
290

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Semantic-oriented Framework for System Diagnosis

Manuela Popescu
University of Besançon

France
manuela.popescu@univ-

fcomte.fr

Pascal Lorenz
University of Haute Alsace

France
lorenz@ieee.org

Jean Marc Nicod
University of Besançon

France
jean-marc.nicod@lifc.univ-

fcomte.fr

Abstract - In the field of system and network
diagnosis, there is a variety of modeling and
inference methods reported in literature. However,
very few are focusing on the validation and
knowledge transfer in case of similar symptoms.
Many researchers targeted the use of a generic
diagnosis framework, semantic-oriented solutions,
and temporal aspects related to diagnosis validation.
Event correlation and action triggering are essential
for an accurate diagnosis decision. However, no
industry-wide solution was considered so far. In this
article, we are proposing an adaptive framework for
diagnosis validation and transfer of information
from successful outcomes for future use and
optimization of the diagnostic activity. It is shown
that this mechanism allows a post-validation of
successful diagnosis actions, optimizing the
diagnosis process and increasing its accuracy. We
are presenting a series of ontology-driven
mechanisms for system diagnosis. Mainly, we
introduce event ontology and concepts related to
semantic tag clouds and show how to manage the
activities to build an ontology-based diagnosis.
Additionally, we consider temporal aspects related
to diagnosis validation. Event correlation and
action triggering are essential for an accurate
diagnosis decision. There are several time-related
challenges referring to event timestamps, timely
event correlations, and timely corrective actions, in
both absolute time (precise moment), or relative
time (between events, actions, and events and
actions). We consider a series of temporal operators
defining the event relative temporal position that
allows a more fine grain interpretation of the system
behavior. A combination of proposed mechanisms
is used to complete the main functions of a diagnosis
engine.

Keywords - system diagnosis, diagnosis validation,
knowledge transfer; ontology-based diagnosis;
semantic tag clouds; progressive ontology; temporal
features.

I. INTRODUCTION

System and network diagnosis is vital if network
infrastructures are to function efficiently and
maintain reliable delivery of service to customers.
There are various management and control
mechanisms acting on a system to monitor security,
performance, optimization and so on. In case of
faulty or unexpected behavior, diagnosis is usually
the main activity triggered by the symptoms of the
system under supervision.

Figure 1 depicts a very high level view of the
diagnosis process. Collectors have been developed to
assemble systems health data parameters. These
parameters can fall within normal value ranges
(accepted, desired, expected, etc.), or they can reflect
an unhealthy situation (value not recognized, out of
range, denied by policy, inconsistent or out of
context). A formalized set of this data constitutes the
symptoms of the network under consideration.
System problems can thus be identified and the most
suitable solution for healing is computed and
implemented. A validation step is then necessary to
assess the success of the repair. Validation is also
performed to prevent illness, following small
parameters variation from accepted range, or after a
calm period.

We can identify two loops of the diagnosis process:
(a) one loop deals with measuring the system
parameters (system state, events, i.e., pre-conditions)
and taking the most suitable actions; this is referred
to as the diagnosis loop and (b) a second loop deals
with validating that the corrective actions were
indeed successful; this is referred to as the validation
loop. The validation loop has two main goals: (a) to
establish the new state of the system, i.e., post-
conditions and (b) to gather knowledge on how to
solve future similar situations, in case the actions
taken were considered successful. In general, there is
little or no cross-interaction between these two loops.

291

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Diagnosis Theory [17, 25]

In addition, we introduce the concept of Quality of
Diagnosis (QoD) into the validation loop to help
make accurate decisions, based on past successful
actions applied to similar situations.

However, there are too many actions in a system
generating an unmanageably large number of events.
It is estimated that a maximum of 8% of these events
are considered by diagnosis systems; the rest of them
are being discarded. Additionally, there is a diversity
of technology domains driven by special diagnosis
mechanisms. Mapping those mechanisms in a
heterogeneous environment and correlating the
diagnosis actions overwhelm the operators in NOCs
(Network Operation Centers), leading to
unsatisfactory solutions.

Towards an automated diagnosis, we introduce a
progressive ontology (leading to progressive
diagnosis) and therefore “progressive validation” of
successful actions. This is intended to solve potential
conflicts of the post-conditions of the actions already
validated as “successful” and to evaluate the accuracy
of the diagnosis actions (preciseness versus
permanent damage). The basis is the definition of
event ontology, followed by several concepts
identifying the cause of a symptom and potential
diagnosis actions.

The complexity of networks and distributed
systems gives rise to management challenges when
unexpected situations occur. There is an
overwhelming number of feedback events coming
from the system in the form of status reports towards
the monitoring and management applications and
human operators. Actually, very few of these events,
less than 10%, can be considered for potential status
understanding and remedy. Given the numbers, it is
inevitable that many relevant events are dropped. The
remedy actions can come too late (and sometimes be
useless). There are numerous management
applications in commercial use. However, the variety
of the systems to be managed, their complexity, and
the fact that most of the successful decisions are

rarely recorded, rise serious challenges in the ability
to accurately handle unexpected situations.

Some of the multiple causes leading to the current
state are (i) lack of successful validation of corrective
actions, (ii) heterogeneity of the events to be handled,
and (iii) incomplete correlation and time
synchronization between status reports, decision
processing and corrective actions.

A step towards automated diagnosis was
introduced in [23], where an event ontology and a
progressive diagnosis ontology were proposed. Event
dependencies captured by ontology and specific
event relations were formalized. Probable cause and
recommended actions were associated with events.
Additionally, an augmented specification for actions
was proposed to help the validation loop. Both
proposals had as a target the reuse of knowledge for
problem fixing, identification of recommended
diagnosis actions, and validation of successful
actions.

The third identified challenge is time-related; this
refers to event timestamps, timely event correlations,
and timely corrective actions, in both absolute time
(precise moment), or relative time (between events,
actions, and events and actions). This aspect is more
difficult, as many events issued at different
timestamps might be processed for event
compression/aggregation. The correct adoption of
temporal aspects can solve potential conflicts among
the post-conditions of the actions already validated as
“successful” and helps evaluate the accuracy of the
diagnosis actions (preciseness versus permanent
damage).

In this paper, we introduce a generic framework,
propose an event ontology, highlight the relevance of
temporal aspects, identify the challenging issues, and
propose a new timestamp approach. We consider a
series of temporal operators defining event relative
temporal position that allows a more fine grain
interpretation of the system behavior. A combination
of proposed mechanisms is used to complete the
main functions of a diagnosis engine.

II. RELATED WORKS

There is a variety of approaches dealing with the
collection and actions-taking loop of the diagnosis
process. However, very few solutions are focusing on
the validation and knowledge transfer in case of
similar symptoms.

2.1 Diagnosis Approaches

There are many modeling and inference methods of
diagnosis, deriving from different areas of computer

292

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

science, including artificial intelligence, graph
theory, neural networks, information theory and
automata theory [1]. The most widely used diagnosis
techniques are expert or knowledge-based systems
[2] (rule-, model- and case-based systems, decision
trees and neural networks). Rule-based techniques
provide a powerful tool for eliminating the least
likely hypotheses in small systems [3]. However,
deep knowledge regarding the relationships among
system entities was included [5, 6, 7] to address
shortcomings related to the inability to learn from
experience, inability to deal with new problems and
difficulty in updating the system knowledge [4].
Model traversing techniques [8, 9] use formal
representation of a system with clearly defined
relationships among network entities. Model
traversing techniques reported in literature use
object-oriented representation of the system [10].
They are usually event-driven and naturally enable
the design of distributed fault localization algorithms.
Graph-theoretic techniques employ a Fault
Propagation Model (FPM) [9], which is a graphical
representation of all faults and symptoms occurring
in the system and commonly take the form of
causality or dependency graphs. Some graph-
theoretic techniques include divide and conquer
algorithm [11], context-free grammar [12], codebook
technique [13], belief-network approach, and
bipartite causality graphs [14].

Despite a vast research effort, there are open
problems regarding diagnosis in complex systems,
such as multi-layer fault diagnosis, distributed
diagnosis, temporal correlation fault diagnosis in
mobile ad hoc networks and root-cause analysis in a
service-oriented environment.

2.2 Validation and Knowledge Transfer

Two challenging post diagnosis and repair actions
are (1) validation and (2) knowledge acquisition and
transfer.

For validation, an audit must be performed on the
system status to assess the success of the repair
actions. Knowledge acquisition and transfer
regarding successful repair actions require a formal
representation of the system, specification of the
symptoms and the actions taken in particular cases, as
well as a methodology to have this information
available to facilitate later diagnosis of similar
situations.

The main prior knowledge needed for diagnosis is
the set of system failures and the relationship
between the observed symptoms and the failures.
Previous knowledge may be explicit, such as a table
lookup, or may be deducted from some domain
knowledge. This represents deep, model-based

knowledge. Alternatively, or in addition to this
knowledge, information may come from past
experience with the system. This type of knowledge
is known as shallow, compiled, evidential or process
history-based knowledge [15].

