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Abstract - The rapid deployment of multimedia services on 
mobile networks together with the increase in consumer 
demand for immersive entertainment have paved the way for 
innovative video representations. Amongst these new 
applications is free-viewpoint video (FVV), whereby a scene is 
captured by an array of cameras distributed around a site to 
allow the user to alter the viewing perspective on demand, 
creating a three-dimensional (3D) effect. The implementation 
on mobile infrastructures is however still hindered by intrinsic 
wireless limitations, such as bandwidth constraints and limited 
battery power. To this effect, this paper presents a solution 
that reduces the number of uplink requests performed by the 
mobile terminal through view prediction techniques. The 
implementation and performance of four distinct prediction 
algorithms in anticipating the next viewpoint request by a 
mobile user in a typical FVV system are compared and 
contrasted. Additionally, each solution removes the jitter 
experienced by the user whilst moving from a view pattern to 
another by allowing some hysterisis in the convergence signal. 
Thus, this technique enhances the performance of all the 
algorithms by taking into consideration the fact that the user 
adapts to the presented views and will react accordingly. 
Simulation results illustrate that an uplink transmission 
reduction of up to 96.7% can be achieved in a conventional 
FVV simulation scenario. Therefore, the application of 
prediction schemes can drastically reduce the mobile 
terminal’s power consumption and bandwidth resource 
requirements on the uplink channel.  
 

Keywords - Free-Viewpoint; Multiview video; Prediction 
algorithms; Wireless transmission. 

I.  INTRODUCTION  
Video streaming solutions have experienced endless 

development in the course of time, from a relatively poor 
image quality, as far as the human senses are concerned, to 
forms of presentation which strive to present an increasingly 
better quality of experience [2], [3]. Driven by technological 
developments, the drastic reduction in the cost of imaging 
hardware equipment, together with the intensification of 
clientele expectations, the interest in interactive multiview 

services has augmented from academic and industrial 
perspectives alike [4]–[6]. Multiview video technologies 
provide the potential for innovative applications to be 
developed in order to facilitate and enhance the experience 
of scenes from a 3D perspective without the burden of 
restricting hardware [7], [8]. The latter feature, aids the 
commercial implementation of such a technology, especially 
in the end user entertainment market, by systems such as 
Free-Viewpoint television (FTV) [9]. 

Free-Viewpoint Video (FVV) provides the potential to 
expand the viewers experience far beyond what is presented 
by current conventional multimedia systems [10]. In such an 
innovative visual media technology, the user can observe a 
three-dimensional panoramic scene by freely changing 
perspective [11], [12]. Acquisition techniques for the 
realization of FVV entail a unique scene captured from 
multiple views via the deployment of a number of cameras 
distributed around the site, [13], as portrayed in Fig. 1.  The 
hardware needed for multi-camera systems and for displays 
is rapidly developing, with new solutions being 
experimentally deployed [7], [9], [14], and [15].  

Architectures that utilize a dense scene capturing 
framework can render a more complete FVV experience to 
the user. Nevertheless, feasibility constraints demand that the 
amount of scene sampling hardware employed is restricted 
[16], as this presents a linear increase in raw video data that 
necessitates processing [17]. In addition, spatial proximity of 
cameras must adhere to the physical limitations of the 
equipment [18]. Thus, the sole method for FVV viewers to 
observe a video stream of uninterrupted standpoints without 
being constrained to the actual camera locations is by the 
adoption of Video Based Rendering (VBR) techniques [19]. 
These methodologies apply computationally intensive 
Intermediate View Rendering (IVR) algorithms to synthesize 
virtual viewpoints between actual cameras as illustrated in 
Fig. 1. This process is therefore compulsory to provide 
gradual view changes in perspective from one actual camera 
location to another and its quality is directly responsible for 
the vividness of FVV experience [20].  
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Figure 1.  Block diagram of the entire system representing the scene being 
captured by multiple cameras, video-based rendering servers, the streaming 

server, and the wireless network. 

