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Abstract—This paper describes a method to exploit the
concatenation of very simple component codes in order to
obtain good low-density parity-check codes. This allows to
design codes having a number of benefits, as high flexibility
in length and rate and low encoding complexity. We focus
on two kinds of concatenation: the former is classic serial
concatenation, in which redundancy is progressively added
to the encoded word, whereas the latter is the special case
of concatenation coinciding with a bi-dimensional product
code. The proposed design technique allows to obtain codes
characterized by parity-check matrices with a low density of
1 symbols and free of short cycles in their associated Tanner
graph; so efficient algorithms based on the belief propagation
principle can be adopted for their decoding. In addition,
the systematic form of the component codes can ensure rate
compatibility; so the proposed codes can be adopted in type-
II hybrid automatic repeat request schemes. We analyze their
properties through theoretical arguments and provide some
design examples to assess their performance.
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I. INTRODUCTION

This paper deals with the design of a family of structured
low-density parity-check (LDPC) codes based on serial
concatenation [1]. The introduction of concatenation in the
design of efficient schemes for forward error correction
(FEC) is due to Dave Forney in 1966 [2]. Since then, several
forms of concatenation have been exploited in the design
of codes, providing better and better performance, until
the introduction of turbo codes [3], based on concatenated
convolutional codes and Bahl, Cocke, Jelinek and Raviv
(BCJR) decoders [4].

In recent years, LDPC codes [5] have become the state of
the art in FEC techniques, due to their capacity-approaching
performance under belief propagation decoding [6]. Since
their recent rediscovery [7], many design techniques for
LDPC codes have been proposed, that can be classified
as structured and non-structured approaches. Structured ap-
proaches permit to design codes characterized by rather
low implementation complexity that, however, must obey
a number of constraints in terms of length and rate, as
in the case of quasi-cyclic (QC) LDPC codes [8]. Non-
structured designs, instead, are able to produce good LDPC
codes with very fine length and rate granularity, as occurs
by adopting the progressive edge growth technique [9].
However, non-structured techniques generally produce codes

that are less prone to hardware implementation, due to the
lack of structure in their characteristic matrices.

As a first aim of this paper, we study how to design
structured LDPC codes that can be represented as the serial
concatenation of very simple components [10], [11]. We
adopt, as component codes, a class of polynomial codes
having a binomial generator polynomial. This approach
permits us to design codes characterized by a very simple
intrinsic structure, that allows to adopt low complexity
encoder circuits. The proposed codes can also be shortened
arbitrarily, thus obtaining fine length and rate granularity.

We show that the proposed technique can be used to
design sets of rate compatible codes [12]. Rate compat-
ibility is important, for example, in the implementation
of Type-II Hybrid Automatic Repeat-reQuest (T-II HARQ)
schemes, where packets are initially encoded with a high
rate code, and then redundancy is transmitted incrementally
until successful decoding is achieved. T-II HARQ schemes
are particularly useful in packet switched communication
networks, since they allow the achievement of capacity-
approaching unequal error correction. Serial concatenation
is a consolidated procedure to design rate compatible codes
[13], [14].

When the code length increases, the advantages of adopt-
ing serial concatenation can be limited by the need of
rather large component codes. For this reason, we consider a
further form of concatenation, coinciding with the structure
of a bi-dimensional product code. At the cost of some loss
in performance, the adoption of a product structure allows to
keep small the size of the component codes while designing
concatenated codes with large blocks. We will show that
both the serial concatenation and the product structure are
able to ensure the LDPC nature of the codes when adopting
the special class of component codes we consider. We will
also develop some examples aimed at assessing the effect
of different design choices in the combination of serial
concatenation with the product structure.

The paper is organized as follows. Section II introduces
the code design approach based on the serial concatenation
of codes with binomial generator polynomial. In Section
III the characteristics of the proposed codes are studied.
Section IV reports some design examples of serially con-
catenated codes and their simulated performance, whereas
Section V gives some examples of usage of such codes
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in bi-dimensional product structures. Finally, Section VI
concludes the paper.

