 + σ2 −R

−R− 1. (16)

It should be stressed that the determined values of parame-
ters A∗ and V ∗ obtained after the application of Rapp for-
mulas are approximate, with the accuracy of calculations
being the lowest within the area of low loss probability val-
ues [33]. With values of this probability lower than 1%,
the approximation error can exceed 20%. Therefore, for
B < 0.01 (which happens rarely in high-usage primary
groups in real networks) it is more convenient to use the
cited above nomograms [28]. A detailed analysis of the ac-
curacy of this method has been worked out by J. M. Holtz-
mann and presented in [16] which shows the dependency
between the error of loss probability, determined by the
ERT method, and the number of BBUs of the alternative
group Valt and the overflow traffic parameters R and σ2. On
the basis of these dependencies it is possible to find that the
error increases with the increase of the variance of overflow
traffic σ2, while it diminishes along with the increase in the
number of BBUs in the high-usage primary group [31].
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2.3. Fredericks-Hayward Method

Let us consider a full-availability group with the capacity
of V BBUs which is offered overflow traffic with the mean
value R and variance σ2. The peakedness coefficient of the
offered traffic is then:

Z =
σ2(R)
R

. (17)

Let us perform the following transformation, presented in
Figure 3. Let us divide the group into Z identical full-
availability groups (subsystems), each one with the capac-
ity:

Ve =
V

Z
. (18)

Each group is offered then traffic with the mean value:

Re =
R

Z
. (19)

1

2

. . .

V

1

2

. . .

V/Z

1

2

. . .

V/Z

R, Z R/Z, 1 R/Z, 1

Figure 3. Transformation of the system
(V, R, Z) into Z subsystems (V/Z, R/Z, 1)

Taking into consideration the property of variance, vari-
ance σ2

e can be determined in the following way:

σ2
e = σ2

(
1
Z
R

)
=
(

1
Z

)2

σ2(R). (20)

Now we can determine the peakedness coefficient of traf-
fic offered to an individual subsystem. Taking into ac-
count (19) and (20), we get:

Ze =
σ2
e

Re
=
σ2(R)
RZ

= 1. (21)

The peakedness coefficient equal to one means that traf-
fic Re is a PCT1 traffic. Thus, we have made a transfor-
mation of the full-availability group – described by the pa-
rameters (R, V, Z) – which is offered overflow traffic into
Z subsystems (full-availability groups) – described by the

parameters (R/Z, V/Z, 1) – which is offered PCT1 traffic.
Since all groups are identical, blocking probabilities in all
groups will be also identical. In work [8] it is assumed that
blocking probability in the group (R/Z, V/Z, 1) will be the
same as in the initial group (R, V, Z). Therefore, we can
write:

E(R, V, Z) ≈ E(R/Z, V/Z, 1) ≈ EV
Z

(
R

Z

)
. (22)

Formula (22) is a modified Erlang-B formula that takes into
consideration non-Poisson nature of the calls stream offered
to the group. In teletraffic theory, this formula is called
Fredericks-Hayward formula.

The presented reasoning for Equation (22) assumes mu-
tual independence of traffic offered to the subsystems. In
real world, a distribution of the traffic stream into several
identical streams without an application of an appropri-
ate call assignment mechanism is not possible. The intro-
duction of such a mechanism is, however, tantamount to
the introduction of mutual correlation between the streams,
which, in turn, can be interpreted as a lack of independence
of the traffic streams offered to the subsystems. This phe-
nomenon makes the formula (22) an approximated formula.
It should be stressed, though that it is characterized by high
accuracy [8, 18].

Equation (22) forms the basis for Fredericks-Hayward
method [8] and can be described in the form of the follow-
ing algorithm:

Algorithm 2 Fredericks-Hayward Algorithm

1. Determination of the mean value and the variance of
each of υ traffic streams that overflows to an alternative
group based on the formulas (8) and (9);

2. Determination of the parameters of the total overflow
traffic (Equation (11)) offered to the alternative group
and the peakedness coefficient (Equation (1)) of the
traffic, assuming statistical independence of the over-
flow streams;

3. Determination of the number of BBUs of the alter-
native group (with the assigned quality of service,
equal to B) on the basis of Fredericks-Hayward for-
mula (22).

