
Modelling of Mobile Workflows with UML

Michael Decker
Institute AIFB, University of Karlsruhe (TH)

Karlsruhe, Germany
Email: decker@aifb.uni-karlsruhe.de

Abstract—Thanks to the advances on the field of mobile
computing nowadays it is possible to realize workflow systems,
which provide support for mobile activities, i.e., activities
which are usually performed in situations where no stationary
computer is available. It is obvious that the integration of
mobile computers into workflow systems has a great potential
especially for companies with a high portion of mobile workers.
However, so far there is a lack of modelling techniques that
allow to express mobile-specific aspects of workflows. In the
following article we therefore introduce an extension to activity
diagrams from the Unified Modelling Language, which allows
to model different types of so called location constraints. Such
a location constraint is a statement that defines where a
particular activity of a workflow has to be performed or is not
allowed to be performed. The proposed technique in particular
supports dynamic location constraints, i.e., constraints that are
defined during the runtime of a workflow instance. Further,
different classes of anomalies that may occur in diagrams
according to the proposed extension are also discussed.

Keywords-Mobile Workflow Systems, Location-based Ser-
vices, Business Processes, Activity Diagrams

I. INTRODUCTION

A workflow is a set of partial-ordered activities that is
performed with the support of a special computer system (so
called Workflow Management System) to reach a particular
business goal [2]. This goal could be the fulfillment of an or-
der to perform some kind of on-site repair (e.g., fix machine
in factory or in a private apartment). The individual activities
required to reach this goal include receive customer’s call,
dispatch service technician, perform on-site-repair and post-
processing (e.g., writing bill, evaluation). There is also a
partial order defined for these activities that states which
activities have to be finished before a particular activity
can be started or if there are optional activities. Such a
description of a workflow is also called a workflow schema.
The individual invocations of that schema (e.g., order no.
123 by customer A., also termed a case) is a workflow
instance of that schema. A workflow schema is a mobile
workflow if there are instances that have activities that
are typically performed using mobile devices like Personal
Digital Assistants (PDA), smartphones or notebooks. The
workflow sketched above as example is such a mobile work-
flow, because during on-site repair activities the concerned
actors (mobile workers) do not have access to stationary
desktop computers, so they have to use mobile computers
to query technical data about components to be repaired,

to order replacement parts or to write on-site reports about
which workings had to be performed.

It is unquestionable that the employment of mobile de-
vices for the enactment of workflows provides a great
potential [3][4]: even while staying in the field mobile
workers have access to latest information from backend
systems (e.g., technical documentation, customer data, state
of orders, availability of items). Further, it is possible to
avoid media disruptions because mobile workers don’t have
to print every information they might need on-site and don’t
have to write reports and gathered data (e.g., orders for
spare parts, measurement readings) onto paper forms that
have to be entered into a computer system. This helps
to avoid costs (for paper as well as working time needed
for data gathering), errors (e.g., typos, double entries, lost
forms) and the time delay between printing and information
consumption or writing down the information and entering
it into the backend information system is reduced.

The contribution of the article at hand is the introduction
of an UML profile for activity diagrams that allows to cover
important mobile-specific aspects, namely the constantly
changing location of the mobile actors. To enable this so
called location constraints are introduced: such a constraint
is a statement attached to an activity that says at which
locations the respective activity has to be performed or is
not allowed to be performed. Not only static constraints
are possible, i.e., constraints that are defined at the design
time of a workflow schema, but also dynamic constraints,
which are derived automatically during the runtime of a
workflow instance. To actually enforce location constraints
it is necessary that the workflow system knows about the
mobile user’s current location. For this several locating
technologies are available: the most prominent one is the
satellite-based Global Positioning System (GPS), but there
are many other technologies, see [5] or [6] for a good
introduction and overview on this topic.

Location constraints for workflows are a variant of
Location-aware Access Control (LAAC). Access control is
concerned with the decision if a user’s request to perform a
particular operation on a resource of an information system
has to be granted or denied. Examples for pairs of operation
and resource are “read on report.doc” or “write on database
table1”. When LAAC is employed the access decision is
not only based on the user’s identity and properties of the

59

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

resource but also on the current location of the user as
determined by a locating technology. The novel feature of
our extension for activity diagrams from the perspective of
LAAC is that it supports process-aware location constraints,
i.e., that it is possible to formulate location constraints based
on the order of activities within a workflow. Further, it is
even supported that activities of a workflow instance create
location constraints for subsequent activities of the same
workflow instance.

The work at hand is the extended version of a paper that
was presented at the IARIA UbiComm-conference 2009 [1].
In addition to the original paper we also introduce some
shortcut notations (Section V-B) and a notation for derived
constraints (Section V-C). Further, we discuss the problem
of anomalies with location constraints (Section VIII) and
sketch how our concept of location constraints can also be
applied for UML usecase diagrams (Section IX).

The following sections are organized as follows: In Sec-
tion II the basics necessary for the understanding of the
paper are covered. The underlying location model for our
modelling approach is introduced in Section III. Based on
these preparations the concept of location constraints is
introduced in Section IV. The next Section V is devoted
to the visual representation of the different types of loca-
tion constraints. A detailed example of an activity diagram
annotated with several location constraints can be found
in Section VI. In Section VII it is elicited how UML’s
metamodel has to be extended to obtain a UML profile for
location constraints. There are different types of anomalies
that may occur if location constraints are used; this is the
subject of Section VIII. Location constraints can also be used
to annotate usecase diagrams which is explained in Section
IX. A short survey on related work can be found in Section
X before we conclude with a summary and outlook to future
work in the final Section XI.

II. PRELIMINARIES

In this section we describe the basics from the domain of
Location Aware Access Control and the Unified Modelling
Language that are required for the understanding of the
discussion in this paper.

A. Location-Aware Access Control

When Location-Aware Access Control (LAAC) is applied
the user’s current position is considered by the component
of the system that makes the access control decision [7].
For example, it could be enforced that a user is not al-
lowed to access confidential data with his mobile computer
when he stays at places that are deemed as unsafe, e.g.,
public places, countries where espionage has to be feared
or regions where no secured wireless data transmission is
available. So LAAC is a mean to tackle specific security

challenges that come along with the employment of mobile
computers. These challenges arise from the fact that due to
their portability and size mobile computers often get lost or
stolen. There is also the danger that someone looks over the
shoulder of the legitimate user to gather data that is classified
(“shoulder sniffing” or “shoulder surfing”). Further, wireless
data transmission could get eavesdropped (passive attack) or
even manipulated (active attack).