II. CODE DESIGN

A. Component codes

In the considered scheme, the i-th component code (i =
1, . . . ,M ) is a polynomial code with generator polynomial

g(i)(x) = (1 + xri) , (1)

where ri, that is a suitably chosen positive integer, represents
the code redundancy. We denote by ni the length of the i-th
component code and by ki = ni − ri its dimension. Each
component code can be seen as a shortened version of a
binary cyclic code with length Ni =

⌈
ni

ri

⌉
· ri ≥ ni, where

function �·� returns the smallest integer greater than or equal
to its argument. It can be easily verified that:

(
1 + xNi

)
= (1 + xri)

(
1 + xri + x2ri + . . .+ xNi−ri

)
;

(2)
so a valid parity polynomial for the cyclic code is:

h(i)(x) =
(
1 + xri + x2ri + . . .+ xNi−ri

)
. (3)

Starting from the coefficients of the parity polynomial, it
is easy to obtain a valid parity-check matrix for any binary
cyclic code in its standard form [15]. For the considered
cyclic codes, the parity-check matrix (Hi) has a very regular
structure, that is a single row of

⌈
ni

ri

⌉
identity blocks with

size ri × ri. It follows that Hi has size ri ×Ni.
The i-th cyclic code has dimension Ki = Ni− ri ≥ ni−

ri = ki. Each Ki-bit information vector can be associated
to an information polynomial m(i)(x) as follows:

m(i)(x) = m0+. . .+mki−1x
ki−1+. . .+mKi−1x

Ki−1, (4)

where m0 . . .mKi−1 ∈ {0, 1} are the information bits. The
codeword corresponding to m(i)(x) can be expressed, in
polynomial terms, as follows:

t(i)(x) = t0 + . . .+ tni−1x
ni−1 + . . .+ tNi−1x

Ni−1

= m(i)(x)g(i)(x). (5)

We shorten the cyclic code by imposing mki
= mki+1 =

. . . = mKi−1 = 0. This implies tni
= tni+1 = . . . =

tNi−1 = 0, and the parity-check matrix can be accordingly
shortened by eliminating its first Ni−ni columns. Figure 1
shows the structure of the parity-check matrix of the cyclic
code and its shortened version. Black diagonals represent 1
symbols, whereas the other symbols are null. The shortened
matrix corresponds to the sub-matrix marked in grey.

r i

r i

Ni

n i

Figure 1. Parity-check matrix of the i-th component code.

B. Serial concatenation

We consider a first family of codes that are obtained
as the serial concatenation of M component codes of the
type described in Section II-A. We call this family of codes
Multiple Serially Concatenated Multiple Parity-Check (M-
SC-MPC) codes [16]. Each component code is in systematic
form; so, we obtain a systematic serial concatenation, in
which redundancy is incrementally appended at the end of
the information vector.

The serially concatenated code has dimension k and
length n. If we set n0 = k, the i-th component code has
dimension ki = ni−1, redundancy ri and length ni = ki+ri,
with i = 1 . . .M . The following relations hold:

n1 = n0 + r1 = k + r1
n2 = n1 + r2 = k + r1 + r2

...
nM = nM−1 + rM = k +

∑M
i=1 ri

(6)

and the overall code has length n = nM and redundancy
r =

∑M
i=1 ri. The parity-check matrix of each component

code, in the form of Figure 1, can be used to obtain a valid
parity-check matrix for the serially concatenated code. Such
matrix (H) is in lower triangular form, and it is shown in
Figure 2, for the case M = 3. Each column of H has
maximum density M/r = M/

∑M
i=1 ri (that is the density

of its leftmost n1 columns); the values ri, i = 1 . . .M , must
be chosen high enough as to make H sparse, thus obtaining
an LDPC code. Furthermore, we will see in the following
that, under suitable conditions, matrix H corresponds to
a Tanner graph free of short cycles, that allows to adopt
efficient LDPC decoding algorithms.

It should be noted that the proposed scheme can be seen
as a generalization of the multiple serially concatenated
single parity-check (M-SC-SPC) approach [17]. The latter,
however, assuming r1 = r2 = . . . = rM = 1, does not
permit to obtain LDPC codes. Moreover, the performance
of M-SC-MPC codes can be better than that of M-SC-SPC
codes [16].

A first requirement, when designing serially concatenated
codes with the proposed technique, consists in making their
parity-check matrix suitable for application of decoding
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Figure 2. Parity-check matrix of the serially concatenated code.

algorithms based on the Belief Propagation (BP) principle.
This can be achieved only if the associated Tanner graph is
free of short cycles. For the considered codes, such condition
can be easily ensured by following the rules established in
Lemma 1 and Corollary 1, that are reported next.