To understand the system behavior expressed by
issued events, we need to see how to instruct the
diagnosis engine to trigger appropriate actions. A
primary condition is to understand the information
carried out by an event. Despite more than 3 decades
of efforts, no common event syntax and semantic
were achieved. Most of the existing solutions target
a special area and it is rarely normalized; therefore,
diagnosing heterogeneous systems is a challenge.

Log files represent the most used information
source. Parsing the log files is the only way to extract
the event information. Some log files have minimal
event information, whereas others contain a variety
of unstructured information. Since the amount of log
file event is very large, the event processing should
handle the file index of events already processed,
especially whether the system is rebooted. Several
log files may contain event information, e.g., Syslog
log files, system console log files, application
message files, etc. While log files are the most
difficult source of events, Syslog files have a certain
degree of structure. However, all log files require
more normalization to help parsing and automate
event processing.

Syslog messages (associated with Unix
environments) are tailored as a free-form text
message together with some defined fields, such as
severity, facility, timestamp, etc. [17].

The structure of SNMP (Simple Network
Management Protocols) messages is based on SNMP
MIB (Management Information Base) Model, which
is quite complex to be handled &&3]. However, this
structure facilitates the normalization of these
messages into a common format. An SNMP agent can
asynchronously send SNMP messages to a trap
receiver (SNMPv2). The mechanism called informs is
provided by SNMPv2c that adds a reply message to a
trap, as an acknowledgement. However, notification
is not ensured to reach the destination. Since both
SNMPv2c and SNMPv3 can deliver SNMP
notifications via traps or informs method, the sending
agent can select the mechanism to be used. This
raises coordination challenge concerning message
structure and information contained in it. A
management process can poll with a given frequency
various state parameters and built complex event
structure based on the collected information. There is
no validation of a successful action after a diagnosis
action is performed.

293

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The RMON (Remote Monitoring) mechanism
defines a generalized threshold-based alarm, which
generates in turn an RMON event that eventually
causes a SNMP notification [20].

Other devices can use a Syslog to trap converter, as
a unified mechanism to send traps or informs.
However, most of details contained in the message
text must be parsed for further processing, as for
Syslog events.

Events can be generated at any level; the network
management system itself can generate events using
any of the mechanisms identified above.

Event formats were proposed for specialized
domains, such as intrusion detection reports and
vulnerability reports, but no event dependency or
instruction on how to manage them were proposed. A
proposal to direct event management was proposed in
[25], where the event itself carries the processing
instructions. The instructions were derived from the
event source point of view, with no correlation with
other events.

Most of the current attempts failed because of the
complexity of target systems, leading to huge event
models, practically describing unmanageable
situations.

It appears that ontology per domain is more
suitable; the initial condition is to have an event
ontology. Definitively, inter-domains ontology
matching is a challenge; however, it allows tackling
the problem step-by-step.

2.3 Temporal Aspects

Temporal features are related to several generic
aspects concerning (i) inaccurate (wrong, un-
synchronized, or missing) clocks, (ii) loss of events,
and (iii) hierarchical event processing at layers
exposing different clocks. These are somehow related
to event propagation skew but also to different
syntactic and semantic implementation decisions of
the timestamps (including time zones). One approach
in dealing with real-time measurements of
propagation skew uses a statistical evaluation to
update the timer values [27].

Some diagnostic constraints might be temporal. In
[23], temporal constraints are used for event tags to
define the event ontology and to detect the relative
temporal constraints. Walzer et al. [28] use specific
operators for time-intervals with quantitative
constraints in rule-based systems to trigger certain
actions. In the following sections, we present the
main approaches used to specify temporal aspects on
events and actions.

2.3.1 Temporal aspects for events

Timestamps are usually carried by the events
themselves; basic events possess special timestamp
fields that are instantiated when an event instance
occurs. Timestamps are storing time in the native
format of the platform in which the event processing
runs. There are two standard ways to represent the
time: (i) using the universal time, or (ii) using time
zones. Since one still needs to preserve the zone
indication for a device for hourly performance
reports, the representation in the universal time is
only for the computational point of view. Another
standard way to represent the time is the UNIX-
format time as a four-byte integer that represents the
seconds elapsed since January 1, 1970. For the same
reasons, the time zone of the source device should be
stored.

An event might have multiple timestamps; the
source timestamp (not always present), the logging
host timestamp, the console timestamp, and the
processing timestamp. Temporal correlation and
event aggregation should consider all these
timestamps.

Event processing and correlation need a time-based
logic to express the relative position of start / end
/duration of the events [24]. While attempts were
identified for classifying the relative position of the
events, no particular commercial solutions are known
where a full range of temporal situations is used.

2.3.2 Temporal Aspects for Actions

An enhanced action model was proposed in [23].
One temporal aspect is related to the triggering
condition (guard). Others temporal aspects are
related to the temporal dependencies between actions,
i.e., some action must start at a given period after one
action was triggered or was deemed successfully
finished.

A diagnosis-oriented augmented action definition
was introduced in [23], as follows.

action::= <<guard><ID><post-conditions>
<mode><conflicting>,

where

ID::= READ | WRITE | DELETE | CHANGE | , etc.

mode ::= <potential | recommended | successful
<context>>,

with
potential: any diagnosis action that is designated as
being related to a potential domain

294

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

recommended: any potential action that is perceived
as solving a given problem, eventually based on a
diagnoses history
successful: when post-conditions were validated as
true

context: <d:D, c:C>

d:D is d instance of Domain
c:C is c instance of Cloud

Also in [23], we associated the notion of
“conflicting” with a given action, which designates
the actions a potential action is in conflict with, in a
given domain:

conflicting ::= <a1, a2,… ak | ai:A>

A <guard> is acting as pre-conditions and igniter
(initial timestamp), and the <post-conditions> are
expected to be true (after the action is considered
successfully performed). In general, actions are
applied following a simple rule:

IF <pre-conditions>

THEN <action> WITH <post-conditions>

Post-conditions are assumed to hold. A
composition of actions, a plan, is a set of related
actions and it is used to specify dependencies
between actions. This is schematically represented in
Figure 2. The model can be summarized as follows,
where a plan is introduced as a temporal combination
of atomic actions (see ID above) [29].

policy::= IF <pre-cond> THEN {<> 1<action>
1<plan>}

[ELSE {<> 1<action> 1<plan>} <action>
1<plan>}] <post-cond>]

Figure 2. A plan ─ actions: a1, a2, a3; time
durations: x, y, z

Based on the analysis of the state of the art, we
conclude that there is a need for a unified timestamps
approach and a set of operators that must be used in
synchronism to express the dependency between
events, between actions, or between events and
actions [25, 26].

In this article, we propose a representation of
temporal features allowing various semantics used to
correlate the events and the actions.

III. A SITUATION-BASED DIAGNOSIS SYSTEM

Let us first introduce the basic concepts used to
formalize the system used here for validation,
knowledge acquisition and transfer.
(1) Symptoms are external manifestations of failures.

They can be observed as alarms, which alert of a
potential failure. The alarms can originate from
management agents via management protocol
messages (SNMP traps, CMIP EVENT-
REPORT etc.) from management systems
monitoring the network status (ping) system log-
files or character stream sent by external
equipment [1].

(2) We introduce the concept of situation as
representing the symptoms and the failure state
of the system in consideration.

(3) A problem represents the failure state of the
system and possible causes. This concept allows
us to deal with events which might not be
directly observable. Many types of events might
not be directly observable due to (i) their
intrinsically unobservable nature, (ii) local
connective mechanisms built into a management
system that destroy evidence of fault occurrence
or (iii) lack of management functionality needed
to provide evidence that a fault occurred. The
state of the system implicitly represents these
kind of un-observable events.

(4) A context represents a subset of states (including
system topology, dependencies, configuration,
etc.), services and their users, at a given time.

(5) We also introduce the use of Quality of
Diagnosis (QoD) into the validation loop
mentioned in Figure 1. This concept will drive
more accurate decisions, based on past
successful actions applied to similar situations.

We classify the states of a system in 3 types,
associated with symptoms and probable causes, as
shown in Figure 3.

a1

a2

a3

x
y

z

295

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Basic concepts relationship

The system states of type X are states producing
observable symptoms that indicate failures, the
system states of type Y are states producing non-
observable events of failure and the system states of
type Z are behaviorally expected states that are not
associated with failures.

3.1 Approach on Diagnosis Loop

As shown in on Figure 1, three related concepts are
needed for a successful repair: (i) symptoms, as
defined above, (ii) problems, as a set of potential
causes based on the situations and (iii) diagnosis
actions (most suitable) in a given situation. These
concepts are applied in successive steps.