Another serious challenge in mobile computing are usabil-
ity problems, since mobile devices only have a small display
of limited quality and rudimentary means for data input
(e.g., no full keyboard). Because of this the mobile user will
appreciate it if data items and elements of the graphical user
interface are hidden, when they are not relevant for him at his
current location. For example, if a mobile service technician
stays in a particular city all files concerning customers in
other cities could be hidden.

B. Unified Modelling Language

The Unified Modelling Language (UML, [8]) is the result
of the consolidation of several independently developed
modelling languages (e.g., Object Modelling Technique
(OMT) and Object Oriented Software Engineering (OOSE))
from the domain of software engineering. Nowadays UML
is maintained by an industry consortium, namely the Object
Modelling Group (OMG).

UML comprehends 13 different diagram types. On the
uppermost level we can discern diagrams to describe struc-
tural aspects of software systems and behavioural aspects.
A well-know example for the former type are class diagrams
that are commonly used to describe data structures in object
oriented programming languages (e.g., Figure 1). Activity
diagrams belong to the latter type of diagrams. In the next
section we show how these diagrams can be extended to
enable expressing mobile-specific aspects.

The purpose of UML’s activity diagrams is to describe
workflows, i.e., to represent a set of activities and the
relations between these activities. An individual activity is
depicted as box with rounded edges that contains the name
of the activity. The initial activity is a black circle and the
final activity is represented as black circle within a bigger
white circle. Arrows with solid lines connect these boxes to
indicate which activities have to be finished before another
one can be started; this way the control flow of the workflow
is defined. To enable depicting conditional flows of activities
there are control nodes (shown as diamonds) that are used
to connect arrows. Further concepts in activity diagrams are
swimlanes to group activities together (e.g., all activities that
have to be performed by the same actor or organisation) or
the forking/joining of the control flow for parallel activities.

Many other graphical languages for the modelling of
workflows and business processes can be found in litera-
ture, e.g., Petri-nets, Event-driven Process Chains (EPC) or

60

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Flowcharts. The distinguishing feature of UML activity dia-
grams for our purpose is that it provides an explicit defined
meta-model and thus explicitly supports the definition of
extensions.

III. LOCATION MODEL

Before the actual extension of UML activity diagrams
can be described we have to introduce a simple location
model. For the sake of simplicity we consider only two
dimensions, but it is simple to extend the model to support
three dimensions which might be necessary to cover indoor
scenarios where for example offices at different floors of a
building have to be distinguished.

As geometric primitives there are Point and Polygon
which both are extensions of the abstract superclass Ab-
stractGeometry (see Figure 1). For polygons it is demanded
that the lines of a given polygon don’t cross each other. If a
class is abstract this means that it is not possible to directly
create instances of that class; to obtain an instance one has to
create a concrete (i.e., non-abstract) subclass. A circle area
is associated to one point that represents the center point
of the circle; the radius of that circle is defined as member
variable of class circular area and holds a double value that
defines the radius of that circle in meters. LocationInstances
are associated with exactly one polygon and belong to
exactly one LocationClass. Location classes are used to
group location instances that conceptually belong together,
e.g., there might be location classes that represent cities,
countries, districts or rooms within buildings. The concept
of location classes and instances can also be found in the
Geographic Markup Language (GML) in the form of feature
types and features [9][10]. It is demanded that two polygons
that belong to location instances of the same location class
do not overlap spatially. Examples of location instances for
location class city are Malta or Berlin. To exemplify this
model also some instances of location instances and classes
are drawn in the figure (surrounded by the box with the
dotted line). It is not demanded that all the instances of one
particular location class cover the whole reference space,
i.e., that a given class provides an exhaustive classification.
This is the case for class city, because not every point in a
country can be assigned to a city, there are also rural areas.
But a location class country could provide an exhaustive
classification if the reference space is the whole area of a
given continent; each point on that continent can be assigned
to one instance of that class which represents a particular
country.

IV. LOCATION CONSTRAINTS

In this section the concepts of Location Constraints and
Location Rules are introduced.

A. Definition and Classification of Location Constraints
A location constraint is a statement about the location

where one or more activities of a workflow schema or

CircleArea

LocationClass

PolygonPoint

AbstractGeometry

Radius:Double

1

*
Center Point

LocationInstance

1

*
Spatial Extent

City Country

Malta
Valletta

Berlin
*

1

Instance
Of

Example
Instances

Figure 1. Location Model as UML-Class Model

instance have to be performed or are not allowed to be
performed. Constraints of the former type are called positive
constraints while constraints of the latter type are negative
constraints. These two types of constraints can be found in
the classification of location constraints depicted in Figure
2.

A positive constraint could be demanded if a company
wants to enforce that particular workflow activities dealing
with confidential customer data are not performed outside
the company’s premises. Negative constraints will usually
be employed if it is easier to express where something is
not allowed than to enumerate the places where something is
allowed; for example, if there are only a few countries in the
world where certain software functions of a mobile workflow
system should not be used (e.g., because of license or export
restrictions) then a negative constraint will be defined that
enumerates all these countries.

There is another dimension to classify location constraints
which can also be found in Figure 2 and which is orthogonal
to the distinction of positive and negative constraints:

Static constraints: These constraints are defined for
the workflow schema before the runtime of the individual
workflow instances. This implies that these constraints —
which can also be called schema constraints — are enforced
for all workflow instances that are created from that schema.

Dynamic constraints: They are defined during the run-
time of a workflow instance are only valid for that instance.
Further, we distinguish external and internal dynamic con-
straints: For external constraints the actual locations are not
calculated by the mobile workflow system itself; rather, they
are defined manually by a human operator during runtime
(e.g., dispatcher, manager) or they are queried from an
another information systems, e.g., a customer relationship
management database that stores the addresses of all the
customers of a company. When an internal constraint is
defined then all the information needed by the mobile
workflow system to calculate the actual location during the

61

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Location Constraints

Positive NegativeStatic
(schema level)

Dynamic
(instance level)

Internal
(Location Rules)

External

Manual
Definition

From other
Systems

Figure 2. Different types of location constraints depicted as classification
tree

runtime of the workflow instance has to be specified in the
workflow graph. For this we propose so called location rules
which are elicited in the subsequent subsection.

