
162

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Secure Video for Android Devices

Raimund K. Ege
Department of Computer Science

Northern Illinois University

DeKalb, IL 60115, USA

ege@niu.edu

Abstract—Android is rapidly gaining market share

among smart phones with high-speed next-generation

Internet connectivity. A whole new generation of users is

consuming rich content that requires high throughput.

Applications like FaceBook and YouTube have reached

mobile devices. Multimedia data, i.e. video, is becoming

easily accessible: large multi-media files are being

routinely downloaded. Peer to-peer content delivery is

one way to ensure the volume that can be efficiently

delivered. However, the openness of delivery demands

adaptive and robust management of intellectual property

rights. In this paper we describe a framework and its

implementation to address the central issues in content

delivery: a scalable peer-to-peer-based content delivery

model, paired with a secure access control model that

enables data providers to reap a return from making

their original content available. Our prototype

implementation for the Android platform for mobile

phones is described in detail.

Keywords-broadband video sharing; peer-to-peer

content delivery; access control; Android video client

I. INTRODUCTION

The Apple iPhone, and now increasingly Android-

based smart phones, have ushered in a new era in

omni-present broadband media consumption. Services
such as iTunes, YouTube, Joost and Hulu are

popularizing delivery of audio and video content to

anybody with a broadband Internet connection. High

bandwidth internet connectivity is no longer limited to

reaching PCs and laptops: a new generation of devices,

such as netbooks and smart phones, is within reach of

3G/4G telecommunication networks.

In this paper we describe a new “app” for Android

phones that delivers video in a secure and managed

way. Figure 1 shows a screenshot of the Android home

screen featuring our new Oghma secure multi-media

delivery “app.”
Delivering multimedia services has many

challenges: the ever increasing size of the data requires

elaborate delivery networks to handle peek network

traffic. Another challenge is to secure and protect the

property rights of the media owners. A common

approach to large-scale distribution is a peer-to-peer

model, where clients that download data immediately

become intermediates in a delivery chain to further

clients. The dynamism of peer-to-peer communities

means that principals who offer services will meet

requests from unrelated or unknown peers. Peers need

to collaborate and obtain services within an

environment that is unfamiliar or even hostile.

Figure 1. Oghma on Android Home Screen

Therefore, peers have to manage the risks involved

in the collaboration when prior experience and

knowledge about each other are incomplete. One way

163

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to address this uncertainty is to develop and establish

trust among peers. Trust can be built by either a trusted

third party [2] or by community-based feedback from

past experiences [3] in a self-regulating system.

Conventional approaches rely on well-defined access

control models [4] [5] that qualify peers and determine
authorization based on predefined permissions. In such

a complex and collaborative world, a peer can benefit

and protect itself only if it can respond to new peers

and enforce access control by assigning proper

privileges to new peers.

The general goal of our work is to address the trust

in peers which are allowed to participate in the content

delivery process, to minimize the risk and to maximize

the reward garnered from releasing data in to the

network. In our prior work [9][15] we focused on

modeling the nature of risk and reward when releasing

content to the Internet. We integrated trust evaluation
for usage control with an analysis of risk and reward.

Underlying our framework is a formal computational

model of trust and access control. In the work reported

here we focus on the implementation aspects of the

framework.

Our paper is organized as follows: the next section

will elaborate on how the data provider and its peers

can quantify gain from participating in the content

delivery. It also explains our risk/reward model that

enables a data source to initially decide on whether to

share the content and keep some leverage after its
release. Section III describes our prototype architecture

that is based on a bittorrent-style of peer-to-peer

content delivery. A central tracker manages peers and

maintains a database of trust information. Peers can

serve both as source and as consumer of data. Section

IV introduces our prototype client for the Android

platform. Section V elaborates on details of the Java

implementation of the tracker, source and peer

processes. Data is exchanged using the Stream Control

Transmission Protocol (SCTP) which improves over

the current standard-bearers Transmission Control

Protocol (TCP) and User Datagram Protocol (UDP) for
multi-stream session-oriented delivery of large multi-

media files over fast networks. Data is secured using a

PKI-style exchange of public keys and data encryption.

