
57

International Journal On Advances in Telecommunications, vol 1 no 1, year 2008, http://www.iariajournals.org/telecommunications/

HTTP over Bluetooth: a J2ME experience ∗

Vincenzo Auletta, Carlo Blundo Emiliano De Cristofaro
Dipartimento di Informatica ed Applicazioni Information and Computer Science

Università degli Studi di Salerno University of California Irvine
I-84084 Fisciano (SA) - Italy Irvine, CA, 92617 - USA
{auletta,carblu}@dia.unisa.it edecrist@uci.edu

Abstract— Over the last years, computation and networking
have been increasingly embedded into the environment. This
tendency has been often referred to as pervasive or ubiquitous
computing, to remark the aim to a dense and widespread interac-
tion among computing devices. User intervention and awareness
are discarded, in opposition to an automatic adaptation of
applications to location and context. To this aim, much attention
is drawn to technologies supporting dynamicity and mobility over
small devices which can follow the user anytime, anywhere.

The Bluetooth standard particularly fits this idea, by providing
a versatile and flexible wireless network technology with low
power consumption. Operating in a license-free frequency, users
are neither charged for accessing the network nor they need
an account with any company. Bluetooth dynamically sets up
and manages evolving networks, by providing the possibility
of automatically discovering devices and services within its
transmission range.

Research studies have forecasted that within a few years, most
of the devices accessing the Web will be mobile, and presumably
most of them will be Bluetooth-enabled. Therefore, we need
solutions that encompass networking, systems, and application
issues involved in realizing mobile and ubiquitous access to
services.

In this paper, we present a lightweight solution to extend
the possibility of accessing Web resources also from Bluetooth-
enabled mobile phones. All the implementation details will be
hidden both to users and to application developers, allowing an
easy and complete portability of applications working on tradi-
tional TCP/IP communication protocols towards the Bluetooth
technology.

Index Terms— Ubiquitous Computing, HTTP, Bluetooth, Mo-
bile Phones, J2ME.

I. INTRODUCTION

The evolution of technology has led to a deep transformation
of users habits, with an increasing requirement of support for
mobility and connectivity. Furthermore, nowadays a brand new
set of applications fit mobile environments and allow device
interactions over wireless channels. Today’s mobile phones
are small, powerful, and usable enough to be fundamental
working instruments, and to be considered for the deployment
of complex applications.

Modern applications, however, require connectivity and
thus a critical issue for the diffusion of mobile devices is
the capacity to run network applications, especially Web
applications. In the last years, several new protocols have
been presented for wireless communications, such as IRDA,
WLAN, and GPRS/UMTS. However, IRDA connections are

∗A preliminary version of this work has been published in ICSNC 2007
[23]

limited to two devices with a direct line of sight, and thus
IRDA is not practically useful for a real intercommunication
scheme. WLAN instead has been designed as a powerful
technology to support multipoint connections, but diffusion of
WLAN on mobile devices and particularly on mobile phones is
still low. GPRS/UMTS are widely supported but they provide
connectivity at modest speed and requires a personal account
with a phone company. At the same time, we witnessed the
growth of Bluetooth, that is a low-cost, robust, powerful,
and flexible short-range wireless network technology with low
power consumption [4]. It operates in a license-free frequency
range, so that user is not charged for accessing the network nor
needs an account with any company, thus allowing a relevant
decrease of communication costs. Nowadays, the evolution of
Bluetooth technology is driven by the Bluetooth SIG, that
consists of over 7000 member companies that guarantee a
large support to this technology. In fact, Bluetooth technol-
ogy is used in many widespread different devices, such as
handhelds, mobile phones, smartphones, laptops, PDAs. A
thorough overview on Bluetooth is given in [6] and [24].

A recent study has pointed out that the number of users
accessing the web from a mobile device has overtaken the one
using a “standard” terminal [9]. Therefore, we need solutions
that encompass networking, systems, and application issues
involved in realizing mobile and ubiquitous access to services.

In this paper, we analyze how to extend the possibility
of accessing Web resources from Bluetooth-enabled mobile
phones.

Our goal is to provide a transparent middleware which
allows user to access Web resources by using a Bluetooth
connection. In particular, we provide application developers
with a lightweight solution to let their mobile applications
establish HTTP connections over a Bluetooth channel. In this
way, the cost of communication is brought to zero, and the
power-consumption is kept low. Furthermore, we have in mind
a transparent middleware allowing programmers to ignore the
implementation details related to the underlying Bluetooth
channel.

Common applications massively using HTTP connections
are Web browsers, e.g. Opera Mini [18] – the Web browsed
released by Opera Software [19]. Being developed in Java,
the Opera Mini browser is platform independent and can
be easily deployed on every J2ME-powered mobile phone.
Whenever a user wants to surf the Internet, the application
instaurates a HTTP connection over WAP, GPRS, or UMTS,
which are the available protocols supporting TCP/IP. Provided



58

International Journal On Advances in Telecommunications, vol 1 no 1, year 2008, http://www.iariajournals.org/telecommunications/

that a Bluetooth connection is available to a device acting as
a gateway to the Internet, our transparent middleware would
allow Opera Software to release a version of Opera Mini which
works on the free Bluetooth communication channel, without
refactoring the source code.