Lemma 1: In order to obtain a Tanner graph representa-
tion free of length-4 cycles, the M-SC-MPC code must have
length n ≤ nmax, with:

nmax = min
i,j∈[1,M ]

i<j

{
lcm(ri, rj) +

M∑
l=i+1

rl

}
. (7)

Proof: Let us focus on the parity-check matrix for
M = 3 (see Figure 2), and consider the first two blocks of
rows (i.e. the first r1+ r2 rows). A length-4 cycle exists be-
tween any two rows if they have two 1 symbols at the same
columns. It can be easily verified that this cannot occur when
n1 ≤ lcm(r1, r2), that is n ≤ lcm(r1, r2) + r2 + r3. If we
consider the first and third blocks of rows, length-4 cycles
are avoided among their rows when n1 ≤ lcm(r1, r3), that
is n ≤ lcm(r1, r3)+r2+r3. Finally, in the last two blocks of
rows (i.e. the last r2+r3 rows), length-4 cycles are absent for
n2 ≤ lcm(r2, r3), that is n ≤ lcm(r2, r3)+r3. Hence, in or-
der to avoid length-4 cycles in the matrix of Figure 2, it must
be n ≤ min [lcm(r1, r2) + r2 + r3, lcm(r1, r3) + r2 + r3,
lcm(r2, r3) + r3]. This confirms the validity of (7) for the
case M = 3. The same reasoning can be easily extended to
the general case of M component codes, thus proving the
assertion.

Corollary 1: For a set of distinct, coprime and increas-
ingly ordered ri’s, i = 1 . . .M , the Tanner graph of the
M-SC-MPC code is free of length-4 cycles for code length
n ≤ n′

max, with:

n′
max = r1r2 +

M∑
j=2

rj . (8)

Proof: If we refer again to the case M = 3 (see Figure
2), by Lemma 1, length-4 cycles are avoided when n ≤

lcm(r1, r2) + r2 + r3 = r1r2 + r2 + r3 = r2(r1 + 1) + r3,
n ≤ lcm(r1, r3) + r2 + r3 = r1r3 + r2 + r3 and n ≤
lcm(r2, r3)+ r3 = r2r3+ r3. But r1r2 < r1r3 and r1+1 <
r3, so the first condition is the most stringent one. This result
can be extended to a generic value of M , in the sense that
the condition set by the first two blocks of rows is always the
most stringent one. So, under the hypotheses of the corollary,
Eq. (8) results.

It is important to observe that the proposed design tech-
nique achieves very fine granularity in the code length. In
fact, provided that n ≤ nmax, each value of n is feasible and
able to ensure a Tanner graph representation free of length-4
cycles.

By comparing (7) and (8), we can observe that the choice
of ri’s all distinct and coprime yields the highest values for
the code length, i.e. the highest flexibility in the choice of n.
For this reason, in the following we will consider distinct,
coprime and increasingly ordered ri’s, in such a way as to
apply Eq. (8).

C. Design of product codes

A particular form of serial concatenation can be realized
by constructing a product code, that can be seen as an N -
dimensional polytope in which each component code works
along one dimension.

We focus on the simplest form of product codes, that
are bi-dimensional codes. In this case, the overall code
results from two component codes working on the two
dimensions of a rectangular matrix. An example of such
matrix is reported in Figure 3; we denote by (na, ka, ra)
and (nb, kb, rb) the length, dimension and redundancy of
the two component codes. The information bits are written
in the inner kb × ka matrix by following a fixed order (for
example, in row-wise manner from top left to bottom right).
When the inner matrix is filled, the first component code
acts on its rows, producing a set of kbra checks, that fill
the light grey rectangular region marked as “Checks a”.
Then, the second component code acts on all na columns,
so producing karb checks on the information symbols and
further rarb checks on checks. So, the encoding process
of a product code can be seen as the serially concatenated
application of two components codes. A special feature of
this particular case of serial concatenation is that inverting
the order of application of the two component codes does
not yield any change in the encoded word.

A product code permits to increase the minimum distance
in a multiplicative way. If the two component codes have
minimum distances da and db, respectively, the product
code has minimum distance d = da · db. Several types of
component codes have been used in the design of product
codes. SPC codes are often used because of their simplicity,
but they can yield severe constraints on the overall code
length and rate. Better results can be obtained with product
codes based on Hamming codes, that can achieve very good
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Figure 3. Encoding scheme of a bi-dimensional product code.

performance under soft-input/soft-output iterative decoding
[18]. Furthermore, it has been demonstrated that product
codes are potentially able to achieve error-free coding with
a nonzero code rate (as the number of dimensions increases
to infinity) [19], [20].