The paper concludes with our perspective on how

modern content delivery approaches will usher in a

new generation of Internet applications.

An earlier version of this paper appeared in the

Proceedings of the Fifth International Conference on

Systems (ICONS 2010) [1].

II. UNITS OF RISK AND REWARD

We assume that the data made available at the

source has value. Releasing the data to the Internet

carries potential for reaping some of the value, but also

carries the risk that the data will be consumed without
rewarding the original source. There is also a cost

associated with releasing the data, i.e. storage and

transmission cost. For example, consider a typical

“viral” video found on YouTube.com: the video is

uploaded onto YouTube.com for free, stored and

transmitted by YouTube.com and viewed by a large

audience. The only entity that is getting rewarded is

YouTube.com, which will accompany the video

presentation with paid advertising. The person that

took the video and transferred it to YouTube.com has

no reward: the only benefit that the original source of

the video gets is notoriety.
In order to provide a model or framework to asses

risk and reward, we need to quantize aspects of the

information interchange between the original source,

the transmitting medium and the final consumer of the

data. In a traditional fee for service model the reward

“R” to the source is the fee “F” paid by the consumer

minus the cost “D” of delivery:

The cost of delivery “D” consist of the storage cost at

the server, and the cost of feeding it into the Internet.
In the case of YouTube, considerable cost is incurred

for providing the necessary server network and their

bandwidth to the Internet. YouTube recovers that cost

by adding paid advertising on the source web page as

well as adding paid advertising onto the video stream.

YouTube’s business model recognizes that these paid

advertisings represent significant added value. As

soon as we recognize that the value gained is not an

insignificant amount, the focus of the formula shifts

from providing value to the original data source to the

reward that can be gained by the transmitter. If we

quantify the advertising reward as “A” the formula
now becomes:

Even in this simplest form, we recognize that “A” has

the potential to outweigh “D” and therefore reduce the

need for “F”. As YouTube recognizes, the reward lies

in “A”, i.e. paid ads that accompanies the video.

In some of our prior work [8] we focused on

mediation frameworks that capture the mutative nature

of data delivery on the Internet. As data travels from a

source to a client on lengthy path, each node in the

path may act as mediator. A mediator transforms data
from an input perspective to an output perspective. In

the simplest scenario, the data that is fed into the

delivery network by the source and is received by the

ultimate client unchanged: i.e. each mediator just

164

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

passes its input data along as output data. However,

that is not the necessary scenario anymore: the great

variety of client devices already necessitate that the

data is transformed to enhance the client’s viewing

experience. We apply this mediation approach to each

peer on the path from source to client. Each peer may
serve as a mediator that transforms the content stream

in some fashion. Our implementation employs the

stream control transmission protocol (SCTP) which

allows multi-media to be delivered in multiple

concurrent streams. All a peer needs to do is add an

additional stream for a video overlay message to the

content as it passes through.

The formula for reward can now be extended into

the P2P content delivery domain, where a large number

of peers serve as the transmission/storage medium.

Assuming “n” number of peers that participate and

potentially add value the formula for the reward per
peer is now:

pii

n

i

ip FADFR

)((
1

 and are now the delivery cost and value incurred

at each peer that participates in the P2P content

delivery. is the fee potentially paid by each peer.

is the fee paid to the data source provider. Whether or

not the data originator will gain any reward depends on

whether the client and the peers are willing to share

their gain from the added value. In a scenario where

clients and peers are authenticated and the release of

the data is predicated by a contractual agreement, the

source will reap the complete benefit.

In our model we quantify the certainty of whether

the client and peers will remit their gain to the source

with a value of trust “T”: T represents the trust in the
client that consume that data, T represents the trust in

each peer that participates in the content delivery. The

trust is evaluated based on both actual observations and

recommendations from referees. Observations are

based on previous interactions with the peer.