Fredericks-Hayward method is far more simple than the
ERT method since it requires only calculations based on
Erlang-B formula. The formula is used in two steps of the
algorithm – with the determination of mean value of traffic
that overflows to the alternative group (Formula (8)) and,
in the form of Fredericks-Hayward formula, with the de-
termination of the capacity of the alternative group (For-
mula (22)).
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3. Modeling of full-availability groups with
multi-service overflow traffic

3.1. Basic assumptions

Let us consider first a fragment of the network shown in
Figure 4, servicing multi-service PCT1 traffic streams. It
is assumed that each of primary groups is offered only one
call class. The adopted assumption is to facilitate the un-
derstanding of the introduced analytical dependencies. Sys-
tems in which primary groups service many classes of traf-
fic will be presented in Section 4.

1

2

...

V1

1

2

...

V2

1

2

...

Vm

1

2

...

V

E1, E2, ..., Em

R1, σ
2
1 R2, σ

2
2 Rm, σ2

m

A1, t1 A2, t2 Am, tm

Figure 4. A fragment of the network with over-
flow traffic

There are m = mI high-usage primary groups in the
considered system. The group designated by number i has
the capacity equal to Vi BBUs. Each of the groups is of-
fered a different calls stream characterized by the traffic in-
tensity Ai. The calls of class i demand ti BBUs to set up
a connection.

3.2. Parameters of overflow traffic

As the result of occupying successive BBUs in primary
groups, a situation ensues in which the groups get blocked
and traffic overflows to an alternative group with the ca-
pacity Valt. Blocking coefficients in primary groups can be
calculated with the help of the Erlang-B formula. One has
to take into consideration, however, that one call of class i
occupies simultaneously ti BBUs [10, 11].

Therefore, from the point of view of the Erlang model, it
is tantamount to ti-fold decrease of the capacity of the group
with the real capacity of Vi BBUs. What it means is that
before the substitution to Erlang-B formula, the group ca-
pacity should be divided by the number of BBUs demanded
to set up a connection of a given class. With the case of
non-integral values Vi/ti, calculations of blocking proba-
bility can be performed using the interpolation method or
the approximation of Erlang loss formula in the following
form [32]:

EN+δ =
AEN+δ−1(A)

N + δ +AEN+δ−1(A)
, (23)

where N + δ is non-integral value of group’s capacity (N is
an integer part and δ is a fraction). To start the calculation
process we need to use an approximate formula:

Eδ ≈
(2− δ)A+A2

δ + 2A+A2
. (24)

Another way to obtain the same values of blocking coef-
ficients is to apply the Kaufman-Roberts formulas [19, 24]:

n [Pn]V =
m∑
i=1

Aiti [Pn−ti ]V , (25)

Bi = Ei =
V∑

n=V−ti+1

[Pn]V , (26)

where [Pn]V is the occupancy distribution, i.e. the proba-
bility of n BBUs being busy in the system. Equations (25)
and (26) will take into consideration the group with the ca-
pacity of Vi which is offered one calls stream with Poisson
distribution formed by the calls that demand ti BBUs to set
up a connection [10, 11].

Knowing the blocking coefficients in primary groups we
are in position to calculate the parameters of overflow traffic
of each of the classes, i.e the mean value Ri and the vari-
ance σ2

i . For this purpose, the Riordan formulas (8) and (9)
are used. Then, on the basis of the obtained parameters,
we determine the unevenness of individual calls streams of
overflow traffic by calculating the values of peakedness co-
efficients Zi = σ2

i /Ri.
It should be emphasised that the possibility of direct ap-

plication of Riordan formulas, elaborated for systems with
single-rate traffic, results from the assumption that each pri-
mary group is offered only one traffic class [10, 11]. In the
case when all groups serve calls of several traffic classes,
the determination of variance of overflow traffic becomes
a complex problem [2, 3], despite the value of traffic inten-
sity can be simply obtained on the Kaufman-Roberts formu-
las (25) and (26). An approximate method of elaboration of
the variance of the traffic overflowing from primary group
servicing mixture of multi-service traffic will be presented
in Section 4.
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3.3. Modeling overflow traffic in systems
with infinite number of traffic sources