Paper Organization. The rest of the paper is organized as
follows. In Section II, we present the endorsed technologies,
i.e. Bluetooth, J2ME, and the JSR-82 APIs. In Section III, we
give an overview of our solution to allow J2ME application
developers to establish HTTP connections using Bluetooth
as the communication channel. Then, Sections IV and V
present the details of our implementation respectively for
the client-side and the server-side. Subsequently, Section VI
discusses the transparency of our solution and presents some
application scenarios. Finally, Section VII briefly evaluates the
performance overhead.

II. ENDORSED TECHNOLOGIES

In this section, we present all the technologies on which our
work relies: the Bluetooth Standard [4] and the J2ME [11].
The former defines details for the communication between
devices, while the latter describes how to write Java appli-
cations on mobile devices. Then, we give an overview of the
networking management within J2ME. Finally, we present the
API needed to use Bluetooth within J2ME, defined by the
JSR-82 standard [15].

A. The Bluetooth Wireless technology

Bluetooth specification was introduced in 1994 by Ericsson
to provide radio communications between mobile phones,
headsets and keyboards. The specifications were then formal-
ized by the Bluetooth Special Interest Group (SIG) [4] in
1998. Within this technology, radio communications can take
place by means of integrated and cheap devices with small
energy consumption. This is achieved by embedding tiny,
inexpensive, short-range transceivers into electronic devices
that are available nowadays. The Bluetooth standard defines
the following requirements:

• The system must operate globally, and the required fre-
quency band must be license-free and open to any radio
system.

• The system must provide peer connections.
• The connection must support both voice and data.
• The radio transceiver must be small and operate at low

power.
Bluetooth devices operate in a license-free frequency range

(starting from 2,4 GHz). The available bandwidth is divided
into 79 channels. In version 1.2 one can establish a 1 Mbps
link (a 2 Mbps link is supported by Version 2.0) [6]. Moreover,
security and error support allow to assure efficient and reliable
connections even in environments with a strong presence of
interferences and electromagnetic fields.

Bluetooth-enabled devices can dynamically discover other
devices in their range and their supported services, through
an inquiry process. A Piconet, consisting of one master

Fig. 1. The Bluetooth Stack [26].

device and up to seven slave devices, will be settled once
the peer connections have been established. Piconets can be
interconnected to form a Scatternet.

An overview of the Bluetooth stack is presented in Figure
1. The radio level is the lowest one and defines the technical
details of the communication. Bluetooth adopts the FHSS
(Frequency Hopping Spread Spectrum), making 1600 hops
per second; thus each physical channel is occupied for 625µs.
These intervals are referred to as slots and they are numbered
sequentially. Frequency hopping occurs by jumping from one
physical channel to another in a pseudorandom sequence. The
baseband layer handles channels and physical links, providing
services such as error correction and security. It supports
multipoint communications through FH/TDMA (Frequency
Hopping/Time Division Multiple Access). The master device
is in charge of defining the hopping sequence to all the slave
devices. A physical channel is shared between the master
and a slave using a time division scheme in which data
are transmitted in one direction at time, with transmissions
alternating between the two directions: the master transmits
in even slots; slaves transmit in odd slots and may hold the
transmission for 1, 3, or 5 consecutive slots. Links between
master and slaves can be either Synchronous Connection
Oriented (SCO) or Asynchronous Connection-Less (ACL). The
first type of link is used in real-time applications and it
allows a symmetric point-to-point communication achieving
64 Kbps transmission rate. The second is used for asymmetric
transmission between master and slaves with 723 Kbps for
downlink and 57 Kbps for uplink. Bluetooth standard defines
two different types of packets for ACL links: Data Medium
Rate (DM) which provides a 2/3 FEC Hamming code (i.e.,
error correcting capabilities), and Data High Rate (DH) which
provides no FEC coding (i.e., no error correction at all).
Therefore, we have six different data packets according to the
slots assignment and data encoding: DH1, DH3, DH5, DM1,
DM3, and DM5 (digits denote the number of occupied slots).
Up in the stack we find: the Link Management Protocol (LMP)
handling link setup, authentication, and link configuration; the
Host Controller Interface (HCI) which provides a uniform



59

International Journal On Advances in Telecommunications, vol 1 no 1, year 2008, http://www.iariajournals.org/telecommunications/

method of accessing the Bluetooth baseband capabilities; the
Logical Link Control and Adaptation Protocol (L2CAP) which
deals with data multiplexing and segmentation. Finally, on top
of L2CAP, we find several data communication protocols. The
main protocols are:

• SDP (Service Discovery Protocol), which handles the
discovery of devices and services within the device’s
transmission range.

• RFCOMM, which implements emulation of serial con-
nections, setting up point-to-point connections. It sup-
ports framing and multiplexing and achieves all the
required functions for serial data exchange.

• OBEX (Object Exchange), which is built on the top of
RFCOMM to implement exchange of objects, such as
files and vCards. Originally, it was developed by IrDA
(Infrared Data Association) for IR-enabled devices.

• TCS (Telephony Control protocol Specification), which
defines ways to send audio calls between Bluetooth
devices.