We are interested in designing bi-dimensional product
codes that exploit, as component codes, two serially con-
catenated codes having the form described in Section II-B.
In fact, when large block codes are needed, the form of
serial concatenation in Section II-B can require rather large
component codes, that can become unpractical for hardware
implementation. On the other hand, bi-dimensional product
codes could be designed that allow to obtain large blocks
while still exploiting component codes with a rather small
size. Next, we will show that the parity-check matrix of the
bi-dimensional product code can be easily obtained starting
from the parity-check matrices of the two component codes,
and that the product code is still an LDPC code [1].

Let us suppose that the two component codes have the
following parity-check matrices, where hi,j represents the
j-th column of matrix Hi:

Ha =
[
ha,1 ha,2 · · · ha,na

]
,

Hb =
[
hb,1 hb,2 · · · hb,nb

]
. (9)

It follows that Ha has size ra×na, while Hb has size rb×nb.
A valid parity-check matrix for the product code having

such components can be expressed in the following form:

Hp =

[
Hp1

Hp2

]
, (10)

where Hp1 has size ranb × nanb, and Hp2 has size
rbna×nanb. Hp1 can be obtained as a block-diagonal matrix
formed by nb repetitions of Ha:

Hp1 =

⎡
⎢⎢⎢⎣

Ha 0 · · · 0
0 Ha · · · 0
...

...
. . .

...
0 0 · · · Ha

⎤
⎥⎥⎥⎦ , (11)

k

Encoder 1

k

Encoder 2

k

Encoder M

r1 r1 r2 k r1 r2 rM

Figure 4. Scheme of the concatenated systematic encoder.

where 0 represents an ra × na null matrix.
Hp2 is given by (12): it consists of a row of blocks,

in which the i-th block contains, along the main diagonal,
na copies of hb,i (that is, the columns of Hb), while all
the remaining symbols are null. Hp is redundant, since it
includes two sets of parity-check constraints representing
checks on checks through both the component codes. For
this reason, Hp cannot have full rank. When both compo-
nents are in systematic form, a full rank parity-check matrix
for the product code can be obtained by eliminating the last
ra·rb rows from Hp1 or Hp2, in such a way to avoid doubled
representation of checks on checks.

If we suppose that the densities of 1 symbols in Ha

and Hb are δa and δb, respectively, it is easy to prove
that the density of Hp1 is δa/nb, while that of Hp2 is
δb/na. So, even starting from two component codes that
are not characterized by very sparse parity-check matrices,
the resulting product code can still be an LDPC code.
Alternative representations of the parity-check matrix can
be found, that can achieve even lower density [21]. For our
purposes, however, the density of the parity-check matrix in
the form (10), with Hp1 and Hp2 as expressed by (11) and
(12), is low enough.

Furthermore, it is easy to verify that matrix (10) is free
of length-4 cycles, provided that the same holds for the
component matrices Ha and Hb. So, the codes obtained
as bi-dimensional product codes can be effectively decoded
by means of LDPC decoding algorithms. We will give some
examples in this sense in the next section.

III. CODE CHARACTERISTICS

A. Encoding and Decoding

The serially concatenated codes we consider, described
in Section II-B, can be encoded by using a very simple
concatenated encoder structure, like that shown in Figure
4. Each component code, described in Section II-A, is in
systematic form; so, the i-th component encoder simply
appends ri redundancy bits to the input vector. The overall
codeword results in the concatenation of the input vector and
the redundancy vectors added by the cascade of encoders.

Alternatively, the serially concatenated code can be en-
coded by using the standard “back substitution” technique.
For the proposed concatenated code, the low-density parity-
check matrix is in lower triangular form; so, the standard
encoding algorithm has very low complexity due to the
fact that it works on a sparse matrix. For generic LDPC
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Hp2 =

⎡
⎢⎢⎢⎣

hb,1 0 · · · 0 hb,2 0 · · · 0 hb,nb
0 · · · 0

0 hb,1 · · · 0 0 hb,2 · · · 0 0 hb,nb
· · · 0

...
...

. . .
...

...
...

. . .
... · · · ...

...
. . .

...
0 0 · · · hb,1 0 0 · · · hb,2 0 0 · · · hb,nb

⎤
⎥⎥⎥⎦ . (12)

s i+1 r i+ s i+1 ...

s i+2 r i+ s i+2 ...

r i+1 2r i+1 ...1

r i+2 2r i+2 ...2

r i+ s i 2r i+ s i ...s i

...
...

... ...

... ... ...

p 1

p 2

p ri-si+1

p ri-si+2
...