B. Location Rules

The basic concept behind so location rules is that based
on the user’s current location where he performs a partic-
ular activity called trigger activity a location constraint for
another activity called target activity can be derivated. If the
location constraint created by a rule is a positive one this
means that both the trigger and the target activity have to be
performed at the same location, so this is called binding of
(same) location. If a negative constraint is created then the
target activity cannot be performed at the same location as
the trigger activity; this case can also be called prohibition
of same location or separation of locations.

These two types of location rules were greatly inspired
by the work of Bertino at al. [11]: they applied the well
know security principles Separation of Duties (SoD) and
Binding of Duties (BoD) [12] to the workflow domain.
SoD for workflow management means that if a given user
performed a particular activity of a workflow instance he is
not allowed to also perform a particular other activity of the
same workflow instance. The standard example for SoD is
an approval workflow where the submitter of the proposal
is not allowed to decide over his own proposal. An example
for BoD is the policy one face to the customer that says that
the actor who had the initial contact with a customer has to
perform all other activities for the same workflow instance
that involve communication with the customer. Bertino et al.
even consider the case of inter-instance constraints, e.g., if
Alice had to perform the activity make decision in a proposal
workflow instance started by Bob then Bob isn’t allowed
to perform that activity in a subsequent proposal instance
initiated by Alice to prevent collusion.

To define what is the same location the location model has
to be employed. A location rule can refer to a location class;
the instance of that class that contains the user’s location
when performing the trigger activity is the location that is
used for the target location. It is also possible to define a

Table I
EXAMPLE FOR AN IMPLICATION LIST WHICH MAPS LOCATION

INSTANCES OF CLASS country TO LOCATION INSTANCES OF CLASS city

Trigger Location Target Location
Germany Munich
France Munich
Malta Valletta

.

radius that is used to calculate a circle around the user’s
location during the activation of the trigger activity.

Another approach is to have rules that create constraints
pointing to a location different from the location where the
trigger-activity was performed; for these rules with implied
locations it is necessary to have lookup tables that map
trigger locations to target locations. As example such an
implication list is sketched in Table I: this table maps
different countries to the city where the headquarter of
an international company is. It is allowed that different
countries are mapped to the same location, e.g., all the
orders from either France or Germany have to be handled
in Munich, because the number of orders from France is so
small that it wouldn’t make sense to operate a headquarter
in France.

V. VISUAL REPRESENTATION

In this section first the basic elements of the visual
representation are introduced. After this, shortcut notations
are covered and the depiction of constraints derived based
on location rules during the runtime of a workflow instance.

A. Basic Elements

As visual representation for the different types of location
constraints and rules in UML activity diagram we propose
the one which is sketched in the table that can be found in
Figure 3. All the constraints in the left column are positive
constraints or produce positive constraints, while the right
column is devoted to negative constraints. The uppermost
row shows static location constraints while all the other three
rows show different kind of dynamic location constraints.

• All location constraints and rules are attached as dotted
arrows to the boxes that represent the activities. On the
dotted arrow there is a circle that holds a symbol which
indicates the mode of the constraint: Positive Static
Constraint and Binding of same Location are symbol-
ized by “=”, Negative Static Constraint and Prohibition
of same Location are symbolized as “ 6=”, rules for
Implied Binding of Location are symbolized as “⇒”
and Implied Prohibition of Location are symbolized as
“;”.

• Static constraints are shown as arrows pointing from a
parallelogram to the constrained activity. The parallelo-
gram stands for a location instance and holds the name
of that location.

62

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Positive
Constraints

Negative
Constraints

S
ta

tic

C
on

st
ra

in
ts

D
yn

am
ic

C
on

st
ra

in
ts

=
LocInstance1

LocClass1
=

100m

„Binding of
same Location“

„Prohibition of
same Location“

List1
⇒

„Implied Binding of
Location“

LocInstance2

List3
⇒

„Implied Prohibition of
Location“

… …

… …

S
am

e
Lo

ca
tio

n
Im

pl
ie

d
Lo

ca
tio

n

≠

≠

E
xt

er
na

l
C

on
st

ra
in

ts

Lo
ca

tio
n

R
ul

es

Manual Definition From other System

…

City
=

CRM-DB

…

Country
≠

Figure 3. Different types of location constraints

• There are two types of external dynamic constraints,
namely those where the actual constraint is entered
manually by a human operator or is retrieved from
another information system connected to the workflow
system. Human operators are represented by a symbol
that shows a little man. This symbol is also used to
represent actors in UML usecase diagrams. An external
information system as source for a dynamic location
constraint is depicted by the symbol for a software
component that was used in the deployment diagrams of
UML 1.x. An external constraint is also depicited by a
dotted arrow which connects two activities. The activity
where that arrow starts is the activity which triggers the
retrieval of the dynamic constraint. It is possible that
the trigger activity is solely devoted to the retrieval of
the location constraint; but the triggering could also
be just a secondary effect of an activity. The target of
the dotted arrow is the activity to which the retrieved
location constraint will be assigned to. On the line of
the arrow the symbol for the source of the constraint
as well as a circle with hold the mode (positive or
negative) and the granularity (location class or radius)
is drawn.

=

London

. . .

Swimlane

. . .

.

Berlin

Figure 4. Location constraint for all activities in a swimlane

• A rule for the creation of dynamic constraints is shown
as arrow pointing from the trigger activity to the target
activity that will be bound to the derived location. For
same location rules the granularity of what constitutes
the same location is annotated by a box attached to
the circle; the box can hold either a location class or a
numeric value as radius; for implied location rules the
box holds the name of the implication list. For example,
if the location class city is used for the rule then the
city that covers the user’s current position is assigned
as location constraint to the target location. If such a
city cannot be found then no constraint is generated.

B. Shortcut Notations

We also devised some shortcuts which help to reduce the
number of required elements to depict location constraints
in some scenarios.