Simultaneous to the advancements registered in 
multimedia, the field of mobile computing has witnessed a 
parallel growth rate. Nowadays, emerging mobile client 
devices are all fitted with a liquid crystal display screen and 
sufficient processing power to allow real-time presentation 
of multimedia information [21]. A similar trend is 
furthermore witnessed in the infrastructure of emerging and 
future wireless systems, which provide sufficient bit rates for 
the implementation of video communication applications 
[14]. Thus, this opens the way for motion video to become 
one of the major multimedia applications [6]. Nonetheless, 
this technology imparts a significant burden on the network 
infrastructure due to its strict latency requirements and 
wireless bandwidth restrictions. Furthermore, the harsh 
wireless transmission environment presents a supplementary 
range of peculiar technical challenges such as attenuation, 
fading, multi-user interference and spatio-temporal varying 
channel conditions [22]. Such issues, together with current 
business models in wireless systems, whereby the end-user’s 
costs are proportional to the reserved bit-rate or the number 
of bits transmitted over a radio link [23], drive future 
multimedia network systems to provide a more efficient 
framework for the deployment of services.  

A further impediment encountered in the implementation 
of FVV technology is intrinsic to mobile devices, since the 
latter are severely constrained in energy resources, storage 
capacity and processing power [24]. The combination of 
these obstacles makes the transmission of several views for 
virtual viewpoint rendering at the mobile terminal 
impractical under several perspectives. Thus, a sensible 
implementation for FVV is to implement real-time video-
based rendering (VBR) techniques on customized processing 
architectures at the server’s side and transmit only the 
required view to the mobile terminal [25], [26]. Inherently, 
this strategy demands the implementation of a feedback 
channel from the mobile device to request the required view 
perspective stipulated by the user. This necessitates that a 
request is made on the uplink channel at every video frame 
interval to request a perspective view. Alas, such a situation 
leads to substantial service delays, bandwidth usage and 
terminal power consumption. 

This paper builds on [1] to present a solution which 
reduces the amount of feedback transmissions generated by 
the mobile terminal during free-viewpoint operation. Several 
prediction strategies are thoroughly investigated for adoption 
on the multimedia server to forecast the ensuing user’s view 
request. The algorithms necessitate that feedback uplink 
packets are only sent when the received perspective does not 
match the users demand viewpoint. Hence, the server 
interprets the lack of feedback as a confirmation that the 
correct estimate was transmitted. If a feedback packet is 
received, the server is notified of the viewpoint prediction 
error, at which point the algorithm is retrained to converge to 
the new FVV pattern. Such a strategy presents the 
infrastructure with a reduced amount of transmission from 
the mobile terminals, which in turn preserves their battery 
power and reduces the uplink bandwidth utilization. The 
algorithms implemented also manage to minimize the round-
trip delays incurred by the system due to the otherwise 
continuous transmissions on the uplink channel. 

This paper is organized as follows; the prediction 
algorithms studied in this work are examined and discussed 
in Section II together with the details on the respective 
parameters employed. Section III discusses the 
implementation strategy adopted for each algorithm. 
Following this, Section IV presents the simulation results 
and highlights the curtailment in feedback transmission 
attained by each solution. To further aid understanding, this 
section also gives a quantitative measure description of the 
battery power saved. Finally, comments and conclusions are 
presented in Section V. 

II. VIEWPOINT PREDICTION ALGORITHMS 
The successful implementation of prediction algorithms 

for system behavior estimation demands the utilization of a 
subset of the observed readings acquired previously from the 
system, to construct the original set of data within some pre-
defined precision tolerance [27]. Viewpoint prediction is 
achieved by exploiting a combination of received data from 
the feedback channel, preceding data predictions, and a priori 
knowledge of the system’s operation methodology. This 
work studies and compares the performance of the following 
four algorithms; Least Mean Squares, Kalman Filter, 
Recursive Mean Square, and Linear Regression, adopted 
specifically for FVV application in an effort to reduce uplink 
transmission requests and increase the battery lifetime of 
mobile terminals. 