...

p ri

Figure 5. Parallel implementation of the encoder for the i-th component
code.

codes, instead, a matrix pre-elaboration through Gaussian
elimination may be needed in order to put the parity-
check matrix in lower triangular form, and this usually does
not preserve its sparse character, thus yielding increased
complexity.

On the other hand, when adopting the encoder circuit
shown in Figure 4, each component code can be encoded by
means of a very simple circuit, based on a linear feedback
shift register (LFSR) that implements the polynomial multi-
plication expressed by Eq. (5). Encoding of each component
code can be also implemented by using a parallel encoder
architecture and serial to parallel and parallel to serial
converters [22]. For the proposed component codes, the
parallel encoder coincides with a bank of SPC encoders,
as shown in Figure 5. The parallel encoder for the i-th
component code can be represented as a binary matrix with
ri rows and

⌈
ki

ri

⌉
+ 1 columns. For encoding, its cells are

filled in column-wise order, from top left to bottom right.
The first ri−si cells, with si = kimodri, are unused, while
the others are filled in the order reported in Figure 5, until
the first

⌈
ki

ri

⌉
columns are completed (white cells in the

figure). When the j-th row is filled, j = 1 . . . ri, the parity
bit pj is calculated, by XORing the elements of the row,
and its value is stored in the last column, at the same row.
When all the parity bits have been calculated, the encoder
outputs the codeword by reading the matrix content in the
same order used for the input, but including the parity bits.

Due to the LDPC nature of the serially concatenated codes
we consider, and to the absence of short cycles in their
associated Tanner graph, their decoding can be accomplished
through the standard Sum-Product Algorithm with Log-
Likelihood Ratios (LLR-SPA) [23], or through its low-
complexity versions, like the normalized min-sum (NMS)

algorithm [24]. These are BP-based decoding algorithms
and, hence, they are able to exploit the length-4 cycle free
Tanner graph representation of the code to achieve capacity
approaching error-correction performance.

B. Minimum Distance

An upper bound on the minimum distance of the serially
concatenated codes can be obtained by exploiting their
concatenated nature and the structure of the component
codes.

Lemma 2: Serially concatenated codes in the proposed
family have minimum distance:

dmin ≤ 2M . (13)

Proof: Let us consider the concatenated encoder shown
in Figure 4 with systematic component encoders as shown in
Figure 5, and let us focus on the first code, that has redun-
dancy r1. Its minimum weight codewords have Hamming
weight 2, and correspond to input vectors having weight
1. Due to the encoder structure, the two 1 symbols in each
minimum weight codeword are spaced by an integer multiple
of r1, say a1r1, with 1 ≤ a1 ≤

⌊
k1

r1

⌋
, where function

�·� returns the greatest integer smaller than or equal to its
argument.

When such codeword is given as input to the subsequent
encoder, the two 1 symbols can be in the same row of
the second encoder or not. In the first case, that occurs
for a1r1 = a2r2, 1 ≤ a2 ≤

⌊
k2

r2

⌋
, the output codeword

has weight 2; otherwise, it has weight 4. The latter case
occurs for k2 = n1 < lcm(r1, r2), and produces a weight-4
codeword whose 1 symbols can be spaced of integer multi-
ples of r1, r2 and linear combinations of them. When such
weight-4 codeword is given as input to the third component
encoder, its four 1 symbols can be in four different rows or
not. In the first case, the Hamming weight is doubled again,
thus reaching 8. The same procedure can be generalized by
induction, thus obtaining that, for M component codes, the
minimum Hamming weight cannot be greater than 2M , that
proves the assertion.

The proof of Lemma 2 gives an implicit rule for approach-
ing the upper bound on the minimum distance: the number
of coincidences among linear combinations of the ri values,
i = 1 . . .M , must be reduced as much as possible in the
range [1, n]. The choice of coprime ri’s is also favorable
from this viewpoint.
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When serially concatenated codes are used as components
in bi-dimensional product codes, the minimum distance of
the overall code can be easily upper bounded starting from
Lemma 2 and considering that the product code structure
increases the minimum distance in a multiplicative way. So,
the following corollary immediately follows.

Corollary 2: A bi-dimensional product code having, as
components, two serially concatenated codes of the consid-
ered family, has minimum distance:

dmin ≤ 2Ma+Mb , (14)

where Ma and Mb represent the number of serially concate-
nated codes in the two components of the product code.

C. Rate Compatibility

Rate compatibility consists in designing a set of “compat-
ible” codes with different rates, in such a way as to allow
the implementation of schemes with variable error correction
capability.