Let S, P, D, E, and A be the set of Symptoms,
Problems, Diagnosis, Events, and Actions
respectively. The diagnosis process can be
summarized by (1).

(E)S P D(A) (1)

Let si, pi, di, ei and ai represent a given instance of a
symptom, problem, diagnosis, event and action
respectively.

We introduce three types of symptoms, based on
the completeness of the information coming from the
system.

(1) Reactive - A set of events may reflect a set of
problems that can be repaired by a set of diagnosis
actions. In particular, the set of events may be
received is a certain time window. In the case of
reactive symptoms, most of the events occur
spontaneously, i.e., SNMP traps, informs [16].

(i) Time-agnostic diagnosis:
[e1, e2, e3….en] {pi} {di}

(ii) Time-oriented diagnosis (temporal context)
[e1, e2, e3….en]t1 {pi}t1 {di}t1

(2) Proactive - A set of events may be missing just
one extra event before being able to infer a set of
problems associated with the system. Depending on
the nature of the event still to come, a different set of
problems can be inferred. For proactive symptoms,
new information can be solicited, for example, using
polling mechanisms via specialized queries. In
SNMP, GET state or the value of a parameter, is a
solution. The decision of triggering such queries
belongs to the diagnosis engine that might identify a
potential symptom.

[e1, e2, e3….en-1] + [en] {pi}
[e1, e2, e3….en-1] + [e’n] {p’i}

It is important to notice that the nature of the
expected event might lead to different classes of
problems.

(3) Pre-emptive - When a symptom is not complete, a
threshold might be set on an expected set of events.
This threshold depends on the type of events
(Boolean, Integer, etc.). When the expected events
are crossing the threshold (1) will take place. A
simplified representation is shown below.

[e1, e2, e3….en-1] + [threshold on {ei}]{pi},

where “threshold” is used in a general sense, e.g.,
belonging to a class of events, occurring in a

temporal vicinity (ε) of en-1, or at least of delay of (δ)
from en-1.

All three types of symptoms described above are
context-independent. When the context is taken into
consideration, the relationship (1) becomes:

(E)S [P, C] D(A) (2)

where C is the set of possible contexts.

Most of the time, systems experience different
problems in different contexts, leading to different
diagnosis, i.e.,

[e1, e2, e3….en]t1 + [context1]{pi} {di}
[e1, e2, e3….en]t2 + [context2]{p’i} {d’i}

The main manifestation of the diagnosis is the set
of actions and their results (post-conditions of the
respective actions). Generally, it is assumed that the
post-conditions are true. However, potentially
conflicting repair actions might leave the system in a
questionable (or unknown) state, even when the post-
conditions of each action hold.

296

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In the next section, we propose and analyze a
validation loop based on QoD.

3.2 Approach on Validation Loop

In general, diagnosis consists of a set of potential
actions intended to fix a situation in a given context.
Only some of them might be successful for a given
problem in a given context.

The goal of the validation loop is to determine the
successful diagnosis actions in the given situation,
and to transfer this knowledge to the diagnosis engine
for use in future similar situations.

We are introducing the QoD into the validation
loop, as shown in Figure 4.

Figure 4. QoD

The QoD module is a dedicated validation engine,
which interacts through three specialized interfaces
with the system and the diagnosis loop. In particular,
it receives diagnosis feedback from specialized
system agents via the Interface I2 and asks for
additional information (i.e., for audits) via the
Interface I1. QoD communicates the diagnosis results
to the Diagnosis Loop via the Interface I3. I3 can also
be used by the diagnosis loop to ask the QoD for
auditing information related to a given situation.

A diagnosis action has a set or pre-conditions and
guarantees a set of post-conditions. QoD deals with
validation (or evaluation) of post-conditions.
Therefore, the QoD engine acts only during-diagnosis
or post-diagnosis.

<pre-conditions>
<action-id> (3)

<post-conditions>

Based on the framework presented here, in the
following section we propose the QoD mechanism.

3.3 QoD Mechanism

We identify two behavioral modes of the QoD
engine: (i) listening mode and (ii) audit mode. In the
listening mode, the QoD is waiting for input from the
embedded agents or from the diagnosis loop. The
audit mode can be triggered (i) by the diagnosis loop
following the application of a set of repair actions to
resolve a situation (ii) for a given time period or (iii)
can be scheduled periodically/frequently.

At the end of the audit process, QoD returns to the
diagnosis loop the subset of successful actions from
all possible actions taken to repair a certain situation,
in a certain context.

[S, C, {successful actions}] (4)
 Diagnosis Loop

By request from the diagnosis loop, QoD can
monitor: (a) a given action, (b) a set of given actions,
or (c) all potential actions. The diagnosis loop
provides the set of actions to be monitored, QoD
being solely a validation engine.

The diagnosing actions are taken as part of the
diagnosis loop. The successful actions, determined by
the validation loop, will be the ones that make the
system pass from a state of type X to a state of type
Z.

Definition of a successful action

if
{statei}{actioni} {statej}

where
{statei} ∈ X ∧
{statej} ∈ Z

then
{actioni} is successful

Note: An action can be successful in one context and
failure in another context.

The validation loop will transfer the information
regarding successful actions to the diagnosis loop for
optimizing the diagnosis loop activity. The format of
the information returned to the diagnosis loop can
have 2 forms:

(1) The successful action, composed of pre-
conditions, id and post-conditions as well as
the symptom, problem and context.

[<pre-cond><id><post-cond> | <S,P,C>]

(2) The successful action, composed of pre-
conditions, id and post-conditions as well as

297

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a pointer. The pointer indicates the list of
<S,P,C> in which the action in consideration
was successful. The validation engine is
responsible for keeping and updating this
list.

[<pre-cond><id><post-cond> | <pointer>]
where
<pointer> = {…<S,P,C>i, <S,P,C>j…}

We present below an algorithm
summarizing the QoD mechanism.

Algorithm

input:
System states, X, Y, Z
S, P, C
ai

pre-condition ai = statei

post-condition ai = statej

update type [one action, pointer]
if statei∈ X ∧ statej ∈ Z
then

forward <ai> <S,P,C>
or

update <ai><pointer>
where

<pointer> =
{…<S,P,C>i, <S,P,C>j…}

In summary, the QoD engines takes as input the
possible system states and their type (X , Y or Z), the
symptom, problem, context, the action to validate, the
initial system state (pre-condition), the final system
state (post-condition) and the update type. If the
initial system state is of type X and the final system
state is of type Z, then (1) forward to the diagnosis
loop the action and the set <S,P,C> or (2) update the
pointer, where the pointer represents the list of all
possible <S,P,C> combinations known so far in
which the action under consideration is successful.

To tackle the problem, we propose an ontology for
diagnosis composed of (i) an event ontology, (ii) tag
and semantic diagnosis tag clouds, and diagnosis
clouds matching.

3.4 Event Ontology

To address the issues described in the previous
sections, we propose here an event ontology.

The three main concepts of the ontology are: (1)
Event, (2) Domain and (3) Event Manager.

An Event is a software message that indicates
something of importance has happened. A Domain is
defined as a technological area, such as VPN or
VoIP, a sub-network or specific management area,
such as fault, security. An Event Manager provides
real-time information for immediate use and logs
events for summary reporting used to analyze
network performance.

The main relations between these concepts are
depicted in Figure 5. The Events are owned by the
Event Manager. Also, an Event refers to a Domain.

Figure 5. Event Ontology Main Concepts

In addition to the main relationships between an
Event, Manager and Domain, an Event is defined by
explicitly-declared event ID, source, version,
timestamp, priority, and free-text (see Figure 2). An
event can be stored at an URL, Library-ID,
Repository or Log Server. These locations can be
explicitly-declared or found as a result of a search.
An Event can be referred to by another Event or can
refer to another Event. Also, an Event can be similar
to another Event. The ontology identifies the
relationship between events (example “is-similar-
to<event>”,”refers-to <domain>” etc.) and the
management properties of a given event (e.g., “can-
be-accessed-by <application>”, “can-be-modified-
by <application/human>” etc.).

298

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Details of the Event Ontology

In Figure 6, an Event depends on a Manager by <is-
owned-by> relation that can be refined in a few inheriting
relations such as <can-be-accessed-by>, <can-be-modified-
by>, or <can-be-deleted-by>. As an example, the last
relation defines what managers have rights to delete a
particular event. If we combine with the proposal from [25],
the manager is also instructed how to proceed.

Expanding the ontology from Figure 5, we illustrate in
Figure 7 the main concepts and the core relations. Apart the
dependency relations, we also consider the aggregation
relation, where events are aggregated during the processing.
The main relation <is-owned-by> is specialized in a few
relations, as managers can be specialized too.

Figure 7. Adding relations to the main concepts
(UML notation)

A domain instance can be one of the specialties that have
been illustrated in Figure 6.