A. Least Mean Square Algorithm 
Originally proposed in [28], the least mean square (LMS) 

algorithm consists of an iterative process of successive 
corrections on a weight vector which ultimately lead to the 
minimum square error between the received and derived 
signals. The algorithm provides several advantages for 
implementation in real-time scenarios particularly due to its 
low computational complexity. Furthermore, inherent to its 
iterative nature, the algorithm is suitable for slow time-
varying environments since it exhibits a stable and robust 
performance [29]. 
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The general function of the LMS algorithm is defined as: 

   ∑
=

−×=
N
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where x̂  denotes the estimated input signal n, wi represents 
the current system weight vector, and x(n – i) corresponds to 
the set of delayed inputs.  

In order to derive the prediction error, e(n), the estimated 
value is subtracted from the real input value x(n): 

 )(ˆ)()( nxnxne −=      (2) 

The system weight vector is then modified using: 

 )()()()1( nenxnwnw μ+=+          (3) 

As can be seen in (3), the rate of adaptation of the 
algorithm is directly dependent on the step size μ, which 
influences the speed of convergence, and on the order of the 
algorithm N. The computational complexity for executing 
each iteration can be summarized as 2N+1 multiplications 
and 2N additions. After simulation trials, a value of five filter 
weights was deemed apt, as this was able to sufficiently 
restrain the processing load whilst still providing sufficient 
precision as to avoid excessive overshoots whilst the filter 
weight vectors were converging to the reference signal. The 
values for learning rate variable μ were determined through 
heuristic techniques. This parameter was furthermore 
adapted during run-time by initially assigning a large value 
to speed up convergence towards the reference signal, and 
then decrease it to a more temperate one, to reduce overshoot 
and allow more precise corrections as the weight vectors 
approach convergence. 

B. Kalman Filter Algorithm 
The Kalman Filter introduced in [30] is primarily a 

recursive algorithm notably suitable to address the estimation 
problem for linearly evolving systems [31]. Apart from its 
practical demands being apposite for real-time applications, a 
convergence to a stable steady state is guaranteed by the 
filter [32]. 

Prediction of the forward state is performed by 
multiplying the current system state xk with the state 
transition matrix A as illustrated in (4): 

                     kk xAx ×=+1ˆ     (4) 

The Kalman filter also forecasts the predicted error 
covariance and makes use of this value together with an 
observation matrix H to compute the Kalman gain K. 
Following the acquisition of a measurement of the system 
output zk, this is used to update the estimate value xk+1 using:  

 ( )111 ˆˆ +++ −+= kkkk xHzKxx   (5) 

The obtained positional measurement of the scene is 
compared with the previous value, and since the 
measurements are done within constant time intervals, the 
view change request rate can be calculated. This new value is 
employed to update the input vector xk+1. Finally, the error 
covariance is amended for the next iteration. 

C. Recursive Least Square Algorithm 
The Recursive Least Square (RLS) algorithm aims at 

achieving the minimization of the sum of squares difference 
between the modeled filter output and the desired signal [33] 
by calculating the optimum filter weights. This is attained 
using an exponentially weighted estimate of the input 
autocorrelation and cross-correlation [34]. Owing to the 
prediction filter nature of the algorithm, the learning mode 
operation entails an iterative process whereby current weight 
vectors are used to generate data prediction in the future, and 
subsequently measurement data is considered as reference 
for updating the internal weight vectors. 

An intrinsic property of the adapted RLS is the capability 
to pursue fast convergence in time-varying environments 
even in cases where the eigenvalue spread of an input signal 
correlation matrix is large [35]. Unfortunately, the latter 
benefit is achieved at the cost a substantial increase in 
complexity, which during implementation has an order of 

(N²) FLOPS per sample, with N being the filter length [36], 
and an increased sensitivity to mismatch is registered in 
comparison to the structurally similar least square algorithm 
[37]. When new samples of the incoming signal are received, 
the coefficient vector updates the solution for the least 
squares problem in recursive form using [38]: 

 ),()()()1( kekgkwkw +=+  (6) 

where w(k) is the coefficient vector of the adaptive filter at 
time k, N is the length of the latter vector, e(k) symbolizes 
the difference between the generated filter output and the 
desired signal, and g(k) represents the Kalman gain. To 
render the algorithm feasible for real-time applications, and 
thus reduce the computational cost incurred by the RLS to 
execute the necessary matrix manipulations upon every 
epoch, the matrix inversion lemma technique [33] is applied 
to obtain a simple update for the inverse of the data input 
equation: 