The Bluetooth technology is also composed by a set of
profiles. Bluetooth profiles describe several scenarios where
Bluetooth technology is responsible of transmission. Each
scenario is described by a user model and the corresponding
profile gives a standard interface that applications can use to
interact with the Bluetooth protocols. The profile concept is
used to decrease the risk of interoperability problems between
different manufacturers’ products, for instance, some profiles
are:

• FTP (File Transfer Profile), which defines how folders
and files on a server device can be browsed by a client
device.

• HPF (Hands-Free Profile), which describes how a gate-
way device can be used to place and receive calls for a
hand-free device.

• VDP (Video Distribution Profile), which defines how a
Bluetooth enabled device streams video over Bluetooth
wireless technology.

Other details on the Bluetooth specification can be found in
[4] or in [27].

In order to interface applications to the physical layer
a Bluetooth Stack implementation is necessary. The stack
provides a standard interface between the application layer and
the Bluetooth specification. This interface is used to overcome
the compatibility problems between application and different
Bluetooth devices. Indeed, Bluetooth stacks are responsible of
implementing the Bluetooth wireless standards specifications.
There are several different stacks targeted to different devices,
applications, and operating systems. To our knowledge, cur-
rently available Bluetooth stack implementations are:

• Mobile devices vendors’ embedded stacks. Vendors pro-
viding Bluetooth-enabled devices have to build their own
Bluetooth stack; for mobile phones stack implementations
depend on the OS (e.g., Symbian).

• Broadcom BTW (not free) [8]. It is addressed to PC
OEMs and accessory manufactures to quickly and easily
add Bluetooth technology to desktop PC and notebooks
running Windows. It includes the object code for the

Protocol Stack (L2CAP, SDP, RFCOMM, OBEX, PPP,
BTM-Bluetooth Manager), an application programming
interfaces (APIs), and test tools.

• Microsoft BT Stack [20]. It is the Microsoft version of
the Bluetooth stack and is embedded in Windows XP SP
2. It provides the support for most of Bluetooth profiles,
essentially the ones based on the RFCOMM protocol.

• BlueZ (free and open-source) [7]. It is the official Linux
Bluetooth Stack. The code is licensed under the GNU
General Public License and is included in the Linux 2.4
and Linux 2.6 kernel series. It provides a direct access to
the transmission layer and allows developers to set several
parameters of the communication (i.e., choosing an ACL
or SCO connection, choosing different time shifting, etc.).

B. J2ME
The J2ME (Java Platform Micro Edition) is a collection of

Java APIs supporting the development of applications targeted
to resource-constrained devices such as PDAs and mobile
phones. Formally, J2ME is an abstract specification, however
the term is frequently used also to refer to the runtime im-
plementations. The advantages of using Java as programming
language are the code portability and an increase of mobile
devices’ flexibility. In particular, J2ME provides support for
deploying dedicated applications, named MIDlets. Since the
range of micro devices is so diversified and wide, J2ME was
designed as a collection of configurations, where each con-
figuration is tailored to a class of devices. Each configuration
consists of a Java Virtual Machine and a collection of classes
that provide a programming environment for the applications.
Configurations are then completed by profiles, which add
classes to provide additional features suitable to a particular set
of devices. J2ME defines two configurations: the Connected
Device Configuration (CDC) [12] and the Connected Limited
Device Configuration (CLDC) [13].

CDC is addressed to small, resource-constrained devices
such as TV set-top boxes, auto telematics. It can add a graph-
ical user interface and other functionalities; CLDC, instead,
is addressed to devices with limited memory capacity. In this
paper, we restrict our attention to the CLDC configuration,
which is the most diffused one. CLDC is a low level spec-
ification that includes a set of APIs providing basic features
for resource-constrained devices, such as mobile phones and
PDAs. Producers should add features to CLDC by providing
new libraries and thus creating a Profile. The first profile pro-
posed for CLDC was the MIDP (Mobile Information Device
Profile) [14]. MIDP is a set of Java libraries that allows to
create an application environment for mobile devices with lim-
ited resources. Here, limitations include: amount of available
memory, computational power, network communications with
strong latency, and low bandwidth. MIDP 1.0 specification
was produced by MIDPEG (MIDP Expert Group), as part of
the JSR-37 [17] standardization effort; while, the MIDP 2.0
specification was released with the JSR-118 [16] standard-
ization effort. MIDP 2.0 devices have to meet the following
requirements:

• Memory, 250 KB of non volatile memory for MIDP
components, 8 KB for user data.



60

International Journal On Advances in Telecommunications, vol 1 no 1, year 2008, http://www.iariajournals.org/telecommunications/

• Display, 96x54 resolution, 1-bit color depth, 1:1 aspect
ratio.

• Networking, bidirectional and wireless communication,
limited bandwidth.

C. Networking in J2ME

Fig. 2. The J2ME Connection hierarchy diagram.

The J2ME has to support a large variety of mobile devices
with different sizes and shapes, different networking capabili-
ties, and I/O requirements. Therefore, networking management
in J2ME should be both flexible and device specific. To this
aim, the CLDC defines the Generic Connection Framework.
Such a framework delineates the abstractions of the network-
ing and file I/O, in order to support the largest variety of
devices, while leaving device manufactures to provide real
implementations. Abstractions are defined as Java interfaces
and the device manufacturers choose which one to implement.