3.5 Semantic Tag Clouds

The first challenge in deriving semantic clouds is the
complexity, when considering all the expansions of the
diagnosis domains. As an example, let us consider the
following tag subdivisions targeting fault diagnosis (List 1).
We have a coarse grain tag embedded hierarchy, while a
fine grain tag list can be progressively developed. As a note,
each time a tag expansion is made, a validation is required.

• TAGS
• IPv6, IPTV

• fault in IPv6
• fault in IPTV

• security IPv6
• security sensors
• IPTV with IPv6
• IPTV

management
• Refined /TAG list/

• latent fault, authentication, M5, IPSec,
link-Syslog, CLI-Z

List 1. Example of Tag List

Event

is similar-to

refers-to

is-referred-by

Dom

refers-to

Domain

Manager

is-owned-by

can-be-accessed-by

can-be-modified-by

can-be-deleted-by

…..

299

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Two concepts are considered in defining (identifying) tags,
as expressed in Figure 8.

Figure 8. Hierarchical tags and their relations

As suggested by List 1, tags have a hierarchy within each
domain; this defines a special dependency relation between
tags. Also, at each layer, tags may embed different
associations (e.g., port-85 and SNMP traps).

During the diagnosis activities, tags are relevant, but
without the tag relationships, no much progress can be
achieved. One step ahead is to form tag clouds; a tag cloud
refers to a tag list focusing on a particular domain (see
Figure 9).

Figure 9. Tag Clouds and Semantic Tag Clouds

As an example, we localize in Figure 9 (a) a tag cloud
concerning real-time fault diagnosis. We identify a series of
relationships between a given CLI (Command Line
Interface), a SNMP-trap that refers to a given port, on one

side, and between latent fault and real-time tags, on the
other side (Figure 9 (b)).

3.6 Mapping Semantic Clouds in a Context

Let us assume that there are two semantic clouds, as
shown in Figure 10. Semantic cloud#1 defines the tags and
their relationships for a fault related to a power supply issue,
while Semantic cloud #2 relates to a potentially real-time
and latent fault.

Figure 10. Cross-semantics of Semantic Tag Clouds

An appropriate diagnosis is triggered by linking the port
ID and the card ID, then identifying the SNMP trap defined
for power-supply behaviors. With these cross-semantic
connections, one can identify the potential CLI leading to
the situation, or a particular fault on power supply.

As mentioned before, the number of events produced by a
system exceeds by far the capacity of processing them. An
accurate selection of those events ‘of interest’ reduces the
burden of monitoring and diagnosing and leads to a more
adapted solution.

On the other side, the event mediation is less process
consuming as both the diagnosis engine and the validation
engine [17] refer to the same event ontology.

3.7 Progressive Ontology

A diagnosis engine is validating successful diagnosis
actions based on a given set of semantic tag clouds. As
expected, since the technology evolves, new devices and
applications are developed. We adopt a series of heuristics
on validating new semantic tags and new semantic tag
clouds.

3.7.1 New Semantic Tags

For the purpose of ontology control, the following
heuristic was experimented:

x latent fault

x real-time

x Port XYZ

x SNMP-trap-X

x CLI-Z

x latent fault

x real-time

x Port XYZ

x SNMP-trap-X

x CLI-Z

a)

b)

x latent fault

x real-time

x Port XYZ

x SNMP-trap-X

x CLI-Z

x fault

x power-supply
x Card XYZ

x SNMP-trap-Y

x CLI-W

Semantic cloud #1 Semantic cloud #2

tag

tag tag tag

tagtag tag

tag

300

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

START
New tag TAG
1. Temporary accept a ‘tag’
2. Set a threshold of its use for a time window
3. If the diagnosis engine uses it in that time window, then
insert it as permanent in the ‘tag cloud’
4. Then consider tag relations based on the diagnosis-
context (situation)
5. If the diagnosis engine do not use the new tag in the given
time window, add it to the list of potential tags to be
considered in the future, but avoid definitive insertion
END

Heuristic #1. Inserting a New Semantic Tag

The tag inventory process keeps a few records concerning
a specific tag, e,g., the cloud it belongs to, if it is on a
potential tag list, or whether it was declined for a list of
clouds.

3.7.2 Semantic Tag Cloud State

As the technology evolves, building new tag clouds and
maintaining the created and validated ones are current cloud
management activities. To accurately communicate to a
diagnosis engine what clouds can be used, we introduced
the cloud state. Cloud state belongs to {progressive, in_test,
validated, obsolete}.

The state progressive denotes a cloud that it is in a
building phase; it can be updated, but not used in a
diagnosis process. In_test represents a cloud that achieved a
certain degree of completeness; in this state, different
diagnosis are tested and mapped against the cloud semantic
relations to validate them. The state validated is declared by
the diagnosis engines; it allows a semantic tag cloud to be
used in the diagnosis decisions. Obsolete is declared when
none of the components of a cloud is in use any more.

3.7.3 Inter-clouds Relations

The main achievements with ontology are building small
models and link them via relations. Therefore, building
inter-clouds relations are crucial for diagnosis. The
procedure is captured by the following heuristic:

START
1. Identify the clouds potentially related
2. Identify the intra-cloud relationships
3. Validate the cloud status
4. Build inter-clouds relationships and validate them
5. Identify for each semantic tag cloud:

a. “one-hop” related clouds
b. type of relationship

/start/cloud1<->end/cloud2/

END

Heuristic #2. Steps for building inter-cloud relations

3.7.4 Specific Aspects in Defining Tags

Tags are context-driven; they are defined without a global
view, by different teams. Building inter- and intra-cloud
relations is conditioned by a full understanding of the
semantic of a tag and its relations with other tags. The
following aspects are considered: (i) temporary tags, (ii)
synonymous tags, and (iii) ambiguous tags. Some of the
tags are originally embedded into a given cloud; until at
least one relation with the existing tags is identified, it is
labeled as ‘temporary’. Synonymous tags are more difficult
to be identified; tag definition is usually human-driven, if
there is no formal semantic behind tag definitions.
Ambiguous tags can be identified inter- and intra-clouds.
Disambiguation is achieved by either duplicating a given tag
in two tags with dissimilar identifications, or by reducing
the semantic of a considered tag.

3.7.5 Diagnosis Actions Associated with Tag Clouds

In the proposed progressive ontology, each semantic tag
cloud has attached a list of suggested potentially successful
diagnosis actions.

Figure 11. Semantic tag clouds and associate actions (UML
notation)

We depict in Figure 11 the diagnosis counter-part of event
ontology modeling, i.e., the required actions. There are a
number of diagnosis potential actions associated with a

Semantic

Tag Cloud

Tag Tag

Relation

Action Bag

Potential Actions

Recommended Actions

action plan

intra-cloud

associated-action

inter-cloud

301

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

semantic cloud. A subset of them is recommended, based on
the successful diagnosis history. In triggering a diagnosis
decision, we consider two potential solutions: an action, or a
plan. A plan is a predefined combination of some actions,
implying parallelism, serialization, and temporal relations
between actions.

There are some aspects when associating many tag
semantic clouds and the actions belonging to them. Within
a semantic tag cloud, some actions are defined with special
guards (for validating the triggering), or explicitly specify
conflicting actions (in given conditions). When two or more
semantic tag clouds are mapped some conflicts might
disappear, while emerging conflicts may occur, too. To deal
with all these aspect a better formalism is needed to express
structures, relationships, actions, and constraints during the
diagnosis activity (and its validation). The following section
deals with some of these aspects.

3.8 Timestamps

This section describes aspects related to timestamps,
event correlation with temporal operators and gives an
example of use of temporal operators.

In a hierarchical model, an event model should allow
multiple timestamps, depending on the event hosting and
processing. In an XML-like specification, we introduce for
the device (source), host (server), and processing application
(management application or console), the timestamp and the
time zone a source, host or processing application belongs
to.

TABLE I: Timestamp specification

<time>
<device_time> device_time></device_time>
<device_zone> device_time_zone</device_zone>
<server_time> server_time</server_time>
<server_zone> server_time_zone</server_zone>
< processor_time> event_processor_time</
processor_time>
<processor_zone> processor_time_zone</processor_zone>
</time>

The timestamp of the event is best set by the event
producer (device_time). The timestamp representing the
moment of event registration on the server, server_time is of
relevance for correlation. Finally, the timestamp of the
entity performing correlation or event processing is relevant
for synchronization among multiple such event processing
systems.

Any of these three entities can belong to different time
zones that should be considered when temporal priorities
count.

The values of these parameters are set by various entities.
Some protocols provide the capability to supply the time in
the occurred event, or the time when the event producer sent

the event. With the Network Time Protocol (NTP) the time
from event producers will be the most accurate.
Alternatively, the time registered by the event processing
system might be considered.