 [ ],)1()()()1(1)( 111 −−−= −−− kPkxkgkPkP T

λ
 (7) 

where x(k) is the input data vector, and λ ∈ (0,1] is called the 
forgetting factor. This parameter has direct influence on the 
memory of the algorithm, with the upper bound value of 
unity assigned to imply infinite memory and is hence only 
suitable for statistically stationary systems. The algorithm 
contains no a priori information on the system at 
initialization, thus, an approximate initialization technique is 
employed for the covariance matrix by setting P-1=δI, which 
is representative of a scaled version of the identity matrix 
[38]. 
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D. Linear Regression Algorithm 
The statistical method defined by the Linear Regression 

(LR) algorithm is capable of modeling the relationship 
between two or more variables, by deriving a linear equation 
to fit the observed data using a least squares metric [39]. The 
implementation of a linear model provides several 
advantages for a real-time system, particularly due to its 
computational simplicity and inherent ease of use [40]. The 
validity of this statistical technique is held under the 
assumption that the output has a linear dependence on the 
input [41], thus the system model can be composed in the 
form: 

 ,01 εββ ++×= XY
)

 (8) 

where the output predicted value Ŷ  is expressed for a given 
dependent variable input X. The additional amount ε 
represents the residual error from the regression line, whilst 
the variables in the model function β0 and β1 are referred to 
as the model parameters and are estimated from a training set 
of n observations, in the form of (X1,Y1),(X2,Y2),…,(Xn,Yn), 
using [42]: 
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where the statistical values X  and Y represent the means of 
the respective variables.  

Equations (9) and (10) are only computed whilst the 
algorithm is operating in the training phase so that the model 
functions converge. Once the aforementioned parameters are 
established, the algorithm operates in offline mode, and the 
computational load for executing the LR algorithm on the 
server, is only that of computing a single multiplication and 
two additions to derive the predicted output. 

III. IMPLEMENTATION OF  THE PREDICTION ALGORITHMS  
The prediction techniques studied attempt to reduce the 

amount of feedback transitions necessary on the uplink 
channel. This is performed by combining a priori 
information regarding the system implementation together 
with dynamic data of the user’s previous viewing motion to 
forecast the user’s future observation points.  

The characteristics of each algorithm are scrutinized and 
their implementation for the specific scenario presented in 
FVV is analyzed. The various parameters demanded by 
either technique are optimized in respect of the unique 
features of the FVV structure by applying heuristic 
approaches or taking into consideration the intrinsic nature of 
the system. 

A. Least-Mean Square Algorithm 
The LMS algorithm was implemented in a dual topology 

configuration were two identical adaptation algorithms were 
executed simultaneously on the mobile terminal and server 
alike. Implementation of the system involved the adoption of 
the LMS algorithm to estimate the view required by the user. 
The prediction of the desired perspective is achieved from 
interpretation of the preceding readings as well as the 
adapted LMS weight coefficients. Via this implementation, 
both sides of the network are able to generate equivalent 
estimates that keep the system synchronized whilst adapting 
to the dynamic user perspective demands. 

At the mobile terminal, a comparison between the local 
predicted and the actual input readings is executed iteratively 
yielding a dynamic error assessment. When the current error 
in prediction exceeds a pre-defined tolerance threshold, the 
mobile terminal interprets the situation as a change in the 
user’s input pattern. Although, by adapting the learning rate 
parameter during execution, the system quickly re-aligns its 
weight vectors to the new input pattern, the inconsistencies 
of the weight vectors during the conversion still allow for a 
suitable error signal to be detected by a comparator; hence 
triggering a change in the state of the network. In this 
situation, the mobile terminal attempts to re-synchronize its 
LMS algorithm with that of the server by training both filters 
for twenty iterations. During this period of online operation, 
the current user input pattern is considered as the reference 
signal, and transmitted to the server such that the weight 
vectors of both LMS algorithms converge to the new pattern.  