Networking features within J2ME are defined by the MIDP
in the javax.microedition.io package. It supports the
following communication protocols:

• HTTP and HTTPS connections
• datagram
• socket
• secure socket
• serial port communication
Figure 2 shows the interface diagram of the

javax.microedition.io.Connection hierarchy.
Those interfaces are part of the Generic Connection
Framework of J2ME’s CLDC, together with the Connector)
class. We remark that no implementation is given at the
CLDC level. The actual implementation is left to MIDP. The
Connector class is the core of the Generic Connection
Framework. All connections are created by its static method
Connection open(String connect). Different
connections are instantiated according to different connect
strings. The connect string has a URL-like format:

PROTOCOL:[//TARGET][PARAMS],
where PROTOCOL defines the type of connection (e.g., file,

socket, http); TARGET defines a hostname, a port number, or a

file name; PARAMS defines optional parameters. Polymorphi-
cally, different parameters in the connection string make the
Connector.open method return a different Connection
object. For example, a connection string starting with http://
will drive the open method to return a HttpConnection
object.

We remark that MIDP-powered devices are required to
support at least HTTP connections. HTTP is the most used
protocol and it is easily implemented over different wire-
less networks. The use of HTTP allows user to exploit
server-side infrastructure which are available for cabled net-
works. The HttpConnection interface defines the MIDP
API for HTTP. This interface extends another interface,
ContentConnection, to add fields and methods required
for: URL parsing, request management, response parsing.

HTTP connection parameters can be set up by the following
methods:

• setRequestMethod(String method): chooses
GET, POST, OR HEAD operations.

• setRequestProperty(String key, String
value): sets up a generic request.

In Figure IV, we show an example of how to execute from a
MIDP-powered device a simple HTTP post operation to a Java
Servlet on a remote Web Server . We remark that the operating
system is in charge of establishing a physical connection. If
more network interfaces are available, it selects a default one
or asks user to choose one.

The Java code performs the following operations:
(1) Open a HTTP connection with the Web Server for both

send and receive operations.
(2) Set the request method to POST

(3-6) Send the string entered by user byte by byte.
(7-8) Close the output stream.

(9) Open an InputStream on the connection.
(10-18) Retrieve the response back from the servlet.

(19) Close the input stream.

D. JSR-82

Although the synergy between MIDP and J2ME technolo-
gies supplies a large number of communication schemes,
it does not provide support for the Bluetooth technology.
Therefore, the Java Expert Group JSR-82 [15] introduced
the Java API for Bluetooth Wireless Technology (JABWT)
that provides a standard and high-level support for handling
Bluetooth communications in Java applications. This API
operates on top of CLDC to extend MIDP functionalities.
Its development is still in progress, but about twenty mobile
vendors have adopted it in their devices. The last released
version (Version 1.1) provides support for:

• Data transmission on the Bluetooth channel (audio and
video are not supported).

• Protocols: L2CAP, RFCOMM, SDP, OBEX.
• Profiles: GAP, SDAP, SPP, GOEP.

The Generic Access Profile (GAP) defines the generic pro-
cedures related to discovery of Bluetooth devices and link
management aspects of connecting to Bluetooth devices. The



61

International Journal On Advances in Telecommunications, vol 1 no 1, year 2008, http://www.iariajournals.org/telecommunications/

(1) HttpConnection hc = (HttpConnection) Connector.open(defaultURL, Connector.READ_WRITE);

(2) hc.setRequestMethod(HttpConnection.POST);

(3) DataOutputStream dos = hc.openDataOutputStream();
(4) byte[] request_body = requeststring.getBytes();

(5) for (int i = 0; i < request_body.length; i++)
(6) dos.writeByte(request_body[i]);

(7) dos.flush();
(8) dos.close();

(9) DataInputStream dis = new DataInputStream(hc.openInputStream());

(10) int ch;
(11) long len = hc.getLength();

(12) if(len!=-1) {
(13) for(int i = 0;i<len;i++)
(14) if((ch = dis.read())!=-1)
(15) messagebuffer.append((char)ch);
(16) } else { // if the content-length is not available
(17) while ((ch = dis.read()) != -1)
(18) messagebuffer.append((char) ch);
}

(19) dis.close();

Fig. 3. A simple HTTP post operation from a MIDlet

Service Discovery Application Profile (SDAP) defines the fea-
tures and procedures for an application in a Bluetooth device
to discover services registered in other Bluetooth devices and
retrieve any desired available information pertinent to these
services. The Serial Port Profile (SPP) defines the requirements
for Bluetooth devices necessary for setting up emulated serial
cable connections using RFCOMM between two peer devices.
The Generic Object Exchange Profile (GOEP) defines the
requirements for Bluetooth devices necessary for the support
of the object exchange usage models.

The interaction between the J2ME environment and the
Bluetooth API is shown in Figure 4.

Fig. 4. J2ME - Bluetooth API interaction architecture [25].

Using JABWT, it is possible to interact with the Bluetooth
stack in a Java application. In particular, it is possible to call
services such as device and service discovery, establishment
of RFCOMM, L2CAP, and OBEX connections.