We advocate the following representation, similar to
Syslog protocol, e.g., device_time: Jan 1 14:22:45
represents the local time on the device at the time the
message is signed. For devices with no clocks, device_time:
Jan 1 00:00:00 should be the representation.

3.8.1 Event Correlation with Temporal Operators

Temporal relations are used to build time-dependent event
correlations between events. For instance, we may correlate
the alarms that happened within the same 10-minutes
period, which means the correlation window is 10 minutes.
We abstract an event and consider only the temporal
aspects.

Let e1 and e2 be two events defined on a time interval:

T1 = [t1, t1’]
T2 = [t2, t2’]
and e1 within T1

e2 within T2

two events occurring within the time intervals T1 and T2,
respectively.

The following temporal relations R(t) or R are identified:

R(t):: = {after(t), follows(t), before(t), precedes(t)}

R ::= {during, starts, finishes, coincides, overlaps}

The following deductions hold:

after: e2 after(t) e1 t2 > t1+t

follows: e2 follows(t) e1 t2 t1'+t

before: e2 before(t) e1 t1' t2'+t

precedes: e2 precedes(t) e1 t1 t2'+t

during: e2 during e1 t2 t1 and t1' t2’'

starts: e1 starts e2 t1 = t2

finishes: e1 finishes e2 t1' = t2’

coincides : e2 coincides with e1 t2 = t1 and t1' = t2’

overlaps: e1 overlaps(ε) e2 t2’ t1’ ± ε > t2 t1 ± ε
where ε is the accepted threshold for
measurement variation.

302

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

With respect to the algebraic properties of the temporal
relations,

- all are transitive, except overlaps,
- starts, finishes, conincides are also symmetric

relations.

3.8.2 Example of Using Temporal Operators

In [22], time-oriented diagnosis was defined as

[e1, e2, e3….en]t1 {pi}t1 {di}t1,

where

pi, di, and ei represent a given instance of a problem,
diagnosis, and event, respectively.

As an example, let us consider the instantiation:

[e1, e2, e3] | e2 follows(x) e1 & e2 overlaps(ε) e3}
 p123 d123

where x is the time duration between e1 and e2.

As a note,
[e1, e2, e3] | e2 precedes(x) e1 & e2 overlaps(ε) e3}

 p’123 d’123

represents a different problem and therefore, a different
diagnosis.

In the case that the above specification designates a given
diagnosis and it is determined that e1 did not follow e2 after
time x, a diagnosis engine issues an anomaly (no concrete
diagnosis is derived).

An event has a series of event attributes, which we
represent as:

e = (f1, f2, f3…, fn)
where f: (value:V),

where V is the type of the attribute

Examples of event attributes that we consider are:

f1: ID
f2: source
f3: timestamp
f4: timezone
f5: English text defining the potential cause
etc.

e.f3 represents the value of attribute f3 in event e.

The operators on relative event position (follows,
overlaps, etc.) are related to the attributes f3 and f4.

Figure 12.Timestamp and timezone event fields

In this example, e1.f4 and e2.f4’ are known, since they
represent the timezones of the sources of the two events.
Only e1.f3 and e2.f3’ need to be set by the local clocks. Let us
assume that:

clk1 sets e1.f3 and clk2 sets e2.f3’,
where clk is the local clock of the event source.

|clk1-clk2| ≤ ε12,
where ε12 is the clock skew between the two local
clocks for two domains represented by two semantic
clouds [23].

e2 follows(x) e1 is computed as follows:
(e1.f3 + ε12) + x ˂ e2.f3 (for the same time zone)

For different time zones, this becomes:
[(e1.f3 + ε12) ■ Abs(e1.f4)] + x ˂ (e2.f3) ■ Abs(e2.f4),

where ■ Abs(e.f4) represents the operator for
normalizing the time between timezones.

Following the same logic, e2 overlaps(ε) e3 for different
time zones is computed as follows:

|(e2.f3) ■ Abs(e2.f4) - (e3.f3) ■ Abs(e3.f4)|˂ ε23

where
|x| is the absolute value of x
and
ε23 represents an acceptable error.

These event-based computations are performed each time
a diagnosis is triggered and validated.

In the next section we will use this example in the
diagnosis scenario.

3.9 Using Temporal Features for Diagnosis

This section presents a formal specification of the
ontology-based diagnosis, considering temporal relations.
Let us assume that the diagnosis engine and the Quality of
Diagnosis (QoD) engine introduced in [22] have to trigger
the following operations: INTERPRET, APPLY,
VALIDATE and MARK.
- Diagnosis engine: INTERPRET events from the system.
- Diagnosis engine: APPLY the diagnosis actions.
- Quality of Diagnosis engine:

VALIDATE the diagnosis actions.
and

MARK successful actions.

303

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The APPLY, VALIDATE and MARK functions were
shown in [23]. We reconsider the example with
INTERPRET functionality as well.

As discussed in [23], there is a semantic tag hierarchy
within each domain, with special dependency relations
between semantic tags. Within a domain, semantic tags and
their relations form a semantic tag cloud; a domain might
have multiple semantic tag clouds associated with it. Let us
assume that a system is represented by two semantic tag
clouds (Figure 13). Semantic cloud #1 defines the tags and
their relationships for a fault related to a power supply while
Semantic cloud #2 relates to a potentially real-time and
latent fault.

Figure 13. Two Semantic Tag Clouds [23]

When some event patterns occur and diagnosis actions
must be triggered (and validated), the Diagnosis Engine
interprets the events from the system and applies the
diagnosis actions. Next, the Quality of Diagnosis engine
validates the actions and marks the successful actions.

The following algorithm is used by the engines to perform
the required actions for a given occurrence of combinations
of events. A particular series of events occurs as shown in
the INTERPRET part of the following algorithm (we use
the ‘.’ Notation, i.e., a.b means the property ‘b’ of the
instance ‘a’). When the conditions (2) and (3) explained in
Section III hold, the necessary condition to enter the rest of
the algorithm is met.

START

INTERPRET
IF {[e1, e2, e3] | e2 precedes(x) e1 & e2 overlaps e3}

CLOCK = t0

AND e1 belongs to cloud1

AND e2 belongs to cloud2

AND e3 belongs to cloud2

AND x < t0

THEN
ERROR

ELSE
ASSUME

e2 precedes(x) e1 & e2 overlaps e3 = = TRUE
AND

IF there is exist rc < cloud1, cloud2>
AND cloud1.state = active
AND cloud2.state = active
AND
IF there is rdto <e1, domain1>

AND tag1 belongs to domain1

AND tag1 belongs to cloud1

AND tag2 belongs to domain2

AND there is rT <tag1, tag2>
AND there is rCA1 <cloud1, {action1}>
AND there is rCA2 <cloud2, {action1}>

WITH
action1 = {a1, a3, a6}
AND
action2 = {a1, a5, a7}

THEN

APPLY {{a1, a3, a5, a6, a7} – {
a1.conflicting
a3.conflicting
a5.conflicting
a6.conflicting
a7.conflicting}

VALIDATE
a1.post-conditions = TRUE
a3.post-conditions = TRUE
a5.post-conditions = TRUE
a6.post-conditions = TRUE
a7.post-conditions = TRUE

MARK
a1.mode = successful
a3.mode = successful
a5.mode = successful
a6.mode = successful
a7.mode = successful

END

Legend (for details, see [18]):
rC: RC | rC ::= <c1: C, c2: C>, cloud to cloud relation
rT: RT | rt ::= <t1: T, t2: T>, tag to tag relation
rCA: RCA | rCA ::= <c :C, {ai : A | pi: P}>, cloud to action
relation
rdto: RDto | rdto ::= <e:E, d:D>, event to domain relation.

IV. CASE STUDY

The concepts proposed in this paper are
implementable, at-large, but considerations must be
taken when designing new systems to follow the formal
approach. In this section, we highlight the main
challenges of a full implementation of the proposed
diagnosis solutions. While fixing legacy systems

304

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

remains a complex problem, avoiding the same errors
for newly designed systems seems be to the most
appropriate approach. We illustrate partial solutions for
different concepts introduced via a case study
simulation. The case study is conducted in connection
with Cisco DFM (Device Fault Manager).

4.1 Challenges in Implementing the New Approach

Two main complementary contributions were
proposed in this paper, namely: (i) a new mechanism
for validating diagnosing actions, while promoting the
reuse of diagnosis actions in similar situations, and (ii)
a new approach on events and actions. While the
usefullenss of each new concept and mechanism was
highlighted when they were introduced, developping a
large scale system using these concepts requires
substantial effort and time.

There are several “de facto” constraints in
developping a totally new diagnosis approach. In the
following sections, we consider the most important
challenges, based on our experience in validating our
approach.