Calls lost in primary groups are offered to an alterna-
tive group and, successively, begin to occupy its resources.
Thus, the group services m call classes. In order to de-
termine blocking coefficients in such a group we apply the
analogy to Hayword method, described in Section 2.3. Let
us remind that the method was designed to determine the
blocking coefficient in the group with the capacity of V
BBUs with single-service traffic which was offered over-
flow traffic stream with the mean value R, additionally
characterized by the peakedness Z. In this method the
Fredericks-Hayword equation is used, i.e. the Erlang-B for-
mula with appropriately modified parameters A and V . In
the case of a group with multi-service traffic, we will apply
the identical modification to Kaufman-Roberts formulas:

Ealt,1, Ealt,2, . . . , Ealt,m =

= KR

(
R1

Z1
,
R2

Z2
, . . . ,

Rm
Zm

; t1, t2, . . . , tm;
Valt

Z

)
, (27)

where KR(·) denotes the algorithm for determining block-
ing coefficients of calls of particular classes E1, E2, . . . ,
EM , on the basis of the Kaufman-Roberts equations (25)
and (26) that take on the following form [10, 11]:

n [Pn]Valt/Z
=

m∑
i=1

Ri
Zi
· ti [Pn−ti ]Valt/Z

, (28)

Balt,i = Ealt,i =

Valt
Z∑

n= V
Z−ti+1

[Pn]Valt/Z
. (29)

The peakedness coefficient acts a normalization func-
tion. By dividing the mean values of overflow traffics of
particular call classes by the corresponding values of the
coefficients Zi, we perform a transformation of the uneven
overflow traffic stream into the Erlang stream. Similarly as
in the dependence (22), we also divide the capacity of the
alternative group V by the value of the peakedness coeffi-
cient. Let us notice that the capacity of the alternative group
in the formulas (28) and (29) is divided by the so-called
overall peakedness coefficient Z. The problem of definition
of this coefficient, for m calls classes, where each can have
individual value of the peakedness Zi, was taken in [10].
According to these considerations, the relevant parameter
will be approximated by the weighted mean of the coeffi-
cients Zi of particular calls streams:

Z =
m∑
i=1

Ziki, (30)

where
ki =

Riti∑m
l=1Rltl

(31)

It is adopted in Equation (30) that the contribution of
peakedness Zi of a stream of class i in the overall peaked-
ness coefficient Z is directly proportional to the value of
traffic offered to the alternative group by class i calls. The
plausibility of this assumption has been proved by simula-
tion studies [13].

The formulas (28) and (29) are a generalization of the
Kaufman-Roberts formulas for all kinds of groups servicing
multi-service traffic, both non-Poisson calls streams (over-
flow traffic) and Poisson calls streams. For the Poisson dis-
tribution, the value of the peakedness is equal to one and
then the formulas (28) and (29) will take on the form of the
basic Kaufman-Roberts formulas (25) and (26).

3.4. Modeling of overflow traffic in systems
with finite number of traffic sources

In this section it is presented an analytical method for de-
termining the mean value and the variance in systems with
multi-service traffic overflowing from primary groups ser-
vicing multi-service PCT2 traffic streams [12]. The pre-
sented method is based on the method elaborated in [5]
for the networks servicing single-rate traffic. The basis
of this method is the application of ERT method to con-
vert the traffic stream generated by the finite population of
sources (PCT2 traffic stream) to the equivalent traffic stream
generated with the assumption of the infinite population of
sources (PCT1 traffic streams) [29].