In Figure 4 several activities are contained within a
swimlane (rectangular box). In UML swimlanes are usually
employed to group activities together that are performed
by the same actor. It is also possible to assign a location
constraint to a swimlane, which then has to be enforced
for all activities within that swimlane. This example shows
also that it is possible to assign more than just one location
with a static location constraint. If two or more locations are
assigned as positive location constraints this means that the
constrained activities have to be performed in one of these
locations; in the example in Figure 4 this would mean that
all the activities within the swimlane have to be performed
either in London or Berlin.

When several locations are assigned to a negative location
constraint this means that the activity can be performed
everywhere but not at any of the assigned locations.

The fragment in Figure 5 represents the case where two
different activities share the same location constraint. For
these fragments the meaning is that both activities have to
be performed somewhere in Canada; however, it would be
possible to perform the two activity in different Canadian
cities. Such a constraint could occur in practice if the pre-
and post-processing of a workflow should be performed
within a particular country, but all the other activities can
be performed somewhere else in the world.

63

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

=

Canada

.

Figure 5. Single location constraint shared by two separate activities

B

A
Block

. . .

. . .

. . .

. . .

≠

. . .
. . .

C

Figure 6. Location rule with two trigger activities

There are also shortcuts for location rules like shown in
Figure 6: in this example one location rule has two trigger
activities. The location instance of class Block (short for
Block of flats) which contains the user’s location when he
performs activity A or B will define a negative constraint
that forbids the execution of activity C at the same block.
Analogous to this it is possible to have more than just one
target activity for one location rule; this would mean that
the location constraint created when that rule is triggered is
attached to all the target activities at the same time.

C. Visualisation of derived constraints

While not necessary for the actual workflow modelling for
the purpose of demonstration it is useful to be able to depict
the static location constraint generated by a dynamic con-
straint; the generated constraint can also be called derived
constraint

A static constraint generated by a dynamic constraint is
depicted as a static constraint (as parallelogram) and attached
with a dotted line to the box that indicates the granularity
of the contraint. In Figure 7 this is shown for the case of a
location rule, but the notation can also be used for external
constraints. The rule in the figure creates a positive constraint
that restricts the execution of the target activity to the city
where the trigger activity was performed. In the depicted
example the trigger activity was performed somewhere in
Italy, so that an accordant static constraint was created.

Country

=
Italy

.

Figure 7. Depiction of derived constraint

VI. EXAMPLE SCENARIO

To exemplify the application of our UML profile the
workflow already sketched in the introductory section is
elaborated in more detail and shown as diagram with lo-
cation constraints in Figure 8. This workflow could be
found in a company that provides technical maintenance
services and employs many technicians which are sent to
the customers’ premises to perform on-site repair works of
technical components.

An instance of the depicted workflow schema is created
when a call center agent receives a telephone call from a
customer. This activity has a static location constraint that
points to all the location instances that represent the premises
of call centers operated by the company. The incoming calls
are routed to the call center that is the nearest with regard
to the origin of the call, so the local service center that
has to send a mobile worker to the customer’s premises
(dispatching) is defined based on a dynamic location con-
straint: the district in which the dispatching activity has to
be performed is determined by an external application that
makes this decision by evaluating the caller’s phone number.
The service center first sends an inspector to the site (e.g.,
factory, private residence, places with components of pub-
lic infrastructure like pipes, electric transformation station,
junction box) where the allegedly defective component can
be found. If the inspector cannot find a technical defect
the mobile part of the workflow is aborted and Follow-up
Office Work is performed as final activity. However, if there
is indeed a defect the inspector will order a mobile repair
team to the location of the component using his PDA. The
location where that team can perform the actual repair work
is restricted with a dynamic constraint in form of a location
rule (binding of same location) which says that the repair
activities have to be performed not farther away than 150
meters from the point that was determined by the inspector’s
GPS device when he placed the order for the mobile repair
team.

Since some components cannot be repaired on-site a
possible branch of the workflow is Shop Floor Repair at
a special repair shop operated by the company. To min-
imize transportation ways the location of this activity is
constrained with another dynamic constraint that is based
on an implication list; this implication list maps each region
where the company provides its service to the nearest repair
shop. If the activity in the shop floor is finished then
another invocation of the activity On-Site Work has to follow
since the repaired component has to be brought back and
reinstalled. It is possible that the sequence of on-site work
and shop-floor work is performed several times, e.g., if
the defect is not solved after the first component that was
repaired in the shop-floor is brought back.

The final activity is called Follow-up Office Work and
deals with writing the bill, ordering new spare parts and

64

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Impl-List2

District

Answer
Customer Call

Dispatching On-Site-
Inspection

Call
Center1

…

On-Site-
Work

Shop-Floor-
Repair

Follow-up
Office Work

⇒

150 m
=

Call
Center2

=

≠

Start End

District
=

Figure 8. Example workflow with different kinds of location constraints

writing a report for the customer and the manufacturer of
the component that had to be repaired. Since this activity
also includes some kind of evaluation (e.g., how fast the
customer’s problem was solved, level of customer satisfac-
tion) a dynamic constraint (prohibition of same location) is
used to demand that the office center where this activity is
performed is not in the same district as the one that initiated
the workflow instance. The purpose of this rule is to ensure
that employees knowing each other cannot collude to cover
up mistakes that were made.

VII. UML PROFILE

We are now prepared to show how the proposed exten-
sion to UML activity diagrams fits into the meta-model of
UML. For the sake of brevity only the most important new
constructs are covered. In Figure 9 the package MobileWork-
flowProfile is shown, that represents the new UML profile.
Outside of the package some important classes from the
UML meta-model are shown.

The profile also contains the location model which was
introduced in Section III. Due to space restrictions only the
parts of the location model are drawn that are necessary
for understanding the relation of the location model and
the rest of the model. There are also two new classes to
model implication lists for rules with implied locations:
ImplList and ImplPair. Each instance of ImplPair stands
in association with two location instances to represent the
trigger location and the target location. These instances of
ImplPair (Implication Pair) represent the individual entries
of an implication ImplList (Implication List).