4.1.1 Customized Event Model used by Different
Systems

One difficulty in validating our approach is related
to the customized model used by different
system/network devices/software to construct and send
an event. To complicate the task further, even
subsequent releases of the same entity might expose
different event models. For this reason, any previous
diagnosis algorithms and diagnostic systems become
obsolete. Since designing and implementing a new
event is relatively easy, there are thounsands of useless
events (not easily captured by any diagnosis algorithm
or system) and, consequenlty, thousands of “exception
handling” cases; the latter are usually sent to a human
operator in NOCs (Network Operating Centers).

Even in cases when a standard is available, the
recommendations are too generic . For example, in ITU
recommendation X.745 [81], the parameter status can
be “mandatory”, “optional”, “conditional” or “not
applicable”. Aditionally, an
‘implementstion status” (“implemented” or “not-
implemented”) needs to be considered (Figure 14).

<parameter>
<parameter status>:: = mandatory | optional |
conditional | not applicable or out of scope
<implementation status> ::= implemented | not
implemented
<parameter/>

Figure 14. Recommendations for Event Parameters

In this case, even if an event model is enforced, the
value of parameter status and implementation status are
not helpful, since, for the same event definition, some
features might not be mandatory or implemented.

In other cases, the implementaiton of the events is
very customized and leaves little opportunity for syntax
harmonization, yet alone consideration for the semantic
aspects. For example, Figure 15 presents a Syslog event
issued by Cisco’s GSR (Gigabit Switch Router) [30].

%EE48-3-ALPHAERR: [chars] error: cpu int [hex]
mask [hex]\n addr [hex] data hi [hex] data lo [hex]
parity [hex]\n fs [hex],pf [hex], prep [hex] (pc [hex]),
pc1 [hex]\n plu int [hex] int en [hex] err en [hex] err
[hex] ecc [hex]\n tlu int [hex] err [hex] ecc [hex], mip
[hex] (pc [hex]), pc2 [hex]\n pst [hex], cam [hex], nf
[hex], pop [hex] (pc [hex]), ssram adr [hex] err [hex]\n
pipe ctl [hex] avl [hex] end [hex] fatal [hex], gather
[hex]\n xmb read [hex] rclw1 [hex] rclw2 [hex] rclr
[hex]\n tailw1 [hex] tailw2 [hex] tail [hex]\n sts1 [hex]
sts2 [hex]\n pcr regs: fs [hex] prep [hex] plu [hex] pc1
[hex] tlu [hex] dummy [hex] mip [hex] pc2 [hex] mtch
[hex] post [hex] pop [hex] gthr [hex]

Figure 15. Example of a Syslog Event issued by GSR
(Cisco)

We see that there are many different types of
formats for the events. Automating extraction of useful
information from event text message is close to
impossible. To extract a useful piece of information, or
token, a diagnosis tool has to know the format apriori
and write “rules” to parse messages into tokens, when
the messages are generated from various sources.
Currently, Syslog messages are generated by numerous
sources: various IOS protocol code modules, device
driver code module, etc. Updating all these sources
implies changing tens of millions of lines of code, a
task close to impossible.

We note here that SNMP traps have a standard
format, using ASN1 (Abstract Syntax Notation One)
[30]. An example of an SNMP trap notification is
shown in Figure 16.

4.1.2 Events are Issued in Isolation

The second challenging aspect consists in the fact
that change reports (events) are issued in isolation, with
an implicit semantic on their potentially related events.
This is due to the fact that the events are designed by
the entity designers; they do not have a full picture of
where the entity will be used, its interactions, etc.

Most of the diagnosis decisions are human-held
heuristics. In many cases, intuition plays a major role.
Some diagnosis decisions are experience-based, and

305

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

very rarely based on rigourous knowledge processing.
As a drawback, accuracy and correctness migth lead to
a late diagnosis.

To illustate the difficulty in dealing with legacy
systems for a correct diagnosis, we consider two
examples.

First, let us consider the example of a SNMP trap
notification as shown in Figure 16. SNMP MIBs define
these kind of messages in a standard way by
NOTIFICATION-TYPE. The varbind will indicate
neighbor = xxx.yy.zzz.mm; status = Down. Despite the
more formalized straucture of SNMP traps, a tool
cannot syntactically “tokenize” the message following
the same approach, unless the message is somehow
recognized. This means that a tool user or developer has
to know the message format, write a “rule” to recognize
the format, then, when the message arrives with the
prefix “%BGP-5-ADJCHANGE”, that relevant “rule”
can be triggered to tokenize the text content.

Nov 11 11:52:40.735: %BGP-5-ADJCHANGE:
neighbor xxx.yy.zzz.mm Down - Peer closed the
session

Figure 16. Example of a SNMP Trap Notification

Writing such rules is a cumbersome activity,
especially since a rule needs to be written for each
event. Additioanlly, having millions of rules is not
scalable, raises conflicts, and diagnosis decisions come
too late.

VSEC-6-VLANACCESSLOGNP: vlan [dec] (port
[dec]/[dec]) denied ip protocol = [dec] [int] -> [int],
[dec] packet(s)

Figure 17. A Report Syslog Event

Next, let us consider the example presented in
Figure 17. To understand the explanation of the Syslog
message shown here, a special rule must be written.
The rule should capture that this message indicates that
an IP packet from the identified VLAN and physical
port that matches the VACL log criteria was detected.
The first [dec] is the VLAN number, the second
[dec]/[dec] is the module/port number, the third [dec] is
the L4 protocol type, and the fourth [dec] is the number
of packets received during the last logging interval. The
first [int] is the source IP address, and the second [int]
is the destination IP address.

As a conclusion, the huge volume of events issued
by a system, the large variation in both synatax and
semantic, gives little chance to have a general diagnosis
approach that covers all the cases, for all system

entities. While fixing legacy systems remains a
complex problem, avoiding the same errors for newly
designed systems seems be to the most appropriate
approach.

4.2 Validation of the Paper Proposal

We can summarize that the paper presents a step-by-
step system diagnosis approach by proposing a way to
define events (with a well defined syntax and
semantic), and their links with potentially related
events. Instead of a “unique format”, we proposed an
ontology-based approach, per small domains.

While writing rules has proven to be a tedious
activity, if not almost impossible, discovering event
patterns, associating a potential list of recommended
diagnosis actions for each pattern, and keeping track of
succesfull actions (via diagnosis validation engine)
seems to be a feasable approach.

4.2.1 Industrial Connection of the Solution – Cisco
Device Fault Manager (DFM)

We recall that the status on the network elements is
captured via notifications, polling, etc., and a
behavioral deviation may be identified. The simulations
were performed in connection with Cisco DFM (Device
Fault Manager) [30], which will be briefly presented
below.

Cisco’s Device Fault Manager (DFM) is a
specialized software offering real-time assistance for
system diagnosis. The main activities it performs are:
(i) Monitors and displays the operational network
health data;
(ii) Analyzes the events triggered in the network and
determines when a possible fault has occurred, and
(iii) Sends notifications to pre-determined users through
Graphical User Interface display or through a series of
configurable notifications.

Figure 18 [30] shows the tasks performed by DFM
and the relations with other components. The software
constantly gathers information from system elements,
analyzes and prioritizes the data, and sends the
appropriate notifications.

DFM can send three types of notifications:
(i) SNMP Trap Notifications – DFM processes the traps
and events it receives, and generates its own traps with
the format defined in CISCO-EPM-NOTIFICATION-
MIB [30].
(ii) E-mail Notification - DFM sends e-mail messages
with the information about the event and the alert that
caused it.
(iii) Syslog Notification - DFM generates Syslog
messages that can be forwarded to Syslog daemons on
remote systems.

306

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 18. DFM Architecture [30]

DFM uses the concept of subscriptions to allow the
specification of the elements needed for its activity.
SNMP Trap Notification subscriptions, or E-mail
subscriptions, have the following elements in common:
(i) Devices, representing the devices of interest;
(ii) Alert Severity and Status;
(iii) Event Severity and Status (the names of the events
can also be customized);
(iv) Recipients, representing one or more hosts to
receive the SNMP traps or uses to received the e-mails,
and
(v) Name, needed to uniquely identify the subscription.

DFM analyzes the events as they arrive, or polls the
elements regularly. When an event or alert occurs that
matches a subscription, a notification is sent. An event
trigger can be either normal polling, a threshold that
was exceeded, or a trap that was received.

A category of traps are generated by system
elements, but are not processed by DFM; these re
referred to as pass-through traps. They appear in the
Alerts and Activities Display of the software, if they
were generated by a device managed by DFM. The
software can be configured to forward pass-through
traps from managed or unmanaged devices to other
elements. If DFM does not know which device
generated the trap, it ignores the trap.

DFM perform system elements polling via two
mechanisms:
(i) Using a high-performance, asynchronous ICMP
poller with two threads.
(ii) Using the SNMP poller, which has ten synchronous
threads running in parallel.

The two polling mechanisms are coordinated for
optimal results.