In order to use the Java APIs for Bluetooth, a real implemen-
tation of the JSR-82 specification is necessary on the device.
To our knowledge, the current JSR-82 implementations are:

• Mobile devices vendors’ embedded JSR-82 implementa-
tions.

• Atinav aveLink suite (not free) [5]. It offers both a
standard implementation of the Bluetooth stack and the
implementation of all the standard profiles for ANSI C,
JSR-82 for J2SE Java, JSR-82 for J2ME, Windows and
Windows CE.

• Impronto Rococo (not free) [10]. It is a complete product
that provides the Bluetooth Stack and the integration
layer, the JVM and the JSR-82 implementation layer both
for J2SE and J2ME.

• Avetana (not free) [2]. It enables writing J2SE applica-
tions to access the Bluetooth layer; it is available for
Windows, MacOS X, and Linux platforms.

• BlueCove (free) [3]. It provides the Java JSR-82 support
for J2SE applications over the Windows XP SP2 Blue-
tooth stack.

III. HTTP CONNECTIONS OVER BLUETOOTH

In this section, we will present our solution to allow a
J2ME application developer to establish HTTP connections
using Bluetooth as the communication channel.

Since a few years, Bluetooth has been exploited to connect
a PC to the Internet through Internet connections available
on a paired mobile phone, such as cell network service (e.g.
GPRS, EDGE, UMTS) or WLAN. In this scenario, the mobile
phone acts as a gateway, while the communications between
the phone and the PC are carried over Bluetooth.

However, the cell network internet service is often expen-
sive or not always available. Also, mobile phones supporting
WLAN are still in a minority of the market and are available
only on high-end cost phones. In this work, we want to provide
HTTP connections to mobile phone users without requiring
them to use the cell network Internet connection, i.e. using a
Bluetooth connection.

Therefore, we refer to the scenario shown in Figure 5,
where a client establishes a HTTP connection with a server.



62

International Journal On Advances in Telecommunications, vol 1 no 1, year 2008, http://www.iariajournals.org/telecommunications/

Fig. 5. Ideal scenario: a mobile phone accesses the Web using Bluetooth.

We observe that wireless communication by means of HTTP
over GPRS/EDGE/UMTS and WLAN is widely supported
within J2ME. On these channels it is easy to create a HTTP
connection and deploy MIDlets that network over this channel
by means of HttpConnection objects. However, to the best
of our knowledge, there is no implemented support for cre-
ating a HttpConnection object which uses an underlying
Bluetooth channel. To overcome this limitation, we created
ourselves the BtHttpConnection class and introduced a new
entity, the BHSP (Bluetooth Http Server Proxy), that takes
care of interfacing clients to the Web Server. We argue that we
can maintain the same server-side architecture and guarantee
the interoperability of applications running on the mobile
device with any Web Server. Moreover, no modification to the
MIDlet is required to use Bluetooth as communication chan-
nel, instead of the previously supported channels, i.e. WLAN
or GPRS/EDGE/UMTS. Figure 6 illustrates the operational
scenario to which we refer.

Fig. 6. Operational scenario of our solution.

The resulting framework is then composed of four different
entities:

• Client Application. It runs on a Bluetooth-enabled mobile
device and it establishes HTTP connections on a Blue-
tooth channel using the J2ME standard way, i.e. using the
HttpConnection class.

• BtHttpConnection interface performs all the work
required to communicate on the Bluetooth channel and
to achieved the transparency for the client application’s
developer.

• BHSP - Bluetooth Http Server Proxy. It interfaces clients
with Web Servers, by listening to requests on the Blue-
tooth channel, forwarding them to the Web Server, and

giving back results to the client application.
• Web Server. It is a standard Web Server (e.g. Apache)

that replies to clients’ requests communicating through
the BHSP.

We remark that the BHSP has been designed as a sup-
plementary module of the Web Server (i.e., it is a daemon
starting together with the Web Server), conceptually allowing
the Web Server to accept requests from a Bluetooth channel,
too. Within this scenario, a Web Server administrator can
decide to provide its resources not only through the Internet,
but also to Bluetooth-enabled mobile devices which are within
its transmission range. This Web server will be listening
upon port 80 (the standard HTTP port) and upon Bluetooth
RFCOMM port, see Figure 7(a). Moreover, our solution fits
another scenario as well. Indeed, the BHSP can act as a real
proxy and be implemented over any device equipped with
two interfaces: (i) Bluetooth, used to interact with the client
application, and, (ii) an interface supporting TCP/IP, that can
interact with the Web Server. In this way, the client application
and the Web Server are not required to be within transmission
range, see Figure 7(b).

In the scenario depicted by Figure 7(a), the BHSP will post
the received request to localhost, while in the scenario in
Figure 7(b) it will post the request to the domain request by the
client application. We remark that in the first case requests are
bounded to the Web Server in the transmission range, while
in the second one they can address any Web Server reachable
from the BHSP.