Let us consider a group with the capacity of Vj BBUs
servicing a finite number of sources for each traffic class.
Let Nj be a number of sources of class j requiring tj BBUs
to be serviced. The input calls stream of class j is built
by the superposition of Nj two-state traffic sources which
can alternate between the active (busy) state ON (the source
requires tj BBUs) and the inactive state OFF (the source is
idle). When a source is busy, its call intensity is zero. Thus
the arrival process is state-dependent. The class j arrival
rate in the state of n BBUs being busy can be expressed by
the following formula:

λj(n) = (Nj − nj(n))Λj , (32)

where nj(n) is a number of class j calls being serviced in
state n (state of n BBUs being busy) and Λj is the mean
arrival rate generated by an idle source of class j. In the
considered model we assume additionally that the holding
time for calls of particular classes has an exponential distri-
bution. Thus, the class j traffic αj offered by an idle source
is equal to:

αi =
Λi
µi
, (33)

where 1/µj is the mean holding (service) time of class j
calls.
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Figure 5. The idea of conversion of systems
PCT2 to PCT1

Let us additionally assume, that Nj > Vj . Based on
the results presented in [5] and [29] we can determine the
mean valueRPCT2,j , the variance σ2

PCT2,j and the coefficient
DPCT2,j of the number of busy BBUs in considered group:

RPCT2,j =
Njαj
1 + αj

, (34)

σ2
PCT2,j =

Njαj

(1 + αj)
2 , (35)

DPCT2,j = σ2
PCT2,j −RPCT2,j = −Nj

αj
(1 + αj)2

. (36)

The traffic described by Equations (34), (35) and (36)
can be treated as an equivalent PCT1 stream with intensity
A∗j overflowing on the equivalent group with the capacity
equal to V ∗j BBUs. The idea of this conversion is presented
in Figure 5. We call A∗j and V ∗j fictitious, and their values
can be obtained as the solution of a set of Riordan formulas
– according to ERT method (page 4):

RPCT2,j = A∗jEV ∗
j

(
A∗j
)
, (37)

DPCT2,j =

= RPCT2,j

[
A∗j

V ∗i + 1−A∗j +RPCT2,j
−RPCT2,j

]
. (38)

The above equations have a solution if we use Erlang
formula for negative values of link capacity [5, 32]. It is
possible to obtain the occupancy distribution for V < 0 on
the basis of the following recurrent formula:

EV−1(A) =
V EV (A)

A(1− EV (A))
, (39)

where the initial solution, for V = −1, we can get on the
basis of the following equation:

E−1(A) = [−Ei(−A)AeA]−1, (40)

in which function Ei(A) is defined as follows:

Ei(x) = −
∫ ∞
x

(At+A)−1eAt+Ad(At+A). (41)

It is also possible to approximate the function (40) by the
the following polynomial [29]:

E−1(A) ≈ b0 + b1A+ b2A
2 + b3A

3 + b4A
4

a0 + a1A+ a2A2 + a3A3 + a4A4
, (42)

where:

a0 = 0, 2677737343, b0 = 3, 9584969228,
a1 = 8, 6347608925, b1 = 21, 0996530827,
a2 = 18, 0590169730, b2 = 25, 6329561486,
a3 = 8, 5733287401, b3 = 9, 5733223454,
a4 = 1, b4 = 1.

Having at our disposal the values of fictitious traffic A∗j
and the equivalent group capacity V ∗j , we can calculate
on the basis of (8) and (9) the parameters of the traffic
overflowing from the primary group servicing PCT2 traffic
streams, i.e. the variance σ2

j and the mean value Rj :

Rj = A∗jE(Vj/tj)+V ∗
j

(A∗j ), (43)

σ2
j = Rj

[
A∗j/(Vj/tj + V ∗j + 1−A∗j +Rj) + 1−Rj

]
.

(44)
Let us notice that in Equation (43) and (44) the real link
capacity Vj is divided by tj because in the process of ob-
taining the capacity of fictitious link V ∗j we consider single-
rate traffic (calls of each traffic class can demand only one
BBU).

Having at disposal the parameters of traffic overflowing
from primary groups, we can determine the occupancy dis-
tribution in the alternative group on the basis of the modified
Kaufman-Roberts recursion, described in Section 3.3.

4. Modeling of systems with overflow multi-
service traffic

In the previous section we dealt with the determina-
tion of the occupancy distribution in the alternative full-
availability groups in systems in which primary groups ser-
viced only one calls stream. This was purely theoretical
case and its main purpose was to facilitate understanding
of the introduced analytical dependencies. In real systems,
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primary groups carry multi-service traffic that is composed
of several classes of calls.