4.2.2 Event Definition

In the previous sections, we presented a way to
define an event; we applied this approach for a limited
number of events, as a proof of concept for the
proposal. The progressive approach we adopted for the
validation was to develop the event features,
represented in fields, in a context, as shown in Figure
19.

Figure 19. A Progressive, Context-oriented, Event
Definition

We started with a basic set of fields (features), with
a precise syntax and semantic. Then, we considered
extended features in a domain. This helped control the
diagnosis rules in a particlar context. For example, there
are specific rules in SLA domain, such as SLA
violations, SLA penalties, etc. In our simulation, the
SLA domain and performance domain were considered.
This approach was facilitated by the fact that, for each
domain, there are well defined and accepted concepts,
i.e., semantic tags. For each such domain, we built a
semantic tag cloud. Therefore, bridging between a
semantic tag cloud belonging to the performance
domain and another one belonging to the SLA domain
was easier.

4.2.3 Symptoms-Problems-Diagnosis Rules

Based on the trio S-P-D (symptoms-problems-
diagnosis), a diagnosis process was triggered,
performed by the “diagnosis engine” and based on the
framework presented in Figure 20.

In Figure 20, the “management console”, the
“management system (mgmt)”, and the “device fault
manager” are existing components. Since we were not
focusing on gathering network events and status, a
DFM-like input was used for the simulation. As the
current network entities do not issue events in the
required form to apply our strategy, we rather used
transformation processes to get the information as
needed.

normalized_form sla usageperformancevoice_over_x

field_1 field_k
…

syslog

(device)

syslog

(server)

layer_1 layer_m

.

messag

unstructured_msg

extension…

307

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The selected events were normalized first (“1” in
Figure 20) following the general process pictured in
Figure 19. The QoD engine (“2” in Figure 27) took as
input the status of monitored parameters (counters,
CPU, memory, ports, etc.), while (“3” in Figure 27)
processed the coming events to identify patterns, and,
hence, correlate them, and sent the recommended
actions associated with a given pattern to the mgmt
(DFM) (actually, to the operator console). It also stored
the situation (set of the watched states) when a set of
the recommended actions are issued. In a real
environment, it also stores the status of the system after
one or more selected actions are declared “successful”.
This allows the finding of a more rapid solution when
the same situation occurs.

Figure 20. Simulation Architecture Considering DFM
features

It is expected that a validation takes place, either
preventively (for preventive diagnosis), following a
small variation in the normal behavior, after a
diagnosis, or a stable period.

Implementation of the diagnosis decisions is based
on the same symptom-problem-diagnostic trio
paradigm. Based on symptoms sent by NEs (Network
Elements) to the monitoring and diagnosis applications,
or polled by these applications themselves, a set of
problems (or only one single problem) become
candidates for leading to a diagnostic. Upon the
confidence degree of the diagnosis engine, more
information may be polled from the NEs to complete,
make more accurate, or re-validate a status with the
final goal of triggering the most suitable action on the
managed system, or providing the most accurate
diagnosis (best-practices, recommended actions,
reports) to the network operator or managing systems.

S-P-D may be executed on different engines, as they
may be distributed; in our case, we used one single
diagnosis engine.

Recursive receiving/polling actions may be
performed at any stage of processing, within S, P, and
D processes.

4.2.4 Events Processing

The first step in the simulation process was to
normalize the input events, as shown in Figure 21. The
main achievement of the normalization was that the
same property represented by the field value of an
event, will always be on the same position in the
normalized event, regardless of its initial position in the
non-normalized input event. Obviously, there are empty
fields in the normalized event for use when new event
types arrive, with new fields/features. Following an
ontology model previously described, the normalized
events also included pointers to other event types that
an event has relations to.

Figure 21. Event Normalization

Post-event normalization, several operations were
needed to process the events in terms of their number
and referring to the problems they report. The events
falling within a specified time window were considered.
We recall that a group of events that are correlated form
what we refer to as a pattern. We used the following
operators to identify the patterns in our simulation:
(i) Compression [a, a,...,a] a
Compression is done when identical alarms are
produced by the same network element and they have
the same message contents except timestamps.
Compression is the task of reducing multiple
occurrences of identical alarms into a single
representative of the alarm.
(ii) Filtering [a , p(a)< H] Ø
Filtering is the most widely used operation to reduce
the number of alarms presented to the operator. If some
parameters p(a) of alarm a, e.g., priority, type, location
of the network element, timestamp, severity, etc., do

event normalization

device status
situation

patterns

patterns

mgmt

device fault manager

pollingtrap

QoD
diagnosis engine

1

2

3

management

console

actions

308

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

not fall into the set of predefined legitimate values H,
then alarm a is simply discarded or sent into a log file.
(iii) Suppression [a , C] Ø
Suppression is a context-sensitive process in which an
event a is temporarily inhibited depending on the
dynamic operational context C of the network
management process. Temporary suppression of
multiple alarms and control of the order of their
exhibition is a basis for dynamic focus monitoring of
the network management process.
(iv) Count [n* a] b
Count results from counting the number of repeated
arrivals of identical alarms. When a pre-defined
threshold is met, the specified number of alarms are
substituted by a new alarm.
(v) Escalation [n* a, p(a)] a, p'(a), p'>p
Escalation assigns a higher value to some parameter
p'(a) of alarm a, usually the severity, depending on the
operational context, for example, the number of
occurrences of the event.
(vi) Generalization [a, ab] b
Alarm a is replaced by its super class b. Alarm
generalization has a potentially high utility for network
management. It allows one to deviate from a low-level
perspective of network events and view the situations
from a higher level.
(vii) Specialization [a, ab] b
Specialization is the opposite procedure of alarm
generalization. It substitutes an alarm with a more
specific subclass of this alarm.
(viii) Temporal relation [a T b] c
Temporal relation T between a and b allows them to be
correlated depending on the order and time of their
arrival.
(ix) Clustering [a, b, ..T,,,,] c
Clustering allows the creation of complex correlation
patterns using logical operators (and), (or), and
(not) over component terms. The terms in the pattern
could be primary network alarms, or previously defined
correlations (following the event ontology).

These operators were applied to the normalized
events to identify several patterns in our time window.
Each event contains information on the source of the
event. The “state” of all event sources in a pattern was
gathered by polling the sources themselves. These
states acted as “pre-conditions” to the diagnosis
process. An example of a pattern format is presented
below:
{(e1, source1, status1), (e2, source2, status2)} ::=
pattern1

The sources of the events in a pattern are part of a
semantic tag cloud, which is associated with a set of
recommended actions. For each pattern, if all the
sources belong to the same semantic tag cloud, the
recommended actions associated with that cloud are

forwarded to the management console. If the sources in
a pattern belong to multiple semantic clouds, a union of
the recommended actions of all these semantic clouds is
forwarded to the management console.

4.2.5 Actions Triggering

When the diagnosis P-D rule identifies specific
actions to be triggered, different rules may be in place
with respect to triggering rights, such as:
(i) Only the network operator may be allowed to
perform the suggested actions. In this case, the
diagnosis must be human-understandable, accurate,
unambiguous, and feasible. This is mainly related to the
event format and specification of the diagnosis actions.
DFM uses appropriate Tcl_Tk (Tool Command
Language Toolkit) scripts to determine if a message
needs to be sent to a human operator of to other
management applications for processing.
(ii) The diagnosis engine itself is automatically
triggering the diagnosis actions. This was not yet
experimented.
(iii) Other management applications are in charge of the
diagnosis actions and their results.

In one of these manners, the recommended actions
are applied and the diagnosis engine is notified to poll
the new states of the event sources determine the “post-
conditions”. If the post-conditions hold, the action is
marked as “successful” for use in future similar
situations.

4.2.6 Points to Consider for Implementation

There are several points to consider when
implementing the system proposed in this paper. We
briefly mention some of them in this section.

(i) Console information is crucial in detecting severe
crashes allowing a key message to describe the
probable cause. In some situations, the device is not
longer able to send the message to some server, or any
other device. Commonly, Cisco routers are configured
to send console events as Syslog messages. However,
even in the case of crashes, the messages printer just
before can help diagnose the nature of the problem.

(ii) Cisco IOS devices (IOS 11.2 and above) can be
configured to send Syslog messages to a Syslog
message-trap converter. Several SNMP notifications
have been pre-configured, while others are enabled.
Certain are mandatory (coldStart, warmStart,
authenticationFailure, linkDown, linkUp,
egpNeighborLoss). Since authenticationFailure and
LinkUp/LinkDown may trigger a lot of events, one can
apply some selective thresholds. Alternatively, a polling
procedure may be started on those parameters causing
these events. Equally, link state notification should be

309

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

enabled only for some objects, devices, and especially
for LinkDown.