The main connection between the UML meta-model and
our profile is the extension relationship between class Activ-
ity and ConstrainedActivity. Instances of ConstrainedActivity
have to be used if any kind of location constraint has to be
assigned to an activity. For this each ConstrainedActivity
stands in association with at least one instance of class
AConstraint, which is the short form for Abstract Constraint,
i.e., it is not possible to obtain direct location instances

of that class. A flag named isPositive indicates if the
AConstraint represents a positive or a negative constraint.
There are two direct subclasses of AConstraint, namely
ADynConstraint (short for AbstractDynamicConstraint, an-
other abstract class) and StaticConstraint. Each instance of
class StaticConstraint stands in association with at least one
instance of LocationInstance. ADynConstraint as the second
subclass of AConstraint has two direct subclasses: ImplLoc-
DynConstraint and SameLocDynConstraint. ImplLocDyn-
Constraint is associated with exactly one ImplList. Class
SameLocDynConstraint stands in association with class Loc-
Class. However, this association is an optional one because
what is considered as “the same location” cannot only be
defined based on a location class but also based on a radius.
For the latter case there is also a member variable radius in
class SameLocDynConstraint that is set to a value greater
than 0 if the modeller thinks it is more appropriate to derive
the “same location” using a radius than looking a location
instance. For a given instance of SameLocDynConstraint it
is not allowed to use both methods to define the “same
location”, i.e., either the radius is greater than 0 or there is an
associated location instance. Using UML’s Object Constraint
Language (OCL) it is possible to express this formally [13]:

context SameLocDynConstr
inv (not targetClass->isEmpty()) XOR

(radius >= 0.0)

The keyword context is followed by the name of that class
from whose perspective the following statement has to be
viewed. For the given statement this means that targetClass
has to be the name of an end of an assocation assigned to
class SameLocDynConstr and that radius has to be the name
of a member variable of that class. The keyword inv stands
for invariant, i.e., the following boolean expression has to
evaluate to true for all instances of the model. IsEmpty() is a
function that returns true if for the considered instance there
is no assocation to an object of LocClass.

Class ActivityEdge from the UML meta-model couldn’t

65

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Anomalies

Severity Certainty Involved
Constraints

Redundancy Certain

Contradiction
Potential Static

Dynamic
BothLocation-

dependent Sequence-
dependent

Figure 10. Different types on anomalies

be used to represent the arrows introduced in our profile to
assign location constraints to activities because the edges in
activity diagrams can carry tokens and we opted to have a
different graphical representation (dotted arrows instead of
solid arrows for the sake of better readability).

VIII. ANOMALIES OF LOCATION CONSTRAINTS

When an activity diagram is annotated with location
constraints according to the UML profile introduced in this
paper it is possible that anomalies occur. In this section
we will describe different types of such anomalies in terms
of pairs of location constraints. The different dimensions
considered to classify anomalies of location constraints are
depicted in Figure 10.

The first dimension to classify the different types of
anomalies is the severity level:

• A location constraint could make a redundant state-
ment, i.e., the constraint could be removed without
altering the behaviour of the mobile workflow system
for any thinkable workflow instance. There are two
subtypes of redundancy: the constrained activity is
never reached or another constraint makes the same
restriction or an even stronger one. The first case would
occur if a static constraint is made to an activity that is
never reached; this means that there is an inconsistency
in the underlying workflow schema. Another case is a
location rule whose target activity cannot be performed
again once the trigger activity is reached; this means
the location constraint generated by the trigger activity
will never have any effect.

• Two location constraints could make contradictory
statements for a given activity, i.e., there is no place
where that activity could be performed by an actor
according to both the constraints. The suggestive ap-
proach to deal with such contradictions would be to
assign priorities to the individual constraints, so that in
case of a conflict only the constraint with the higher
priority is considered.

Redundant statements do not cause problems during the
executing of a workflow instance but unnecessarily bloat
the model. Further, the existence of a redundant statement

might be a hint that there was an error during the elicitation
of the required constraints.

Most workflows schemas have decision points, i.e., there
are different sets of activities that are actually performed
for a given workflow instance. For example, there might
be a branch of a workflow schema that isn’t executed for
every instance. Further, the order of the activities can also
differ between two workflow instances of the same workflow
schema. Some anomalies may occur depending on the
location of the actor while performing a particular activity.
This leads to the next dimension for the classification of
anomalies called certainty:

• A potential anomaly will not appear in every workflow
instance of a given workflow schema. We distinguish
two subcases of potential anomalies: the anomaly ap-
pears depending on the order and/or the set of actually
performed activities (sequence-dependent) or merely
based on the location where one or more activities
where performed (location-dependent) no matter of the
sequence of performed activities.

• A certain anomaly will appear in every workflow
instance of a given workflow schema. So to detect this
type of anomaly we just have to look at one potential
workflow instance of that schema.

It also can be considered between what types of location
constraints the anomalies arise:

• If two static constraints produce an anomaly this is
called intra-static anomaly. For example, a positive
static constraint assigned directly to an activity could
demand that that activity is performed in London.
However, this activity is contained in a swimlane which
has also a static constraint which says that the activities
are not allowed to be performed in England. Since
London lies within England there is no place that
satisfies both contradictory constraints.

• If both constraints involved into are dynamic constraints
it is named intra-dynamic anomaly. As example we
consider an activity that is the target of two positive
location rules. During runtime the first rule creates a
constraint that says that this activity has to be per-
formed in Berlin; subsequently, the second rule creates
a constraint that says that the same activity has to be
performed in Spain. Since Berlin isn’t a City in Spain
this is a contradiction.

• The last case are inter-static-dynamic anomalies
where both types of constraints are involved. So the
pair of the conflicting constraints has one dynamic and
one static constraint.

In Figure 11 three activity diagrams of tiny workflows are
depicted which cover the three cases of inra-static, inter-
static-dynamic and intra-dynamic anomalies:

66

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Activity

<<abstract>>

Activity
Node

LocationModel

MobileWorkflowProfile

LocClass

LocInstance

ImplPair

ImplList

triggerLoc

targetLoc

<<abstract>>

Activity
Edge

AConstraint
isPositive:bool

StaticConstraint

ConstrainedActivity

ADynConstraint

SameLocDynConstr
radius:double

ImplLocDynConstr

<<abstract>>

Classifier Class

11

* *

* 1..*
1

*

1

*

*

2+
1

*

1..*

1

1
1

*

*

0..1

targetClass

trigger
Activity

*

1..*

Figure 9. Extension of the meta-model of UML Activity Diagrams

A1 A2

=

U.K. LON

A1 A2

U.K.