The assumption that has been used so far allowed us to
determine the variance of traffic that overflows from pri-
mary groups in a simple way through the application of Ri-
ordan formulas. With the case when the group carries multi-
service traffic, direct application of the Riordan formulas is
not possible. In this section we will present an approxi-
mate method for determining variances of different traffic
streams that overflow from groups servicing multi-service
traffic.

Let us consider the fragment of a multi-service network
shown in Figure 6. The system is composed of υ primary
high-usage groups. Each of the group s = 1, . . . , υ is
offered mI,s PCT1 traffic streams and mJ,s PCT2 traffic
streams (ms = mI,s + mJ,s). Calls of class c demand tc
BBUs to set up a connection3. The intensity of PCT1 traffic
stream of class i offered to the group s is Ai,s. The inten-
sity of PCT2 traffic offered by a single idle source of class j
in the group s is αj,s, while the intensity of traffic Aj,s(n)
offered by all idle PCT2 sources of class j in the group s de-
pends on the occupancy state n of the group in the following
way:

Aj,s(n) = (Nj,s − nj,s(n))αj,s, (45)

where nj,s(n) is the number of in-service sources of class j
in the state of n BBUs being busy.

The traffic of particular classes, which is blocked in pri-
mary groups overflows to the alternative group. The block-
ing coefficient for calls of class i (PCT1) in the direct group
s (Ei,s) can be determined on the basis of the Kaufman-
Roberts formulas (25) and (26).

In the case of the full-availability group with PCT2
traffic stream, the Kaufman-Roberts recursion (25) can be
rewritten in the form that includes characteristics of Engset
traffic streams, namely:

n[Pn]Vs =
mJ ,s∑
j=1

Aj,s(n− tj)tj [Pn−tk ]Vs . (46)

According to the considerations presented in [9], the pa-
rameter nj,s(n) in Equation (45) can be approximated by
the so-called reverse transition rate and can be calculated
on the basis of the local equations of equilibrium [19, 30]:

nj,s(n) =

{
Aj,s(n− tj)[Pn−tj ]Vs

/
[Pn]Vs forn ≤ Vs,

0 forn > Vs.

(47)
The reverse transition rate determines the average num-
ber of class j calls serviced in the state n. Let us note
that to determine the parameter nj,s(n) the knowledge of

3In the paper it is assumed that the letter "i" denotes a Poisson (Erlang)
traffic class, the letter "j" – a Binomial (Engset) traffic class, and the letter
"c" – an arbitrary traffic class, (c = i|j)
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Figure 6. A fragment of telecommunications
network with overflow multi-service traffic

the occupancy distribution [Pn]Vs , is necessary. In or-
der to determine the distribution [Pn]Vs

in turn, it is nec-
essary to know the value nj,s(n). Equations (47) and
(46) form then a set of confounding equations that can be
solved with the application of iterative methods. In line
with [9], in the first iteration we assume that the parame-
ters ∀j∈mj

∀0≤n≤V n
(0)
j,s (n) = 0. The adopted assumption

means that the Engset streams – in the first iteration – can
be treated as an equivalent Erlang streams generating the
offered traffic with the intensity:

Aj,s(n) = Aj,s = Nj,sαj , (48)

which is equal in value to the traffic offered by all free
sources of class j Engset stream. The state probabilities,
obtained on the basis of Eq. (46), constitute the input data
for the next iteration l, where the parameters n(l)

j,s(n) and
subsequently Aj(n) are designated. The iterative process
ends when the assumed accuracy ε is obtained:

∀j∈〈1,mJ 〉∀n∈〈0,V 〉

(∣∣∣∣∣n
(l−1)
j,s (n)− n(l)

j,s(n)

n
(l)
j,s(n)

∣∣∣∣∣ ≤ ε
)
. (49)

The obtained occupancy distribution [Pn]Vs
in the group

with Engset traffic streams allows us to calculate the block-
ing probability Ej,s on the basis of Equation (26).