(iii) For those entities that require event
configuration, one can use an approach where the
device checks the trigger point and generates the events
according to the threshold type (no need to collect and
filter data). The risk of this method is that events can be
lost for many reasons other than non-crossing threshold
points. Threshold on devices are called agent-based
threshold. SNMP MIB and RMON MIB allow setting
thresholds on devices. Alternatively, data can be
collected at a management station and analyzed against
the appropriate threshold. This kind of setting is called
network management system-based triggering.

V. CONCLUSION AND FUTURE WORK

The concepts proposed in this paper are
implementable, at-large, but considerations must be
taken when designing new systems for follow the
formal approach. In this section, we highlighted the
main challenges of a full implementation of the
proposed diagnosis solutions. While fixing legacy
systems remains a complex problem, avoiding the same
errors for newly designed systems seems be to the most
appropriate approach. We illustrated partial solutions
for different concepts introduced via a case study
simulation.

As a result, the successfully marked actions can be
re-used as recommended actions when similar event
patterns occur. When an event pattern inventory exists,
a similar algorithm is associated with each pattern. In
this case, the Diagnosis Engine behavior is a
combination of all these algorithms.

We presented an adaptive framework for diagnosis
validation and transfer of information from successful
outcomes for future use and optimization of the
diagnostic activity. It was shown that the current
diagnosis techniques needs validation of successful
actions and a process for knowledge transfer. We
introduced the QoD, an engine that validates the
successful actions and transfer knowledge for use in
similar situations. This new approach pave the way to
adaptive diagnosis, where only those previously
classified as “successful actions” are deemed to be
applied in similar situations.

Towards automation, a few open issues are in our
plans for future exploration and solutions. Criteria for
symptom similarly must de defined and experimented
in different contexts. Metrics for measuring accuracy
of the QoD evaluation should be derived per technology
domain and domain context. We intend to explore a
progressive ontology (leading to progressive diagnosis)
and therefore “progressive validation” of successful
actions. This is intended to solve potential conflicts of
the post-conditions of the actions already validated as

“successful” and to evaluate the accuracy of the
diagnosis actions (preciseness versus permanent
damage). A specific target is to propose a flow engine,
as an instantiation of the QoD that identifies context-
based temporal patterns of successful or failure
diagnosis actions.

VI. REFERENCES

[1] M. Steinder and A. S. Sethi, A survey of fault
localization techniques in computer networks, Science
of Computer programming 53 (2004) 165-194
[2] A. Patel, G. McDermott, and C. Mulvihill,
Integrating network management and artificial
intelligence, in: B.Meandzija, J.Westcott (Eds.),
Integrated Network Management I, North-Holland,
Amsterdam, 1989, pp. 647–660
[3] I. Katzela, Fault diagnosis in telecommunications
networks, Ph.D. Thesis, School of Arts and Sciences,
Columbia University, New York, 1996
[4] L. Lewis, A case-based reasoning approach to the
resolution of faults in communications networks, in:
H.G. Hegering, Y. Yemini (Eds.), Integrated Network
Management III, North-Holland, Amsterdam, 1993, pp.
671–681
[5] M. Frontini, J. Griffin, and S. Towers, A
knowledge-based system for fault localization in wide
area network, in: I. Krishnan, W. Zimmer (Eds.),
Integrated Network Management II, North-Holland,
Amsterdam, 1991, pp. 519–530
[6] J. Goldman, P. Hong, C. Jeromnion, G. Louit, J.
Min, and P. Sen, Integrated fault management in
interconnected networks, in: B. Meandzija, J. Westcott
(Eds.), Integrated Network Management I, North-
Holland, Amsterdam, 1989, pp. 333–344
[7] C. Joseph, J. Kindrick, K. Muralidhar, and T. Toth-
Fejel, MAP fault management expert system, in:
B.Meandzija, J.Westcott (Eds.), Integrated Network
Management I, North-Holland, Amsterdam, 1989, pp.
627–636
[8] B. Gruschke, Integrated event management: Event
correlation using dependency graphs, in: A.S. Sethi
(Ed.), Ninth Internet. Workshop on Distributed
Systems: Operations and Management, University of
Delaware, Newark, DE, October 1998, pp. 130–141
[9] S. Kätker and K. Geihs, A generic model for fault
isolation in integrated management systems, Journal of
Network and Systems Management 5 (2) (1997) 109–
130
[10] K. Houck, S. Calo, and A. Finkel, Towards a
practical alarm correlation system, in: A.S. Sethi, F.
Faure-Vincent, Y. Raynaud (Eds.), Integrated Network
Management IV, Chapman and Hall, London, 1995, pp.
226–237

310

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[11] I. Katzela and M. Schwartz, Schemes for fault
identification in communication networks, IEEE/ACM
Transactions on Networking 3 (6) (1995) 733–764
[12] A.T. Bouloutas, S. Calo, and A. Finkel, Alarm
correlation and fault identification in communication
networks, IEEE Transactions on Communications 42
(2–4) (1994) 523–533
[13] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S.
Stolfo, A coding approach to event correlation, in: A.S.
Sethi, F. Faure-Vincent, Y. Raynaud (Eds.), Integrated
Network Management IV, Chapman and Hall, London,
1995, pp. 266–277
[14] M. Steinder and A. S. Sethi, End-to-end service
failure diagnosis using belief networks, in: R. Stadler,
M. Ulema (Eds.), Proc. Network Operation and
Management Symposium, Florence, Italy, April 2002,
pp. 375–390
[15] V. Venkatasubramanian, R. Rengaswamy, K. Yin,
and S. N. Kavuri, “A review of process fault detection
and diagnosis, Part I: Quantitative model-based
methods,” Computer and Chemical Engineering,
vol.27, pp.293–311, 2003.
[16] W. Stallings, SNMP, SNMPv2, and CMIP: The
Practical Guide to Network-Management Standards,
Addison-Wesley Publishing Company, 1993, ISBN 0-
201-63331-0
[17] M. Popescu, P. Lorenz, and J.M. Nicod, An
adaptive Framework for Diagnosis Validation, The
Proceedings of The Third International Conference on
Advanced Engineering Computing and Applications in
Sciences (ADVCOMP) 2009. IEEE Press, pp. x-y
[18] Cisco IOS Network Management Configuration
Guide, 2008
http://www.cisco.com/en/US/docs/ios/netmgmt/configu
ration/guide/nm_esm_syslog_ps6441_TSD_Products_C
onfiguration_Guide_Chapter.html (last accessed
December 2009)
[19] W. Stallings, SNMP, SNMPv2, and CMIP: The
Practical Guide to Network-Management Standards,
Addison-Wesley Publishing Company, 1993, ISBN 0-
201-63331-0
[20] Network Management System: Best practices
White Paper, 2008
http://www.cisco.com/en/US/tech/tk869/tk769/technolo
gies_white_paper09186a00800aea9c.shtml (last
accessed December 2009)
[21] Augmented Bachus-Naur form
http://web.mit.edu/macdev/mit/doc/www/devdoc/Augm
ented%20BNF.html
[22] M. Popescu, P. Lorenz, and J.M. Nicod, An
Adaptive Framework for Diagnosis Validation, The
Proceedings of The Third International Conference on
Advanced Engineering Computing and Applications in
Sciences, ADVCOMP 2009, Sliema, Malta, pp. 123-
129, IEEE Press

[23] M. Popescu, P. Lorenz, M. Gilg, and J.M. Nicod,
Event Management Ontology: Mechanisms and
Semantic-driven Ontology, The Proceedigns of The
Sixth International confernces on Networking and
Servcies, ICNS 2010, Cancun, Mexico, pp. 129 - 136,
IEEE Press

[24] W. Stallings, SNMP, SNMPv2, and CMIP: The
Practical Guide to Network-Management Standards,
Addison-Wesley Publishing Company, 1993, ISBN 0-
201-63331-0

[25] M. Popescu et al., US Patent 7275017, Method and
apparatus for generating diagnoses of network problems

[26] L. Lamport, TLA: Temporal logic of Actions,
http://research.microsoft.com/enus/um/people/lamport/t
la/tla.html (last accessed August 12, 2010)

[27] R. Griffith, J.L. Helelrstein, G. Kaiser, and Y.
Diao, Dynamic Adaptation of Temporal Event
Correlation for QoS Management in Distributed
Systems, 2006 www.cs.columbia.edu/techreports/cucs-
055-05.pdf (last accessed August 2, 2010)

[28] K. Walzer, T. Breddin, and M. Groch, Relative
temporal constraints in the RETE algorithm for
complex event detection, Proceedigns of the Second
International Conference on Distributed Event-based
Systems, 2008, pp. 147-155

[29] M. Popescu, Temporal-oriented policy-driven
network management, Master Thesis, Mcgill
University, Canada 2000, p. 140

[30] M. Popescu, Semantic Mechanisms for Cross-

Domain System Diagnosis Mécanismes Sémantiques

pour le Diagnostic des Systèmes, PhD Thesis,

University of Besançon, France, 2010