IV. THE BTHTTPCONNECTION CLASS

As discussed in Section II-C, the connection string given as
parameter in the Connector.open polymorphically drives
the type of the object that will be returned, according to the
cast made by the developer

Our goal is to provide a new interface in the Connec-
tion hierarchy which provides HTTP support over Blue-
tooth. We named this interface BtHttpConnection and
we implemented by extending the HttpConnection in-
terface. As a result, we can invoke the Connector.open
method with a HTTP-based connection string and decide
to cast the generic Connection object returned either as
a HttpConnection or a BtHttpConnection object.
In this case, operations will be carried out over a Blue-
tooth channel. However, in order to do that we should
modify the source code of the Connector.open method.
Although the whole J2ME environment has recently gone
open source, this modification should then be reflected in
all the J2ME implementations by phones’ vendors. There-
fore, although the BtHttpConnection class extends the
HttpConnection class, we cannot polymorphically cast
the HttpConnection object to BtHttpConnection.
Hence, we let the Connector.open method still return
a HttpConnection object, but then we instantiate a
BtHttpConnection method which takes in input all the
information about the HttpConnection object:

Whenever a BtHttpConnection is instantiated, the fol-
lowing operations are performed:



63

International Journal On Advances in Telecommunications, vol 1 no 1, year 2008, http://www.iariajournals.org/telecommunications/

Fig. 7. Two possible settings for the BHSP.

(1) HttpConnection hc =(BtHttpConnection)
Connector.open(defaultURL, Connector.READ_WRITE);

(2) BtHttpConnection bhc =new BtHttpConnection(hc);

Fig. 8. From a HttpConnection to BtHttpConnection

• Establish an association between the “http”-starting URL
(given in the connection string) and a Bluetooth remote
device (the BHSP).

• If the association has not been previously established,
perform an inquiry operation to discover a Bluetooth
device which exposes a “Web Server” service and which
corresponds to the URL in the connection string. After-
wards, store the association in a local database.

• If the association has been previously established, re-
cover the correspondent Bluetooth address from the local
database.

• Once the Bluetooth Address has been found, establish a
RFCOMM connection with the BHSP, which will be used
to send/receive HTTP requests/responses.

Code reuse. We remark that the extra work required
to implement HTTP connections over Bluetooth is
totally transparent to application developers. In fact,
BtHttpConnection provides programmers with the
same interface as HttpConnection, masking all the
implementation details of the Bluetooth interactions. Suppose
that a programmer has implemented the MIDlet showed
in Figure IV to performs a HTTP post to a servlet using
WLAN from his mobile phone. If he wants to deploy
its application on cheaper mobile phones, not supporting
WLAN but supporting Bluetooth, then he has only to use the
BtHttpConnection instead of HttpConnection. We
stress that all the methods are unaltered, so no modification
to the code is required. The operation is showed in Figure 9,
which differs from only for the line code (2).

Figure 10 shows the resulting new class diagram
with the new BtHttpConnection class to extend the
HttpConnection class.

V. BHSP: THE BLUETOOTH HTTP SERVER PROXY

The BHSP has been implemented as a Bluetooth listener
daemon. It will run as a J2SE application on a desktop

Fig. 10. The J2ME Connection hierarchy diagram

computer but it has been designed to operate at a low-level
and to be lightweight (it has a small footprint) in order not to
affect performance. It does not interpret processed data but it
simply forwards it.

Whenever an incoming request is received from the Blue-
tooth channel, it is inserted in a queue and processed as soon
as possible. The BHSP uses the Apache Commons HttpClient
package [1] to execute the required method on the Web Server.
Once that it has got the response, it forwards it back on the
Bluetooth channel to the client application.

The work is performed by a BTServer class, which takes
care of:

• setting the device in discoverable mode
• activating a listening connection
• accepting incoming connections
• performing I/O on the Bluetooth channel
• instantiate a Poster object.

The Poster class is in charge of:
• performing an HTTP post operation on the Web Server,

using the Apache Commons HttpClient package
• giving back the request to the BTServer object
In order to have a licence-free and JSR-82 compliant imple-

mentation of our BHSP, we have considered two alternatives:



64

International Journal On Advances in Telecommunications, vol 1 no 1, year 2008, http://www.iariajournals.org/telecommunications/

(1) HttpConnection hc =(BtHttpConnection) Connector.open(defaultURL, Connector.READ_WRITE);

(2) BtHttpConnection bhc = new BtHttpConnection(hc);

(3) bhc.setRequestMethod(HttpConnection.POST);

(4) DataOutputStream dos = bhc.openDataOutputStream();
(5) byte[] request body = requeststring.getBytes();
(6) for (int i = 0; i <; request body.length; i++)
(7) dos.writeByte(request body[i]);

(8) dos.flush();
(9) dos.close();

(10) DataInputStream dis = new DataInputStream(bhc.openInputStream());

(11) int ch;
(12) long len = bhc.getLength();
(13) if(len!=-1) {
(14) for(int i = 0;i<len;i++)
(15) if((ch = dis.read())!=-1)
(16) messagebuffer.append((char)ch);
(17) } else { // if the content-length is not available
(18) while ((ch = dis.read()) != -1)
(19) messagebuffer.append(10) ;
}

(20) dis.close();

Fig. 9. A simple HTTP post operation performed over a Bluetooth channel

1) To use BlueCove [3], the free implementation of the
JSR-82 API within the Microsoft Windows XP SP2.