Subsequent to the elapse of the training phase, both 
systems are turned offline again, whereby the reference 
signal for the local LMS algorithm is taken to be the former 
predicted value. During this state, provided that no new 
feedback from the mobile terminal is received at the server, 
the server assumes that its estimate is correct and thus 
transmits the predicted view. Via this methodology, the 
server is capable of tracking the predictions done by the 
mobile terminal without the requirement of constant 
transmission requests to update the current viewpoint state. 

B. Kalman Filter Algorithm 
The Kalman Filter system topology involved the 

implementation of the algorithm solely on the network 
server. The filter toggles between an online state and a stand-
alone mode during operation. Initially, the mobile terminal 
commences by transmitting on the uplink channel a training 
sequence in order to converge the filter’s output, computed at 
the broadcasting server node, to the pattern being viewed by 
the user. Following this initialization epoch, the algorithm 
converts its operation mode to a stand-alone state. In this 
form, the Kalman filter computes the prediction algorithm by 
utilizing the previous state vector values and error covalence 
as the observed measurement. In this way, the server 
forecasts the view number that would be demanded by the 
user and transmits the respective video perspective to the 
mobile terminal. 

A comparison between the predicted and the actual input 
reading is executed on the mobile terminal during every 
iteration, yielding a dynamic error assessment. The latter 
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value determines the state in which the system will operate 
by reference to a threshold error value. When the error value 
exceeds this limit, the mobile terminal transmits the first 
packet of data on the uplink, and subsequently the system 
implemented on the server node moves to online mode. In 
this training condition, the Kalman filter receives a sequence 
of the current user inputs for the desired viewpoint sequence 
as its reference signal from the mobile terminal via the 
feedback channel. An array of fifteen values is needed by the 
Kalman filter to converge to the new pattern of views. When 
the pre-defined amount of training iterations elapses, the 
system is redirected to offline stand-alone mode, where no 
information is required from the mobile terminal, thus 
reducing the feedback transmissions. In this mode, unless a 
transmission is received at the server, the previous prediction 
is considered as correct, and this computed value adopted as 
the observed measurement for the following epoch. 

C. Recursive Least Square Algorithm 
Similar to the Kalman filter infrastructure, the RLS 

system involves the adaptation of the algorithm on the server 
node to track the user demands for FVV viewing. Each time 
a discrepancy between the received view and the user’s 
demanded one is noted, a training set composed of eight 
samples is transmitted from the mobile terminal. Upon 
receiving the initial feedback packet, the server turns the 
RLS algorithm in online mode and commences a training 
routine. A recursive approach is utilized during this period 
by the algorithm to adapt to the new linear viewing pattern. 
Following the successful convergence, the RLS algorithm is 
turned back offline, and the server predicts the views that 
will be demanded by the user using the algorithm’s compiled 
values. 

D. Linear Regression Algorithm 
To track the FVV viewpoint user demands, the linear 

regression algorithm was also implemented solely on the 
server node. Due to the inherent nature of the FVV system 
operation, the algorithm was limited to a linear first-order 
model, to reduced complexity whilst still providing reliable 
accuracy in the regression line generated. Since observations 
done at the mobile terminal are inputted directly by the user, 
there are no sources of error during the acquisition of 
information. This feature was exploited to curtail the training 
set of measurements used by the algorithm to only two 
samples, which is the minimum amount of observations 
required for the LR algorithm to produce a robust regression 
line. 

After training, the mobile terminal simply checks 
whether the received view matches that demanded by the 
user. If the prediction is correct, the mobile terminal refrains 
from transmitting feedback, and the server assumes that the 
estimate it has calculated is correct. Otherwise, feedback 
view information is delivered to the server which will wait 
for the second data packet to be transmitted before restarting 
the execution of the algorithm. 

IV. SIMULATION AND RESULTS 
Free-Viewpoint Video systems provide the user with the 

ability to autonomously decide upon the perspective that is 
observed in a particular scene. This level of interactivity 
intrinsically implies that a substantial amount of information 
is exchanged between the user and the host of the system. In 
the mobile video applications scenario, such data 
requirements entail bi-directional communication between 
the mobile terminal and the network server on the wireless 
infrastructure. Establishing such an infrastructure, demands 
bandwidth utilization to support both the streaming video 
sequences on the downstream as well as viewpoint requests 
on the uplink channel. 