=

CitiesEurope

A1 A2 A3

CitiesWorldwide

=

Countries

a)

b)

c)

=

=

=

Figure 11. Examples for anomalies

• Diagram a) shows an intra-static anomaly. The swim-
lane that contains the two activities A1 and A2 has a
constraint which confines the execution of these activi-
ties to the location London. Further, Activity A1 has an
individual constraint that restricts the execution of this
activity to the location United Kingdom (U.K.). This
represents a redundancy, because A1 is also confined by
the constraint assigned to the swimlane, which is even
stricter, since the location London is a subset of U.K. If
the constraint assigned to activity A1 would be omitted
it wouldn’t change semantics of the diagram. This case
could occur if the constraint to A1 was assigned long
before the swimlane or the constraint for the swimlane
was created and it was forgotten to remove the then
redundant individual constraint for A1.

• Diagram b) shows an intra-dynamic anomaly: Activity
A2 is the target activity of a location rule and has
also a static constraint. The location rule’s trigger
activity is A1 and the derived location constraint will
be an instance of the location class Cities of Europe.
A2’s location constraint points to the location United
Kingdom (U.K.), but not all European cities are located
within the U.K., so this location rules represents are
potential anomaly in the form of a contradiction.

• Diagram c shows an intra-dynamic anomaly: there are
two location rules with the same target activity A3. The
upper location rule (with trigger activity A2) assigns
a location constraint that confines A3 to a location
instance of the class Cities Worldwide; the lower lo-
cation rule with trigger activity A1 assigns a location
constraint that confines A3 to a location instance of
the class Countries. Since it is possible, that A2 is

67

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performed in a City that doesn’t lie in the country where
A1 was performed this represents a potential anomaly in
the form of a contraction. For example, it could happen,
that A3 has to be performed in Germany and Lisbon
according to the derived location constraints, which is
obviously impossible to satisfy, since Lisbon is not a
German city.

In Figure 12 three more activity diagrams with potential
anomalies are shown:

• In diagram a) the location constraint assigned to activity
A1 represents a redundancy (see also first diagram in
Figure 11). However, the branch with the swimlane isn’t
executed in every run of this workflow this anomaly is
a sequence-depend anomaly.

• Diagram b) shows a workflow schema with two concur-
rent branches. The potential anomaly is a contraction if
A2 is performed before B2 in an European City outside
the U.K. But if the execution of B2 is started before A2
is executed then the derived location constraint won’t
effect the execution of B2 and so not contradiction
occurs.

• The third diagram c in this figure has again two
branches of which only one is executed. If the branch
with activity A is executed in an European City this
will lead to a contradiction, because the final activity
C can only be executed in the USA according to the
static constraint.

So all the anomalies in this figure are sequence-dependent.
As example of a location-dependent anomaly we can con-
sider diagram b in Figure 12: in this case a contradiction
occurs if A1 is executed outside the U.K.

IX. LOCATION CONSTRAINTS FOR USECASE DIAGRAMS

Another diagram type which can be found in UML is for
usecase diagrams [8]. The purpose of a usecase diagram is
to show which functions (usecases) a software system should
provide. Such a usecase is depicted as ellipse that containts a
short textual description. It further shows different user roles
and how these roles are connected to individual usecases. A
role is depicted as human operator (the same symbol that
was used for manual location constraints) and is connected
by a line to each usecase he is allowed to perform. If the
system to be developed consists of several subsystems (e.g.,
distributed system) then each subsystem is represented by a
rectangular box that contains the usecases that are operated
by this subsystem. Usecase diagrams have also the ability
to show how individual usecases stand in relation to each
other, e.g., if one usecase always invokes another usecase.
However, this features isn’t relevant for our consideration.

Usecase diagrams are usually employed at an early stage
of the software development cycle. Based on the results of
the usecase analysis activity diagrams can be developed.

Location constraints as defined in Section IV can also be
used to annotate usecase diagrams. An example for such
a diagram can be found in Figure 13: The left subsys-
tem contains two usecases, namely Create new order and
Finalize order; the right subsystem has also two usecases
which are named Create new account and Edit master data.
There are three roles in the diagram: Travelling Salesman,
Manager and Accountant. It is possible to assign static
location constraints to roles, usecases, system boundaries
and the association between a role and a usecase. Further,
usecases can also be the trigger or the target of a location
rule: the part of town where the usecase Create new order
is performed defines where the usecase Finalize order has
to be performed. The rationale behind this rule is that
a travelling salesman should only be allowed to finalize
the order where he started it. Further, the role travelling
salesman is restricted to Spain by a location constraint. This
says that users of that role can only invoke usecases when
they are within Spain. However, users with role manager are
allowed to invoke the usecases they are assigned to without
any spatial restriction. The third role Accountant has also
a location constraint that prevents users with that role of
invoking usecases when they are outside the rooms of the
company’s accounting department.

The subsystem at the right side of the figure has a static
location constraint that confines all the usecases provided by
that subsystem to the location company premises.

X. RELATED WORK

In [14], an extension for UML activity diagrams is
proposed that aims at modeling security requirements for
business processes. The model introduces stereotypes to at-
tach security requirements (e.g., privacy, access control, non-
repudiation) to different elements in UML activity diagrams.
For example, using this notation it is possible to assign a
stereotype �privacy� to an activity partition (swimlane)
to express that the disclosure of sensitive personal data has
to be prevented during the activities contained by the within
the swimlane.

Another profile for UML activity diagrams can be found
in [15]. The purpose of this profile is to annotate workflows
with concepts from the domain of business intelligence.
Using this profile the modeller can express which activities
require input from a data warehouse or data mart.

Baumeister et al. devised another extension of activity
diagrams for modelling mobility [16]. But this approach
is aimed at expressing how physical objects are moved by
activities from one location to another and doesn’t allow to
formulate location constraints.