Recommendations may include signed trust-assertions

from other principals, or a list of referees that can be

contacted for recommendations. The trust value,

calculated from observations and recommendations, is

a value within the [0, 1] interval evaluated for each

peer that requests to be part of the content delivery.
Our model enables an informed decision on whether

to accept a new peer based on the potential additional

reward gained correlated to the risk/trust encumbered

by the new peer.

III. PROTOTYPE ARCHITECTURE

Peer-to-peer (P2P) delivery of multimedia aims to

deliver multi-media content from a source to a large

number of clients. For our framework, we assume that

the content comes into existence at a source. A simple
example of creating such multimedia might be a video

clip taken with a camera and a microphone, or more

likely video captured via a cell phone camera, and then

transferred to the source. Likewise the client consumes

the content, e.g. by displaying it on a computing device

monitor, which again might be a smart phone screen

watching a YouTube video. We further assume that

there is just one original source, but that there are many

clients that want to receive the data. The clients value

their viewing experience, and our goal is to reward the

source for making the video available.

In a P2P delivery approach, each client participates
in the further delivery of the content. Each client

makes part or all of the original content available to

further clients. The clients become peers in a peer-to-

peer delivery model. Such an approach is specifically

geared towards being able to scale effortlessly to

support millions of clients without prior notice, i.e. be

able to handle a “mob-like” behavior of the clients.

The exact details of delivery may depend on the

nature of the source data: for example, video data is

made available at a preset quality using a variable-rate

video encoder. The source data stream is divided into
fixed length sequential frames: each frame is identified

by its frame number. Clients request frames in

sequence, receive the frame and reassemble the video

stream which is then displayed using a suitable video

decoder and display utility. The video stream is

encoded in such a fashion that missing frames don’t

prevent a resulting video to be shown, but rather a

video of lesser bit-rate encoding, i.e. quality, will result

[7]. We explicitly allow the video stream to be quite

malleable, i.e. the quality of delivery need not be

constant and there is no harm if extra frames find their

way into the stream. It is actually a key element of our
approach that the stream can be enriched as part of the

delivery process.

In our approach, multi-media sources are advertised

and made available via a central tracking service: at

first, this tracker only knows the network location of

the source server. Clients that want to access the source

do so via the tracker: they contact the tracker, which

will respond with the location of the source. The

tracker will also remember (or track) the clients as

potential new sources of the data. Subsequent client

requests to the tracker are answered with all known
locations of sources: the original and the known

clients. Clients that receive locations of sources from

the tracker issue frame requests immediately to all

165

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sources. As the sources deliver frames to a client, the

client stores them. The client then assumes a server

role and also answers requests for frames that they

have received already, which will enable a cascading

effect, which establishes a P2P network where each

client is a peer. Every client constantly monitors the

rate of response it gets from the sources and adjusts its

connections to the sources from which the highest

throughput rate can be achieved.

Figure 2 shows an example snapshot of a content
delivery network with one source, one tracker, 2

intermediate peers and one client. The source is where

the video data is produced, encoded and made

available. The tracker knows the network location of

the source. Clients connect to the tracker first and then

maintain sessions for the duration of the download: the

2 peers and the single client maintain an active

connection to the tracker. The tracker informs the peers

and client which source to download from: peer 1 is

fed directly from the source; peer 2 joined somewhat

later and is now being served from the source and peer
1; the client joined last and is being served from peer 1

and peer 2. In this example, peer 1 and 2 started out as

clients, but became peers once they had enough data to

start serving as intermediaries on the delivery path

from original source to ultimate client.

IV. ANDROID CLIENT

We chose the new and emerging Android platform

to implement a proof-of-concept client for a mobile

device. Android is part of the Open Handset Alliance

[10]. Android is implemented in Java and therefore

offers a flexible and standard set of communication

and security features.

Figures 3, 4, 5 and 6 show four sample screen shots

taken from the Android system. It shows our Oghma
Secure P2P media client. Figure 3 shows the login

screen to our Oghma mobile client. It uses OpenID[6]

user credentials and allows to establish a connection to

a tracker URL.