Knowing blocking probabilities for PCT1 and PCT2
streams we are in position to determine the mean value
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of the intensity of class c traffic that overflows from the
group s:

Rc,s = Ac,sEc,s. (50)

To characterize overflow traffic fully it is necessary to
determine the variance of each of calls streams. This pa-
rameter will be determined in an approximate way by car-
rying out a decomposition of each of the real groups intoms

fictitious component groups with the capacities Vc,s. Each
fictitious group will be servicing exclusively calls of one
class, which will make it possible to apply the Riordan for-
mulas to determine the variance σ2

c,s of the traffic of class c
that overflows from the group s. Let us determine then the
capacities of the fictitious groups. For this purpose we first
determine the carried traffic of class c in the group s:

Yc,s = Ac,s(1− Ec,s). (51)

According to the definition, the value Yc,s defines the av-
erage number of calls of class c serviced in the group s.
Therefore, the mean value of the intensity of class c traffic,
expressed in BBUs, will be equal to Yc,stc. The capacity
of a fictitious component group Vc,s will be defined as this
part of the real group Vs which is not occupied by calls of
the remaining classes (different from class c). Thus, we
get [10–12]:

Vc,s = Vs −
mI,s+mJ,s∑
l=1;l 6=c

Yl,stl, (52)

where Vs is the capacity of the primary group and the sum
on the right side of Equation (52) determines the number
of BBUs occupied by the calls of the remaining classes.
The proposed decomposition allows us to use the method
proposed in Section 3.4, to convert the system with PCT2
traffic streams to the equivalent PCT1 traffic streams.

Having all the parameters at our disposal for PCT1, i.e.
Ri,s, Ai,s, Vi,s and PCT2, i.e. A∗j,s, Rj,s, V

∗
j,s, Vj,s we

can – on the basis of the Riordan formula – determine the
variance σ2

i,j for individual calls streams that overflow to
the alternative group:

σ2
i,s = Ri,s

[
Ai,s

Vi,s/ti + 1−Ai,s +Ri,s
+ 1−Ri,s

]
,

(53)

σ2
j,s=Rj,s

[
A∗j,s

Vj,s/tj+V ∗j,s+1−A∗j,s+Rj,s
+ 1−Rj,s

]
,

(54)
where the quotient Vc,s/tc normalizes the system to
a single-service case. Such an operation is necessary since
the Riordan formulas in their basic form are designed for
determining overflow traffic parameters in single-service
systems.

Since individual calls streams offered to the system are
statistically independent, then the parameters of the total

traffic of class c offered to the alternative group will be equal
to:

Rc =
υ∑
s=1

Rc,s, σ2
c =

υ∑
s=1

σ2
c,s. (55)

At this point we have all the parameters that character-
ize m calls streams offered to the alternative group. Hav-
ing at our disposal the dependencies (55), we can determine
the occupancy distribution and the blocking probability in
the system with overflow multi-service traffic shown in Fig-
ure 6. In order to do that, we can apply the formulas (28)
and (29), where the overall coefficient Z is determined ac-
cording to Equation (30).

Summing up our considerations, we can present the pro-
cess of determining occupancy distribution in the alternative
group of hierarchically organised networks with overflow
traffic in the form of the Algorithm Overflow-MKRR.

Algorithm 3 Algorithm Overflow-MKRR

1. Determination of blocking probability of class c =
1, . . . ,m calls stream in each of primary groups υ;

2. Determination of the mean value Rc,s of class c traffic
overflowing from the primary group s = 1, . . . , υ;

3. Decomposition of the primary group s (with the capac-
ity of Vs BBUs), servicing ms traffic classes, on the
ms groups where each has the capacity of Vc,s BBUs
(Equation (52));

4. Conversion of PCT2 traffic stream to the equivalent
PCT1 traffic stream (Section 3.4);

5. Determination of the variance σ2
c,s of class c traffic

stream overflowing from the primary group Vc,s to the
alternative group Valt (Equation (53) and (54));