2) To use BlueZ [7], the Linux Bluetooth stack, and provide
a JSR-82 implementation for BlueZ.

We remark that for this part we have modified the implemen-
tations of the works in [21] and [22] that performed a similar
operations for Web Services invocation over Bluetooth.

Figure 11 shows the main steps of the BHSP. The Java code
in Figure 11 executes the following operations:

(1) Set the device in discoverable mode.
(2-4) Activate a listening connection on localhost, on the

channel 1, named “rfcomm test”.
(5) Accept incoming connections.
(6) Open an InputStream on the connection.

(7-8) Read data on the stream.
(9-10) Post the HTTP request at the specified address, using

the Poster class, to get the response.
(11) Open an OutputStream on the connection.
(12) Write data, i.e. the HTTP response.

VI. A TRANSPARENT AND EFFICIENT SOLUTION

In Figure 12, we summarize how our solution works. The
top section of the diagram depicts the association of the
BHSP’s Bluetooth address to the http:// URL, performed by
the BtHttpConnection interface through an inquiry. The
bottom section shows a generic operation over the established
connection: data is exchanged between the client and the BHSP
over the Bluetooth channel; requests to the Web Server are
posted by the BHSP through the use of Apache HttpClient
package [1].

We stress that the work needed to use a Bluetooth con-
nection is totally transparent to both the application devel-
opers and the user. In fact, BtHttpConnection provides
programmers with the same interface as HttpConnection,
the only change required w.r.p. a normal HttpConnection-
based MIDlet is to use the BtHttpConnection instead of
HttpConnection.

We envision several applications for our solution. For in-
stance, there could be waiting rooms, such as stations or air-
ports, that provide a free Internet access to users, for timetable
information, emails, weather forecasts. The same scenario
could take place in trains, buses, coffee shops, restaurants. No
massive money investment is required for this goal, other than
exposing a BHSP (or more according to the expected number
of users), to which users can connect with their simple J2ME-
and Bluetooth-enabled mobile phone.

Also, we envision a scenario where Sun embeds our solution
in the official J2ME specification, so that all the implemen-
tations will provide the support for HTTP connections over
Bluetooth. The only requirement would be to have a BHSP
proxy available in order to support the communication. We
remark that our solution does not work on the TCP/IP protocol,
but only allows simple POST/GET operations on Web Servers.
As a result, there would be no support for congestion control,
sessions, and all the other nice features provided by the
protocol stack. However, we argue that Bluetooth commu-
nications, though as not reliable as TCP/IP ones, provides
completely free communications on tiny and inexpensive de-
vices. Moreover, we argue that the new Bluetooth technology
(2.0) implemented by the new generation’s chips is efficient
enough to support simple HTTP operations, such as chats or
Internet browsing on most of the web sites normally accessed
by mobile phones’ users..

Furthermore, we claim that our work fills an important
gap of the J2ME environment. In spite of limitations such as
communication speed or the necessary presence of a Bluetooth
proxy, our solution finally gives the appropriate tool to appli-
cation developers to deploy complex applications which work
on Bluetooth. Indeed, we argue that this free technology could
be exploited for many solutions, and not only for simple files
exchange anymore. Thanks to its transparency, our solution is
ready-to-use for real scenarios on many low-end price class
of devices massively available and spread out today.



65

International Journal On Advances in Telecommunications, vol 1 no 1, year 2008, http://www.iariajournals.org/telecommunications/

(1) (LocalDevice.getLocalDevice).setDiscoverable(DiscoveryAgent.GIAC);

(2) (StreamConnection) notifier = (StreamConnection)
(3) Connector.open("btspp://localhost:1;name=rfcommtest;master=true;encrypt=false;authorize=false;
(4) authentication=false;receiveMTU=512;transmitMTU=512");

(5) notifier.acceptAndOpen();
(6) InputStream input = notifier.openInputStream();

(7) /* Perform buffered readings to get the request */
(8) String request = input.read();
(9) Poster poster = new Poster(address);

(10) String response = poster.doPost(request);
(11) OutputStream output = notifier.openOutputStream();
(12) output.write(response.getBytes());

Fig. 11. Java code for the BHSP.

Fig. 12. Time Diagram of a client application accessing a Web resource.

VII. PERFORMANCE EVALUATION

In this section, we analyze the performance of our solution
in order to evaluate its lightness and its usability in real world
scenarios. To this aim we set up the following test bed:

• The WS and the BHSP lie on a PC IBM ThinkCentre
50 Personal Computer, with Pentium 4 2,6 GHz and 760
MB RAM, running Windows XP Professional SP 2, with
a Bluetooth TrendNet TBW-102UB USB dongle, and
BlueCove [3] implementation of the JSR-82 Bluetooth
API for Java.

• The client application runs on a Nokia N73 mobile phone
(Symbian OS 9.1), compliant with MIDP 2.0 and JSR-82
standards.

We evaluated the overhead taken by the
BtHttpConnection class to let a mobile client interact
with a Web Server using HTTP connections over a Bluetooth
channel. To this aim, we have compared times to post growing

size strings for the following applications:

1) A MIDlet which posts strings to a Bluetooth-enabled
Web Service using the BtHttpConnection.