A. Simulation Overview 
To objectively simulate and analyze the employment of 

the free-viewpoint structure embedded by the prediction 
algorithms, a typical situation was modeled using the 
Maltab® platform for two separate FVV usage profiles. It is 
assumed that the FVV user is not consistently changing 
views at a fast rate. Such a scenario is not practical as the 
user will not be able to follow the content of the video. Thus, 
our system considers the feasible implementation whereby 
users alter viewing patterns at a practical rate. The FVV 
system considered consisted of a number of adjacent 
cameras, which allowed the rendering of nine distinct virtual 
views in between each actual capturing location. These 
virtual views were generated on the server node and 
provided to the users upon demand, to enhance the FVV 
experience attained when altering the viewpoint between two 
locations by providing a gradual transition. The mobile 
terminal employs its user interface to display the video 
streams as well as receive input from the client as regards the 
viewpoint request. The latter is considered to be in the form 
of a vertical slider which allows the user to shift his view 
perspective between a finite number of cameras with an 
unrestricted range of motion speed as illustrated in Fig. 2.  
 

 
Figure 2.  End-user mobile interface for free-viewpoint video streaming. 
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Figure 3.  Linear free-viewpoint video motion from one perspective to another via consequent intermediate frames [43].

The simulated scenarios start with the user receiving a 
view from a single camera and not requesting any view 
changes. At an arbitrary point in time, the user starts 
changing the viewing angle at a particular velocity, thus 
performing free-viewpoint operation. Subsequently, this 
motion pattern will change casually, with each epoch having 
a different rate of change and duration of the varying FVV 
perspective. This results in a linear motion as illustrated in 
the video sequence shown in Fig. 3, whereby the change of 
perspective is gradual from one camera outlook to the next, 
and this can be modeled with lines of constant gradient [43].  

The FVV simulated usage profiles can be described as: 
(i) pattern A which shows a velocity pattern in which free-
viewpoint motion can be either static or else change with at 
least one virtual view per time step, and (ii) pattern B which 
shows a pattern whereby the user can scroll through views 
more leniently and hence take more than one time step to 
change from a virtual standpoint to a neighboring one. Due 
to the quantized nature by which view changes can be 
requested, the reference pattern generated by a user making 
requests similar to pattern B can introduce a jittered pattern 
of motion as depicted in Fig. 4. In this situation, the view 
will remain constant for a small period of time and then alter 
by the minimum quantized amount, giving the impression of 
a slow changing perspective. Thus, the speed for this 
scenario is proportional to the number of time steps in which 
the view remains constant between changes.  

 

 
Figure 4.  Free-viewpoint pattern which is slower than one virtual 

perspective per time frame 

The performance evaluation of the proposed algorithms 
is compared to the system specifications described by the 
reference FVV architecture found in [25]. This reference 
methodology, whose view request profiles for patterns A and 
B are shown in Fig. 5(a) and Fig. 6(a) respectively, portrays 
the operation of an FVV system where the mobile terminal 
transmits to the server in each time step to demand the view 
being requested by the user. The server processes the 
requested viewpoint and transmits the perspective back to the 
terminal. The image from the modified outlook would then 
be viewed on the mobile terminal in the subsequent video 
time frame. 