For the serially concatenated scheme we consider, rate
compatibility is ensured by systematic encoding, since re-
dundancy is incrementally appended to the information
vector. By considering each component code progressively,
a set of rate compatible codes is simply obtained, with code
rates

k

k + r1
>

k

k + r1 + r2
> . . . >

k

k +
∑M

j=1 rj
. (15)

An example of rate compatible serially concatenated
codes is reported in the following section. Rate compatibility
can also be ensured when the serially concatenated codes we
consider are used as components in bi-dimensional product
codes. In this case, a simple way to obtain a family of rate
compatible codes is to fix one of the two components of the
product code, whereas the other one can employ a variable
number of its sub-components in order to change the overall
code rate.

IV. EXAMPLES OF SERIALLY CONCATENATED CODES

In this section, we give some examples of design of
serially concatenated codes through the considered tech-
nique. We show that such technique is able to produce
small, medium and large codes with very fine granularity
in the code length and rate, and very good error correction
performance. Together with their low complexity encoding,
these peculiarities justify possible interest on such codes for
practical applications.

All simulations have been performed with Binary Phase
Shift Keying (BPSK) modulation over the Additive White
Gaussian Noise (AWGN) channel. Coded transmission has
been simulated through a suitable software, written in C++
language, that performs a Montecarlo evaluation of bit error
rate (BER) and frame error rate (FER) for each value of
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Figure 6. Simulated BER for small codes.
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Figure 7. Simulated FER for small codes.

energy per bit to noise power spectral density ratio (Eb/N0).
In order to provide a sufficient level of confidence for
Montecarlo simulations, each BER and FER point has been
estimated after waiting the occurrence of 100 erred frames.

A. Small Size Codes

We consider a first set of rate compatible serially con-
catenated codes obtained from the following choice of ri
values: [29, 31, 35, 43, 59, 89]. All codes in the family have
dimension k = 702, but different length and rate, depending
on the number of component codes. The first code adopts
M = 4 components, corresponding to the first four values
of ri; thus it has redundancy r = 138, length n = 840 and
rate R = 0.84. The second code is obtained by including the
fifth component code; so it has redundancy r = 197, length
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n = 899 and rate R = 0.78. The last code is obtained
by considering all the M = 6 values of ri; thus, it has
redundancy r = 286, length n = 988 and rate R = 0.71.
Their simulated performance in terms of BER and FER, as
a function of the signal-to-noise ratio Eb/N0, is reported in
Figures 6 and 7, respectively.

Rate compatibility of these codes can be exploited in a
T-II HARQ scheme, by transmitting, initially, each packet
encoded through the first code; then, if requested, by sending
r5 and, finally, r6 bits of further redundancy.

B. Medium Size Codes

In order to provide a design example of codes with
moderate length, we have considered code parameters very
similar to those proposed for application in near-Earth
space missions by the Consultative Committee for Space
Data Systems (CCSDS) [25]. The designed code has length
n = 8208, dimension k = 7182 and, hence, rate R = 0.875.
Its redundancy (r = 1026) corresponds to the following
choice of ri values for the M = 5 component codes:
[177, 181, 214, 221, 233]. Due to the very fine length gran-
ularity achievable through the proposed design approach,
the code could be arbitrarily shortened in order to have
dimension coincident with an integer multiple of 32, as
suggested in [25].

The error correction performance of the proposed code,
reported in Figure 8, looks very good: its curves are almost
overlaid with those of an optimized code with very similar
parameters (it has length n = 8176 and dimension k =
7156) recommended by the CCSDS. The performance of the
latter code in terms of BER and FER, shown in Figure 8
(and derived from [25]), refers to an FPGA implementation
adopting a maximum number of decoding iterations equal
to 50.

It should be observed that the proposed code, besides
achieving almost the same performance as the CCSDS code,
allows the implementation of very simple encoder circuits,
due to its concatenated nature. Therefore, it provides a valid
alternative to the CCSDS code that, in turn, is characterized
by low encoding complexity thanks to its quasi-cyclic nature.

C. Large Size Codes

As a further example, we have considered the design of
large codes with high rate. We have adopted the following
choice of ri values for the M = 5 component codes:
[313, 569, 577, 641, 643], that yields redundancy r = 2743.
With this choice of the parameters, we have designed a first
code with length n = 27430, i.e. dimension k = 24687 and
rate R = 0.9. Subsequently, this code has been shortened to
length n = 10972, thus producing a code with dimension
k = 8299 and rate R = 0.75.

In order to assess the effect of a different value of M , we
have also considered an alternative code design that gives
the same value of redundancy (r = 2743), but exploiting
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Figure 8. Performance of medium codes.
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Figure 9. Performance of large codes with rate 0.9.