2) A simple MIDlet which sends strings to a remote device
over Bluetooth.

Figure 13 shows times for strings ranging from 1 KB to
50 KB with an increasing size of 0,5 KB. Each test was
repeated 50 times to get significant average times. As we
can see in the diagram, the use of BtHttpConnection
slightly slows down the computation. The other application
can directly access the Bluetooth channel and send data over it,
while the BtHttpConnection implies a small computation
overhead to handle the connection and to give a higher profile
to the application. However, the overhead is almost constant
and small enough to consider our solution efficient enough to
be used in real world scenario with complex applications.



66

International Journal On Advances in Telecommunications, vol 1 no 1, year 2008, http://www.iariajournals.org/telecommunications/

Fig. 13. Performance evaluation of BtHttpConnection.

VIII. CONCLUSION

We have presented a solution to establish HTTP connections
over Bluetooth channels from low-end price class J2ME-
enabled mobile phones. The resulting solution is lightweight
and works at no extra cost for users and application developers,
but it only requires the presence of a Bluetooth connection to a
device connected to the Internet. The provided implementation
requires no code modification and allows programmers to
enhance the features of HTTP-based MIDlets with basically no
effort, extending their range of action from mobile phones pro-
vided with GPRS/UMTS connections (sometimes expensive
or not available) or WLAN access (available only on high-
end price cost devices), but also to inexpensive mobile phones
provided with Bluetooth interface, which is free to use.

Our performance evaluation confirms the real applicability
and lightness of our solution, showing that it is efficient
enough to be used in a real world scenario for a wide set
of applications.

IX. ACKNOWLEDGEMENTS

This work has been partially supported by the European
Commission through the IST program under contracts FP6-
1596 (AEOLUS) and by the Foundations of Adaptive Net-
worked Societies of Tiny Artifacts project, funded by the
European Commission as project number 215270.

REFERENCES

[1] Apache Commons HttpClient. http://jakarta.apache.org/
commons/httpclient/.

[2] Avetana jsr-82 implementation. http://www.avetana-gmbh.de/
avetana-gmbh/produkte/jsr82.eng.xml.

[3] BlueCove. http://sourceforge.net/projects/
bluecove/.

[4] The Bluetooth SIG Standard. http://www.bluetooth.com.
[5] Bluetooth solutions by Atinav AveLink. http://www.avelink.

com/bluetooth/index.htm.
[6] Bluetooth Wireless Technology. http://www.ericsson.com/

technology/techarticles/Bluetooth.shtml.
[7] BlueZ: Official Linux Bluetooth protocol stack. http://www.

bluez.org/.
[8] Broadcom Bluetooth Solutions. http://www.broadcom.com/.
[9] Critical Mass – The Worldwide State of the Mobile Web . http://

www.nielsenmobile.com/documents/CriticalMass.pdf.
[10] Impronto Rococo Software. http://www.rococosoft.com/.
[11] J2ME: Java 2 Micro Edition. http://java.sun.com/j2me/.

[12] JSR 218, Connected Device Configuration(CDC).
[13] JSR 30, JSR 139: Connected Limited Device Configuration (CLDC).

http://java.sun.com/products/cldc/.
[14] JSR 37, JSR 118: Mobile Information Device Profile (MIDP). http:

//java.sun.com/products/midp/.
[15] JSR 82: Java APIs for Bluetooth. http://www.jcp.org/en/jsr/

detail?id=82.
[16] Mobile Information Device Profile 2.0 (MIDP 2.0): JSR 118.

http://jcp.org/aboutJava/communityprocess/final/
jsr118/index.html.

[17] Mobile Information Device Profile (MIDP): JSR 37. http:
//jcp.org/aboutJava/communityprocess/final/
jsr037/index.html.

[18] Opera Mini Web Browser. http://www.operamini.com/.
[19] Opera Software Company. http://www.opera.com/company/.
[20] Windows support for Bluetooth. http://msdn.microsoft.

com/library/default.asp?url=/library/en-us/
bluetooth/bluetooth/about_bluetooth.asp.

[21] V. Auletta, C. Blundo, E. D. Cristofaro, and G. Raimato. A Lightweight
Framework for Web Services Invocation over Bluetooth. pages 331–338,
2006.

[22] V. Auletta, C. Blundo, E. D. Cristofaro, and G. Raimato. Performance
evaluation of web services invocation over Bluetooth. pages 1–8, 2006.

[23] V. Auletta, C. Blundo, and E. De Cristofaro. A J2ME transparent
middleware to support HTTP connections over Bluetooth. In Proceed-
ings of the Second International Conference on Systems and Networks
Communications (ICSNC 2007), 2007.

[24] B. Chatschik. An overview of the Bluetooth wireless tecnology. IEEE
Communication Magazine, 39:86–94, 2001.

[25] Q. H. Mahmoud. The Java APIs for Bluetooth Wireless Technology
- Part II. http://developers.sun.com/mobility/midp/
articles/bluetooth2, 2003.

[26] G. Sarswat and J. Noida. Bluetooth Hacking. http://cnss.
wordpress.com/2007/09/11/bluetooth-hacking1, 2007.

[27] W. Stallings. Wireless communications and networks, 2005.