In order to further improve the FVV algorithms described 
in [1], a modified request pattern is employed at the server 
node for the prediction filters to converge too. This technique 
is adopted to eliminate the jitter experienced by the user 
during the first video-frame of a new FVV motion pattern. 
The utilized pattern achieves this by allowing some hysterisis 
on the signal, which results in delaying the user’s request by 
a constant view separation. The latter is derived from the 
prediction errors generated by any of the algorithms upon 
motion pattern alteration, whereby for a particular time step, 
the received frame and that demanded by the user are not 
synchronized. With this enhanced approach, instead of 
converging directly to the user pattern, and hence yielding a 
nuisance jitter in FVV motion, the system, takes into 
consideration the video frames already viewed at the mobile 
terminal, and converges the algorithms to the modified 
signal, which directly reflects the same motion pattern 
evoked by the user’s input. This amendment is able to 
significantly improve the quality of experience delivered to 
the client, by feasibly considering the implementation 
scenario and hence striving to smooth the free-viewpoint 
motion video received. Furthermore, the small delay 
registered is only of one video frame, usually 40 
milliseconds, and thus goes unnoticed by the user who will 
naturally adapt to the viewed perspective pattern. 382 384 386 388 390 392 394 396
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Figure 5.  Simulation results and the associatae transmission occurrences comparing the proposed algorithms in a typical FVV scenario for pattern A:       
(a) reference user input, (b) Least Mean Squares, (c) Kalman Filter, (d) Recursive Least Squares, (e) Linear Regression.

B. Analysis of Pattern A 
The simulation of the LMS for pattern A is presented in 

Figure 5(b). The inherent slow convergence speed of the 
algorithm is evident in the simulation results. The 
transmission occurrence signal, beneath the same figure, 
indicates that when the input view pattern was altered, the 
converged weights lost validity and hence yielded an error in 
the predicted viewpoint thereby re-initiating the training 
phase. Even though the learning rate parameter was 

adaptively modified in the initial stage of training, a certain 
amount of time steps have to elapse before the algorithm’s 
internal memory buffers are occupied and all the weight 
vectors updated accordingly. Thus, the LMS algorithm 
necessitates the delay of an initial settling time before being 
employed successfully in FVV applications. Alas, the same 
compromise made on the parameter μ hinders the maximum 
frequency at which the system can alter the viewing pattern 
and the maximum change in gradient the system is able to 
adhere to. 
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With respect to the standard reference pattern, the LMS 
algorithm provides a considerable improvement in feedback 
transmission reduction. With a minimal increase on the 
computational resources of both the mobile terminal and the 
server, an average reduction of 65% in feedback 
transmissions is obtained. This technique thus reduces the 
traffic passed over the uplink channel from 350 
transmissions to approximately 120 in the considered 
scenario.  

The pattern A results for the Kalman Filter, illustrated in 
Fig 5(c), implicitly expose the benefits derived from the 
powerful adaptation of this algorithm. In comparison to the 
LMS technique, the initial convergence speed is greatly 
enhanced, drastically minimizing the necessary setup time. 
The Kalman filter algorithm, although inducing a 
significantly larger computational cost at the server, relieves 
the execution cost from the mobile terminal, which must 
only perform a comparison between the view perspectives 
received and those demanded by the viewer. The prediction 
properties of the latter methodology are also more robust 
requiring a set of only fifteen training samples to adapt to the 
new pattern with a significantly reduced error such that 
offline operation is sustained. This enables the system to 
sustain a higher frequency of change in view pattern in a 
stable manner. For the observed scenario, the Kalman filter 
solution results in an uplink transmission reduction of 74%. 

Implementation of the Kalman filter on the server node is 
nonetheless a computationally complex task which poses 
imminent scalability issues. On the other hand, transmission 
occurrence was considerably reduced with respect to the 
LMS algorithm as this parameter inferred directly on the 
achievement of adopting prediction techniques. A 
compromise between these algorithms was found by the 
implementation of the RLS algorithm. The latter is able to 
adopt the advantages of the Kalman filter’s convergence 
speed and robustness whilst attaining a reduction in 
implementation complexity. 

  The simulation results for the RLS algorithm on 
Fig. 5(d) illustrate that although the filter length was pruned 
to five as to conserve the memory footprint, convergence 
towards the desired output is still achieved at a satisfactory 
speed. In comparison to the LMS algorithm, the RLS 
implementation still requires a small number of training 
samples to be processed to fill the weight vector with 
relevant values of the new pattern. Nonetheless, the RLS 
algorithm can achieve a much quicker convergence to the 
reference signal as is evident from Fig. 5(d), where 
substantial convergence is achieved after the first couple of 
epochs. This benefit is mainly derived from the manipulation 
of the forgetting factor λ, which by means of adaptive 
variations can concentrate more heavily on the new input 
measurements whilst allocating less influence to the 
irrelevant values. The recursive nature of the algorithm also 
aids to provide a stable convergence, as was a principle 
advantage in the Kalman Filter. The same feature however, 
presents the need for an additional amount of samples to be 
computed prior to running the RLS algorithm in offline 
mode. Nevertheless, this technique allows the algorithm to 
converge successfully after processing only eight training 