Once the tracker has authenticated the new client it

will respond with a list of available video streams

(Figure 4). After the user has made a selection, the

screen shown in Figure 5 appears. Once a sufficient

read-ahead buffer has been accumulated, the video

stream starts playing on the Android device (Figure 6).

tracker

Figure 2. P2P Content Delivery Network

source

peer 2
peer 3

peer 1

166

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Oghma Login Screen

 Figure 5. Video download is starting

 Figure 4. Oghma Stream Selection Screen

 Figure 6. Oghma Video Delivery Screen

167

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Tracker maintains peer database

V. IMPLEMENTATION DETAIL

Our implementation framework features 3 types of

participants:

A. tracker, where all information on the current status

of the content delivery network is maintained and

all access decisions are made.

B. source, where the data is available for further

dissemination. The original source is the first

source. Peers that have downloaded and consumed

the data can become new sources.

C. client, where the consumption of the data occurs.

A. Tracker

The core of the content delivery model is the tracker.

The tracker knows the location of the original/first

source. The tracker maintains a database of peer

information: each peer is authenticated with an OpenID

and carries historical data on past peer behavior.
Peers that wish to participate in the content

delivery must first locate the tracker. A peer will start

by establishing a connection to a tracker. Peers use

their openID and password to login to the tracker. The

peer will transmit its public key to the tracker, which

will consider the request from a new peer and gather

the necessary data on the trust in the new peer. If the

peer is new and not yet listed in the tracker(s) database,

then a new entry is created.

Figure 7 shows the tracker’s graphical user

interface: the center of the screen shows peers that
have been accepted into the P2P content delivery

network; the bottom of the screen shows a log of

access requests from other peers. Figure 8 shows the

security information, i.e. the public key, for the peer

with openId “RaimundEge@gmail.com.”

168

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Security information

B. Source

At least one source must exist for the content delivery

network to get started. The source first establishes

contact with the tracker. It generates a PKI [11]

public/private key par and transmits its public key to

the tracker. It then stands ready for data requests from

clients. If a request from a client is received, it requests

the client’s public key from the tracker and uses a
Diffie-Hellman key agreement algorithm [12] to

produce a session key. The session is then used by the

source to encrypt all data that is sent to the client.

C. Client

The key to a smooth scaling of this ad-hoc p2p

network is the algorithm used by the client to request

frames from a source (either the original source or
another client). A client consists of three processes:

1) a process to communicate with the tracker. The

client initiates the negotiation with the tracker to

enable the tracker’s decision on whether the peer

is admitted into the content delivery network.

Upon success, the tracker informs the client which

sources the client should use accompanied by their

public keys. The client will update the tracker on

its success in downloading the source data;

2) a process to request data from the given sources.

Fragments or frames may be requested from

multiple sources. Frames that are received are

decrypted using a session key that is established

via a key agreement using the public key of the

data source.

3) a process to sequence the frames/fragments

received from sources and to assemble them into a
usable media stream.

Our prototype uses the Java implementation [13] of the

SCTP [14] transport layer protocol. SCTP is serving in

a similar role as the popular TCP and UDP protocols.

It provides some of the same service features of both,

ensuring reliable, in-sequence transport of messages

with congestion control. We chose SCTP because of its

ability to deliver multimedia in multiple streams. Once

a client has established a SCTP association with a

server, packages can be exchanged with high speed and

low latency. Each association can support multiple
streams, where the packages that are sent within one

stream are guaranteed to arrive in sequence. Each

169

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

source can divide the original video stream into set of

streams meant to be displayed in an overlay fashion.

Streams can be arranged in a way that the more

streams are fully received by a client, the better the

viewing quality will be. When sending a packet over a

SCTP channel we need to provide an instance of the
MessageInfo class, which specifies which stream the

packet belongs to. The first stream is used to deliver a

basic low quality version of the video stream. The

second and consecutive streams will carry frames that

are overlaid onto the primary stream for the purpose of

increasing the quality. In our framework we also use

the additional streams to carry content that is “added

value”, such as advertising messages or identifying

logos. The ultimate client that displays the content to a

user will combine all streams into one viewing

experience.