M = 6 serially concatenated codes. In this case, the chosen
ri values are: [313, 349, 401, 479, 563, 638].

Figure 9 shows the simulated performance of the two
codes with n = 27430 and rate 0.9. As we notice from the
figure, the adoption of a higher number of component codes,
in this case, does not give any advantage. In particular, both
codes do not show any error floor in the explored region.
The serially concatenated code with M = 5 components,
however, has better performance in the waterfall region, and
its BER curve intersects that of an uncoded transmission at
a lower signal-to-noise ratio. So, it could be concluded that
there is no need to increase the number of components over
5 for large codes with such a high rate.

However, when the code is shortened in such a way as
to achieve lower rate, such conclusion is no more valid.
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Figure 10. Performance of large codes with rate 0.75.

The simulated performance of the two codes with length
n = 10972 and rate 0.75 is reported in Figure 10. As we
notice from the figure, an error floor appears in the curves of
the code with M = 5 components, though at BER < 10−7;
on the other hand, the waterfall behavior of the code is very
good. The presence of an error floor can be avoided, at the
cost of a worse waterfall performance, by increasing the
number of serially concatenated components up to M = 6.
In this case, the error rate curves do not exhibit any change
in their slope; so, they can intersect those of the code with
M = 5 components. The FER curve for M = 6 intersects
that for M = 5 at FER 	 10−4; an intersection is also
expected for the BER curve.

V. EXAMPLES OF PRODUCT CODES

In this section, we provide some examples of bi-
dimensional product codes that exploit, as components,
two serially concatenated codes of the type described in
Section II-B. For conciseness, we denote them as “product
M-SC-MPC codes”. The first example we consider is a
product code with equal components. More precisely, each
component code is a serially concatenated code having
length na = nb = 64, dimension ka = kb = 49 and
r1 = 7, r2 = 8. Hence, the product code has length
n = 4096, dimension 2401 and rate 0.586. Figure 11
shows its simulated performance by using the log-likelihood
version of the SPA decoding algorithm. For the sake of
comparison, the figure shows the performance of a 4D-TPC
based on (8, 7) SPC components [26], that has exactly the
same parameters.

We observe that the bi-dimensional product code outper-
forms the 4D-SPC-TPC, when the latter is decoded through
algorithm 1 in [26]. Instead, when adopting the decoding
algorithm 2 in the same reference, performance of the two
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Figure 11. Comparison between (4096, 2401) SPC-TPC and a product
code with the same parameters.

codes is almost the same. However, an important difference
between the two codes is the fact that our product code is
bi-dimensional, while the SPC-TPC is quadri-dimensional
and, therefore, has larger decoding latency and complexity.

Two further examples are given in Figures 12 (for the
BER) and 13 (for the FER), where two larger product M-
SC-MPC codes are considered. The first code has (n, k) =
(10000, 5670) and has been obtained as the product of two
different serially concatenated codes. Their parameters are
as follows: na = 100, ka = 81 and raj = [9, 10]; nb = 100,
kb = 70 and rbj = [7, 11, 12].

The second code has (n, k) = (12544, 6400); so, its rate
is slightly reduced with respect to the former one. It adopts,
as components, twice the same M-SC-MPC code. The latter
has length na = nb = 112, dimension ka = kb = 80 and
raj = rbj = [8, 11, 13].

From the simulation results we see that, as expected, by
using larger component codes, product M-SC-MPC codes
can achieve better performance. The higher number of
serially concatenated codes in each component allows to
increase the minimum distance and improve performance in
the error floor region. This is evident for the (12544, 6400)
code, whose components are both based on an order-3 serial
concatenation. Together with its slightly lower rate, this
makes the performance of such code better than that of the
(10000, 5670) code. It should also be noted that, differently
from SPC-TPCs, in our codes the increase in minimum
distance is achieved though preserving the bi-dimensional
nature of the product code.