In literature some articles that propose location-aware
access control models can be found. Notably most of them
are extensions of Role-Based Access Control (RBAC, [17])
like GEO-RBAC [18], LoT-RBAC [19] or S-RBAC [20]. The
most prominent aspects that distinguished these models is

68

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A1 A2

U.K. LON

B1

A1 A2 A3

B1 B2 B3

CitiesEurope
=

U.K.

a) b)

A

B

C

c)
CitiesEurope

=
USA

=

==

=

Figure 12. Examples for potential anomalies

Part of
town

Company‘s
Premises

=

Create new
account

Manager

Travelling
Salesman

Edit master
data

Create new
order

Finalize
order

=

Spain

=

Accountant

Accounting
Office

=

Figure 13. Usecase diagram with different types of location constraints

the subset of RBAC-components that can restricted with a
location constraint. For example, in GEO-RBAC the location
constraints are assigned to the roles itself, so depending
on the mobile user’s current location individual roles are
switched on or off; in the S-RBAC-model location con-
straints can be assigned to the association between roles
and permissions, so individual permissions of a role are
switched on or off depending on the location. We surveyed
these models in another article [7].

If access control decisions are based on the determination
of a mobile user’s location this leads to the question how

trustworthy the employed locating system is. An attack
with the intent to manipulate the location delivered by a
locating system is called location spoofing. Such attacks
can be performed by the possessor of the mobile computer
(internal spoofing) or third party (external spoofing). In [21]
we give an overview on different technical approaches for
the prevention of location spoofing.

To the best of our knowledge we are aware of only one
further paper by another group that deals with location con-
straints for workflows [22]. However, this model only allows
to assign individual locations to activity nodes to state where

69

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the respective activity is allowed to be performed. There are
also location constraints assigned to the individual actors in
the model. The focus of this work is the development of
an algorithm to check if there are enough employees who
can perform the individual activities of a workflow under
the consideration of the respective location constraints.

In a recent paper we considered the problem of detecting
inconsistencies in location aware access control policies
[23]. However, this work focused solely on RBAC and didn’t
take any workflow-specific aspects into account. The basic
idea is that it is possible to assign location constraints to
several components of different type in a model at the same
time. For example, a role service technician could have a
location constraint so that this role can only be enabled
in a certain region. Further, there could be also a location
constraint assigned to a user that restricts his usage of the
mobile information system to the city where he has to work.
If the role service technician is assigned to that user it
could occur that the intersection area of the two location
constraints is empty, i.e., the user could never activate the
newly acquired role. Such an ”‘empty assignment”’ is a
strong hint that the administrator of the system made a
mistake and should be informed about this.

Further, the concept of spatial coverage as way to check
the validity of location aware access control policies is
introduced. For example, the coverage of a given role with
respect to the entity user is the spatial extent of all the points
where at least one user could activate that role according to
the user’s and the roles location constraints. If the coverage
for the role service technician doesn’t cover locations that
should be served by the technicians then this again is a
strong hint that something is wrong with the configuration of
the access control model. In [23] we also describe several
other types of spatial coverage for the purpose of model
checking.

XI. CONCLUSION

In the article, an UML profile was introduced that extends
activity diagrams to express spatial constraints — so called
location constraints — concerning where individual activi-
ties have to be performed or are not allowed to be performed.
Using our profile location constraints can be defined at the
design time of a workflow schema, but it is also possible to
define rules to automatically generate constraints during the
runtime of a workflow instance.

Ideas for future work include to introduce further stereo-
types to express mobile-specific constraints, e.g., to state
minimum capabilities for the mobile computers to perform
the activity, for example a minimum screen size or the
availability of tamper-proof memory. Further, we envision
the development of a graphical editor that supports drawing
UML diagrams according to our profile; this editor should

integrate functionalities to work with geographic data to
define the spatial extents of location constraints.

Further, it would also be worthwhile to extend the location
model with security labels in the sense of mandatory access
control (MAC). To the best of our knowledge there are only
two publication by other authors which deal with MAC-
based location-aware access control [24][25]. However,
these publications do not cover workflow-specific aspects.
We also published an article on MAC-based location con-
straints for database management system [26], but again this
work isn’t workflow-specific. The basic idea of introducting
security labels into our modelling approach would be to
assign clearance levels to location, e.g., a particular country
or building could have the clearance Top Secret, while other
locations have only the clearance for the level Secret. Based
on this classification location constraints could be assigned
to a UML activity diagram. Such a constraint could state that
a particular activity can only be performed when the mobile
actors stays at a location that has a clearance of Top Secret,
but not below; or a location rule could be used to assign a
derived constraint so that the target activity’s location has at
a clearance level not lower than the location of the trigger
activity.

In Section VIII several types of anomalies where dis-
cussed that can be found in activity diagrams when location
constraints are applied. Since models should be free of such
anomalies we are working towards an algorithmic approach
to automatically detect such anomalies.

UML activity diagrams are by far not the only graphical
language for the modelling of workflows. Another popular
language for workflow modelling is the Business Process
Modelling Notation (BPMN), which is also maintained by
the OMG [27]. We are also working on a BPMN profile for
the expression of location constraints similar to the profile
presented in this article [28].

Further, we are currently working on the application of
the concept of location constraints for business processes
from the domain of agriculture [29].

REFERENCES

[1] M. Decker, “Modelling Location-Aware Access Control Con-
straints for Mobile Workflows with UML Activity Diagrams,”
in The Third International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies (UbiComm
2009). Sliema, Malta: IEEE, October 2009, pp. 263–268.

[2] A. Oberweis, Process-Aware Information Systems. Bridging
People and Software Through Process Technology. New
York, USA, et al.: John Wiley & Sons, 2005, ch. Person-to-
Application Processes: Workflow Management, pp. 21–36.

[3] M. Perry, K. O’Hara, A. Sellen, B. A. T. Brown, and R. H. R.
Harper, “Dealing with mobility: understanding access any-
time, anywhere,” ACM Transactions on Computer-Human
Interaction, vol. 8, no. 4, pp. 323–347, December 2001.

70

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[4] M. Decker, “A Security Model for Mobile Processes,” in Pro-
ceedings of the International Conference on Mobile Business
(ICMB 08). Barcelona, Spain: IEEE, July 2008.