The second feature of SCTP we use is its new class
“SctpMultiChannel” which can establish a one-to-

many association for a single server to multiple clients.

The SctpMultiChannel is able to recognize which

client is sending a request and enables that the response

is sent to that exact same client. This is much more

efficient than a traditional “server socket” which for

each incoming request spawns a subprocess with its

own socket to serve the client. Figure 9 shows the Java

source code where an incoming request is received.

Each packet that is received on the channel carries a
MessageInfo object which contains information on the

actual client that is the actual other end point of this

association. The Java code on line 06 retrieves the

“association” identity from the incoming message

“info” instance. The association is then used to send

the response via the same SctpMultiChannel instance

but only to the actual client that had requested the

frames. The code on line 17 shows that a new outgoing

message info instance is created for the same

“association” that carried the incoming request. The

message info instance is then used to send the response

packet to the client. The code to receive
SctpMultiChannel packets is logically similar to any

UPD or TCP style of socket receive programming.

Figure 10 shows a sample.

Figure 9. Source receives request for frame

01 SocketAddress socketAddress = new InetSocketAddress(port);

02 channel = SctpMultiChannel.open().bind(socketAddress);

03 MessageInfo info;

04 while ((info = channel.receive(bb, null, null)) != null) {

05 // determine requestor

06 Association association = info.association();

07 // determine which frame range

08 bb.flip();

09 int fromFrame = bb.getInt();

10 int toFrame = bb.getInt();

11 // send frames to requestor

12 for (int i=fromFrame; i<= toFrame; i++) {

13 bb.clear();

14 bb.putInt(i);

15 bb.put(framePool.getFrame(i));

16 bb.flip();

17 channel.send(bb,

 MessageInfo.createOutgoing(association, null,0));

18 }

19 }

170

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Client receives frame

The three major components of the framework are

implemented as “SourceMain”, “TrackerMain” and

“ClientMain”, which are composed from classes that

implement the core behavior of maintaining
communication sessions, accepting requests for frames

and delivering them, and requesting and receiving

frames. The major classes are FrameRequestor and

FrameServer. The original source starts out as the sole

instance of FrameServer. The first client starts out as

the sole instance of FrameRequestor. As the client

accumulates frames it then also instantiates a

FrameServer that is able to receive requests from other

clients. A client that contains both a FrameRequestor

and FrameServer instance becomes a true peer in the

P2P content delivery framework.
In summary, tracker, source and client together

contribute to build a highly efficient delivery network.

VI. CONCLUSION

In this paper we have described a model and

framework for a new generation of content delivery
networks. We have described a prototype

implementation that follows a bittorrent-style of P2P

network, where a tracker disseminates information on

which sources are available to download from, and

includes a Java-based client for the Android platform

for smart phones. Such P2P content delivery has great

potential to enable large scale delivery of multimedia

content.

Our framework is designed to enable content

originators to assess the potential reward from

distributing the content to the Internet. The reward is
quantified as the value added at each peer in the

content delivery network and gauged relative to the

actual cost incurred in data delivery but also correlated

to the risk that such open delivery poses.

Consider the scenario we described earlier in the

paper: a typical “viral” video found on YouTube.com:

the video is uploaded onto YouTube.com for free,

stored and transmitted by YouTube.com and viewed by

a large audience. The only entity that is getting a

reward is YouTube.com, which will accompany the

video presentation with paid advertising. The only

01 SocketAddress socketAddress =

 new InetSocketAddress(peer.address, peer.port);

02 SctpChannel channel = SctpChannel.open(socketAddress, 1, 1);

03 // send requested frame range to peer

04 ByteBuffer byteBuffer = ByteBuffer.allocate(128);

05 byteBuffer.putInt(fromFrame);

06 byteBuffer.putInt(toFrame);

07 byteBuffer.flip();

08 channel.send(byteBuffer, MessageInfo.createOutgoing(null, 0));

09 // here is where we read response

10 byteBuffer = ByteBuffer.allocate(64000);

11 while ((channel.receive(byteBuffer, null, null)) != null) {

12 byteBuffer.flip();

13 int frame = byteBuffer.getInt();

14 System.out.print("Message received: " + frame);

15 …

171

International Journal on Advances in Telecommunications, vol 3 no 3 & 4, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

benefit that the original source of the video gets is

notoriety.