In order to better assess the effect on performance of the
choice of Ma and Mb, that is, the number of component
codes in each one of the two serially concatenated codes
forming the product code, we have designed three further
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Figure 12. BER performance for (10000, 5670) and (12544, 6400)
product codes.
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Figure 13. FER performance for (10000, 5670) and (12544, 6400)
product codes.

product codes with rate around 1/2 and comparable size.
The first code has length 3195 and dimension 1504; its
two components have na = 71, ka = 47, raj = [7, 8, 9]
and nb = 45, kb = 32, rbj = [6, 7], respectively. So, in
this case, we have fixed Ma = 3 and Mb = 2. In the
design of a second product code, we have adopted a different
distribution of the serially concatenated components, that is,
Ma = 4 and Mb = 1. The product code has length n = 3003
and dimension k = 1467. The first one of its two component
codes has na = 91, ka = 48 and raj = [9, 10, 11, 13]. The
second component, instead, is a single parity-check code
with nb = 33 and kb = 32. As a further example, we
have designed a third product code with Ma = Mb = 3.
It uses twice the same serially concatenated code, that has
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Figure 14. BER performance for (3195, 1504), (3003, 1467) and
(5329, 2401) product codes.
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Figure 15. FER performance for (3195, 1504), (3003, 1467) and
(5329, 2401) product codes.

length na = nb = 73, dimension ka = kb = 49 and
raj = rbj = [7, 8, 9]. Thus, the product code has length
n = 5329 and dimension k = 2401.

The simulated performance is reported in Figure 14, for
the BER, and in Figure 15, for the FER. It results from
numerical simulations that the code with Ma = 3 and Mb =
2 has better performance with respect to the code having
Ma = 4 and Mb = 1, especially in the waterfall region.
This suggests that a balanced choice of Ma and Mb can yield
a performance improvement with respect to an unbalanced
choice.

If both Ma and Mb are increased up to 3, performance
can be further improved, at the cost of a larger code block,
due to the constraints of the product structure. However, the
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Figure 16. BER performance for codes with DVB-RCS compliant
parameters.

(5329, 2401) code is based on two very small component
codes, so its complexity could still be reasonably low for
many practical applications.

In comparison with single serially concatenated codes, it
is reasonable to expect that the adoption of smaller compo-
nent codes in a product code is paid in terms of a worse error
rate performance. In order to verify such conclusion, we
have considered a set of codes having parameters compliant
with the DVB-RCS standard [27]. We have focused on the
option of MPEG 2 frames, that are 188 bytes long, and
code rate R = 1/2. For this choice of the parameters, the
standard recommends the usage of a (3008, 1504) double
binary turbo code with an optimized interleaver.

We have designed a serially concatenated code with
exactly the same parameters. It has length 3008 and
adopts the following choice of the ri’s for its components:
[277, 281, 293, 313, 340]. For the sake of comparison, we
have also considered one of the product codes introduced
in the previous section. It has dimension 1504, like in the
standard, but length 3195, because of the constraints due to
the product code design. Its components have na = 71,
ka = 47 and raj = [7, 8, 9]; nb = 45, kb = 32 and
rbj = [6, 7].

The simulated performance of the serially concatenated
and the product code is reported in Figure 16, for the BER,
and in Figure 17, for the FER. The simulated performance
of the standard turbo code is also reported as a benchmark.

From the figures we see that the product code requires
higher SNR per bit than the single serially concatenated code
with M = 5; the loss at BER 	 10−6 and FER 	 10−4 is
in the order of 1.5 dB. This is the price to pay for reducing
complexity by adopting a product code structure. In this
example, where we have focused on low rate codes, the
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Figure 17. FER performance for codes with DVB-RCS compliant
parameters.

standard turbo code achieves the best performance, also in
comparison with the M-SC-MPC code. On the contrary, at
higher code rates, M-SC-MPC codes and, more generally,
structured LDPC codes can be able to outperform turbo
codes [28].

VI. CONCLUSION

We have shown that the concatenation of very simple
component codes can be effectively exploited in the de-
sign of structured LDPC codes. This allows to obtain a
family of LDPC codes characterized by fine length and
rate granularity, low complexity and rate compatibility. They
ensure good error correction performance, and compete with
codes optimized for specific applications. When large block
codes are needed, a solution for continuing to exploit small
components is to use serially concatenated codes in bi-
dimensional product code structures. We have considered
bi-dimensional product codes obtained as the direct product
of two serially concatenated codes. We have shown that such
product codes are still LDPC codes, and that their associated
Tanner graph is suitable for performing LDPC decoding. Our
simulations show that LDPC product codes in the considered
class are able to achieve rather good performance in spite of
their very low complexity. However, the advantage of using
very small components in product code structures is paid in
terms of coding gain: simulation results show a loss on the
order of 1.5 dB for LDPC product codes, compared with
single LDPC codes with the same parameters.

As a further work, the introduction of an interleaver within
the product code structure could be considered, in order to
optimize the decoder performance in the waterfall region
while preserving the multiplicative effect on the minimum
distance due to the product code structure.
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