[5] A. Küpper, Location-based Services – Fundamentals and
Operation. Chichester, U.K.: John Wiley & Sons, 2007,
reprint.

[6] J. Hightower and G. Borriello, “Location Systems for Ubiqui-
tous Computing,” IEEE Computer, vol. 34, no. 8, pp. 57–66,
2001.

[7] M. Decker, “Location-Aware Access Control: An Overview,”
in Proceedings of Informatics 2009 — Special Session on
Wireless Applications and Computing (WAC ’09), Carvoeiro,
Portugal, 2009, pp. 75–82.

[8] Unified Modeling Language (OMG UML), Superstructure,
V2.1.2, Object Management Group, 2007.

[9] R. Lake, D. S. Burggraf, M. Trninic, and L. Rae, GML.
Geography Mark-Up Language. Foundation for the Geo-Web.
Chichester, U.K.: John Wiley & Sons, 2004.

[10] D. S. Burggraf, “Geography Markup Language,” Data Sci-
ence Journal, vol. 5, pp. 178–204, October 2006.

[11] E. Bertino, E. Ferrari, and V. Atluri, “The Specification
and Enforcement of Authorization Constraints in Workflow
Management Systems,” ACM Transactions on Information
and System Security, vol. 2, no. 1, pp. 65–104, 1999.

[12] R. S. Sandhu, “Separation of duties in computerized infor-
mation systems.” in Results of the IFIP WG 11.3 Workshop
on Database Security (DBSec), Halifax, U.K., 1990, pp. 179–
190.

[13] J. B. Warmer and A. Kleppe, The object constraint lan-
guage: getting your models ready for MDA, 2nd ed., ser.
The Addison-Wesley Object Technology Series. Boston,
Massachusetts, USA: Addison-Wesley, 2003.

[14] A. Rodriguez, E. Fernández-Medina, and M. Piattini, “To-
wards a UML 2.0 Extension for the Modeling of Security
Requirements in Business Processes,” in Third International
Conference on Trust and Privacy in Digital Business (Trust-
Bus), Krakow, Poland, 2006, pp. 51–61.

[15] V. Stefanov, B. List, and B. Korherr, “Extending UML 2
Activity Diagrams with Business Intelligence Objects,” in
Proceedings of Data Warehosuing and Knowledge Discovery
(DaWaK 2005), Copenhagen, Denmark, 2005, pp. 53–63.

[16] H. Baumeister, N. Koch, P. Kosiuczenko, and M. Wirsing,
“Extending Activity Diagrams to Model Mobile Systems,”
in Proceedings of NetObjectDays (NOD), Erfurt, Germany,
2002, pp. 278–293.

[17] D. F. Ferraiolo, R. Sandhu, E. Gavrila, D. R. Kuhn, and
R. Chandramouli, “Proposed NIST Standard for Role-Based
Access Control,” ACM Transactions on Information and Sys-
tem Security, vol. 4, no. 3, pp. 224–274, 2001.

[18] M. L. Damiani, E. Bertino, and P. Perlasca, “Data Security
in Location-Aware Applications: An Approach Based on
RBAC,” International Journal of Information and Computer
Security, vol. 1, no. 1/2, pp. 5–38, 2007.

[19] S. M. Chandran and J. Joshi, “LoT-RBAC: A Location and
Time-Based RBAC Model,” in Proceedings of the 6th Inter-
national Conference on Web Information Systems Engineering
(WISE ’05). New York, USA: Springer, 2005, pp. 361–375.

[20] F. Hansen and V. Oleshchuk, “SRBAC: A Spatial Role-Based
Access Control Model for Mobile Systems,” in Proceedings of
the 7th Nordic Workshop on Secure IT Systems (NORDSEC).
Gjovik, Norway: NTNU, 2003, pp. 129–141.

[21] M. Decker, “Prevention of Location-Spoofing. A Survey on
Different Methods to Prevent the Manipulation of Locating-
Technologies,” in Proceedings of the International Confer-
ence on e-Business (ICE-B). Milan, Italy: INSTICC, 2009,
pp. 109–114.

[22] R. Hewett and P. Kijsanayothin, “Location contexts in role-
based security policy enforcement,” in Proceedings of the
2009 International Conference on Security and Management
(SAM’09), Las Vegas, Nevada, USA, 2009, pp. 404–410.

[23] M. Decker, “An Access-Control Model for Mobile Com-
puting with Spatial Constraints - Location-aware Role-based
Access Control with a Method for Consistency Checks,” in
Proceedings of the International Conference on e-Business
(ICE-B 2008). Porto, Portugal: INSTICC, July 2008, pp.
185–190.

[24] U. Leonhardt and J. Magee, “Security Considerations for
a Distributed Location Service,” Journal of Networks and
Systems, vol. 6, no. 1, pp. 51–70, 1998.

[25] I. Ray and M. Kumar, “Towards a Location-based Mandatory
Access Control Model,” Computers & Security, vol. 25, no. 1,
pp. 36–44, 2006.

[26] M. Decker, “Mandatory and Location-Aware Access Control
for Relational Databases,” in Proceedings of the International
Conference on Communication Infrastructure, Systems and
Applications in Europe (EuropeComm 2009), ser. LNICST,
R. M. et al., Ed., no. 16. London, U.K.: Springer, August
2009, pp. 217–228.

[27] OMG, Business Process Model and Notation (BPMN) v. 1.2,
Object Management Group, January 2007.

[28] M. Decker, H. Che, A. Oberweis, P. Stürzel, and M. Vogel,
“Modeling Mobile Workflows with BPMN,” in Proceedings
of the Ninth International Conference on Mobile Business
(ICMB 2010)/Ninth Global Mobility Roundtable (GMR 2010).
Athens, Greece: IEEE, 2010, pp. 272–279.

[29] M. Decker, D. Eichhorn, E. Georgiew, A. Oberweis, J. Plaß-
mann, T. Steckel, and P. Stürzel, “Modelling and enforcement
of location constraints in an agricultural application scenario,”
in Proceedings of the Conference on Wireless Applications
and Computing 2010 (WAC 2010), Freiburg, Germany, 2010,
accepted, to appear.

71

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