Using our model, the original data owner can

select other venues to make the video available via a

peer-to-peer approach. The selection on who will

participate can be based on how much each peer
contributes in terms of reward but also risk. Peers will

have an interest in being part of the delivery network,

much like YouTube.com has recognized its value.

Peers might even add their own value to the delivery

and share the proceeds with the original source.

Whereas in the YouTube.com approach the reward

is only reaped by one, and the original source has

shouldered all the risk, i.e. lost all reward from the

content, our model will enable a more equitable

mechanism for sharing the cost and reward. Our model

might just enable a new and truly openness of content

delivery via the Internet.

REFERENCES

[1] Raimund K. Ege. Trusted P2P Media Delivery to
Mobile Devices. Proceedings of the Fifth International

Conference on Systems (ICONS 2010), pages 140-145,

Menuires, France, April 2010.

[2] Y. Atif. Building trust in E-commerce. IEEE

Internet Computing, 6(1):18–24, 2002.

[3] P. Resnick, K. Kuwabara, R. Zeckhauser, and E.

Friedman. Reputation systems. Communications of the
ACM, 43(12):45–48, 2000.

[4] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca.
A logical framework for reasoning about access control

models. In SACMAT ’01: Proceedings of the sixth

ACM symposium on Access control models and

technologies, pages 41–52, New York, NY, USA,

2001.

[5] S. Jajodia, P. Samarati, M. L. Sapino, and V. S.

Subrahmanian. Flexible support for multiple access
control policies. ACM Transaction Database System,

26(2):214–260, 2001.

[6] OpenID, http://www.openid.net. [accessed
September 22, 2010]

[7] C. Wu, Baochun Li. R-Stream: Resilient peer-to-
peer streaming with rateless codes. In Proceedings of

the 13th ACM International Conference on

Multimedia, pages 307-310, Singapore, 2005.

[8] R. K. Ege, L. Yang, Q. Kharma, and X. Ni. Three-

layered mediator architecture based on dht.

Proceedings of the 7th International Symposium on

Parallel Architectures, Algorithms, and Networks (I-

SPAN 2004), Hong Kong, SAR, China. IEEE

Computer Society, pages 317–318, 2004.

[9] L. Yang, R. Ege, Integrating Trust Management
into Usage Control in P2P Multimedia Delivery,

Proceedings of Twentieth International Conference on

Software Engineering and Knowledge Engineering

(SEKE'08), pages 411-416, Redwood City, CA, 2008.

[10] Open Handset Alliance, http://www.

openhandsetalliance.com/. [accessed November 19,

2010]

[11] Gutmann, P., 1999. The Design of a
Cryptographic Security Architecture, Proceedings of

the 8th USENIX Security Symposium, pages 153-168,

Washington, D.C., 1999.

[12] Network Working Group, Diffie-Hellman Key

Agreement Method, Request for Comments: 2631,
RTFM Inc., June 1999.

[13] java.net – The Source for Java Technology
Collaboration, The JDK 7 Project,

http://jdk7.dev.java.net. [accessed September 22, 2010]

[14] R. Stewart (ed.), Stream Control Transmission

Protocol, Request for Comments: 4960, IETF Network

Working Group, September 2007,

http://tools.ietf.org/html/rfc4960. [accessed September

22, 2010]

[15] Raimund K. Ege, Li Yang, Richard Whittaker.
Extracting Value from P2P Content Delivery.

Proceedings of the Fourth International Conference on

Systems (ICONS 2009), pages 102-108 Cancun,

Mexico, March 2009.