6. Determination of the parameters of class c overflow
traffic offered to the alternative group (Equation (55));

7. Determination of the overall coefficient Z (Equa-
tion (30));

8. Determination of the occupancy distribution in the al-
ternative group (Equation (28));

9. Determination of blocking probability for all traffic
classes in the alternative group (Equation (29)).

5. Numerical examples

The presented methods for determining the parame-
ters of overflow traffic, the occupancy distribution and the
blocking probability in systems with overflow multi-service
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Figure 7. Blocking probability in the alternative group with overflow multi-service traffic with capacity
equal to V = 200 BBUs; first and second primary groups: V1 = V2 = 60 BBUs, t1 = 2 BBUs, t2 = 4
BBUs, t3 = 8 BBUs A1,1t1 : A2,1t2 : A3,1t3 = 1 : 1 : 1, A1,2t1 : A2,2t2 : A3,2t3 = 1 : 1 : 1; third
and fourth primary groups: V3 = V4 = 100 BBUs, t1 = 2 BBUs, t2 = 4 BBUs, t3 = 8 BBUs, t4 = 12
BBUs, A1,3t1 : A2,3t2 : A3,3t3 : A4,2t4 = 1 : 1 : 1 : 1, A1,4t1 : A2,4t2 : A3,4t3 : A4,4t4 = 1 : 1 : 1 : 1;
fifth primary group: V5 = 40 BBUs, t2 = 4 BBUs

traffic are the approximate methods. To determine the pre-
cision of the proposed solution, results of analytical calcula-
tions were compared with the simulation data. The research
was carried out for two networks. The first network was
composed of five primary groups servicing multi-service
PCT1 (Erlang) traffic streams and one alternative group
(with the capacity of 200 BBUs) servicing the traffic over-
flowing from the primary groups. The second network was
composed of three primary groups servicing multi-service
PCT2 (Engset) traffic streams and one alternative group
(with the capacity of 100 BBUs) servicing the overflowed
traffic.

The parameters of the offered traffic and the capacities
of individual groups are given in the captions to Figures 7
and 8 presenting the obtained blocking probability results
in the alternative group – both analytical and simulation re-
sults. The value of the blocking probability is expressed in
the function of normalized traffic a offered to a single BBU
of the alternative group:

a =
∑m
c=1Rctc
Valt

. (56)

It was assumed that there was equal the normalized traffic u

offered per single BBU in each of υ direct groups:

∀1≤s≤υ u =
m∑
c=1

Ac,stc
Vs

. (57)

The simulation results are shown in Figures 7 and 8 in
the form of appropriately denoted points with 95-percent
confidence interval, calculated according to the t-Student
distribution for 5 series, with 1000000 calls of each class.

On the basis of the obtained blocking probability re-
sults in the considered systems we can state that the pro-
posed calculational method for overflow traffic parameters
combined with the modification of Kaufman-Roberts for-
mula (28) provides high accuracy of calculations.

6. Conclusion

An analytical method for determining the occupancy dis-
tribution and blocking probability in groups of telecom-
munication networks servicing overflow multi-service traf-
fic is presented in the article. The presented method is
based on a modification of the Kaufman-Roberts formula,
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Figure 8. Blocking probability in the alternative group with overflow multi-service traffic with capacity
equal to V = 100 BBUs; first primary group: V1 = 60 BBUs, t2 = 2 BBUs, S2 = 80, t3 = 6 BBUs,
S3 = 60, A2,1t2 : A3,1t3 = 1 : 1; second primary groups: V2 = 80 BBUs, t1 = 1 BBUs, S1 = 100,
t4 = 8 BBUs, S4 = 60, A1,2t1 : A4,2t2 = 1 : 1; third primary group: V3 = 100 BBUs, t1 = 4 BBUs,
S1 = 100, t3 = 6 BBUs, S3 = 60, t4 = 8 BBUs, S4 = 60

which involves an introduction of the peakedness coeffi-
cient Z that characterizes the unevenness of the overflow
calls stream. Additionally, an analytical method for deter-
mining the occupancy distribution and blocking probability
in groups of telecommunication networks servicing over-
flow multi-service traffic with a finite as well as infinite
number of traffic sources is presented in the article. The
presented method is based on conversion of traffic streams,
generated by finite source population, to the traffic streams,
generated by infinite source population. The accuracy of
the proposed analytical method is verified by the presented
simulation data.
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[9] M. Głąbowski. Modelling of state-dependent multi-rate sys-
tems carrying BPP traffic. Annales des Télécommunications,
63(7-8):393–407, Aug. 2008.
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