samples. Over the considered typical input pattern scenario, 
the RLS is able to yield an efficiency gain of 87% over the 
standard architecture defined in [25], whilst requiring a 
notably reduced computational cost with respect to the 
Kalman Filter implementation. 

The final investigated solution employs the Linear 
Regression algorithm on the server to predict the desired 
view sequences requested by the user. The results in Fig. 5(e) 
implicitly expose the benefits derived from the adaptation 
characteristics of this algorithm. Instead of attempting to 
predict the next viewpoint, this LR implementation predicts 
the velocity by which the viewpoints are changing between 
defined video time steps, thus generating a regression line 
which indicates the rate of change demanded by the user. 
When comparing the results of the LR algorithm to those 
attained by the previous filter algorithms for the pattern A, it 
is evident that the Linear Regression considerably 
outperforms the former. The algorithm converges faster than 
its counterparts to the desired signal output, since it takes 
direct advantage of the linear nature in which the FVV 
viewpoint is altered. Hence for the same scenario, the LR 
algorithm registered a decrease in the transmission 
requirements by the mobile terminal of 96.5% compared to 
the standard, and requires only 12 transmissions throughout 
the 350 time steps. 

C. Analysis of Pattern B 
Moreover, the performance enhancement of the LR 

algorithm is even further pronounced in the scenario 
expressed with input pattern B. This usage profile, visualized 
in the simulation results of Fig. 6, depicts the futile efforts 
performed by the LMS, Kalman Filter and RLS algorithms 
in Fig. 6(b), Fig. 6(c) and Fig. 6(d) respectively. The latter 
struggle to adapt to the stepped motion pattern of this 
scenario, resulting in a large amount of prediction failures 
and subsequent re-initiation of training epochs. The periodic 
gradient change presents the filters with an input sample 
incoherent with the previous stationary samples, yielding the 
algorithms to incorrectly update their weight vector. 

The LR algorithm however, successfully manages to 
cope with the demand for slow free-viewpoint movement 
that is presented by pattern B. As evidenced in Fig. 6(e), 
when the algorithm detects a unitary gradient change 
subsequently followed by a stationary request, the 
implementation keeps track of the amount of time steps that 
the user spends on a fixed viewpoint between view changes 
by means of a dedicated counter. This information is used 
once an error is retransmitted by the mobile terminal, at 
which point the linear regression parameters are computed 
taking into account the new position and the previous 
samples. Since the system’s FVV viewpoints are quantized 
in nature, the regression line generated performs well as the 
output is truncated to the resolution of the views. Hence, the 
algorithm is able to successfully predict any user’s input 
pattern after a maximum of two error signals.  

A consistent performance gain is also registered with the 
linear regression algorithm in the more flexible scenario 
represented by pattern B, were on average, the uplink 
transmission reduction achieved amounted to 92%.
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Figure 6.  Simulation results and the associatae transmission occurrences comparing the proposed algorithms in a typical FVV scenario for Pattern B:       
(a) reference user input, (b) Least Mean Squares, (c) Kalman Filter, (d) Recursive Least Squares, (e) Linear Regression.

The small discrepancy between both scenarios adopting the 
LR algorithm is due to the additional transmissions required 
to cater for the slow movements in viewpoint patterns. 
Furthermore, since the LR algorithm necessitates only of a 
small amount of training samples to converge, this 
methodology is also able to better accommodate highly 
dynamic view pattern changes. 

D. Battery Consumption Simulation 
To obtain a quantitative analysis of the energy resources 

saved at the mobile terminal by the implementation of the 
proposed prediction algorithms, a simulation of the energy 
consumed by the transceiver operation of a mobile station 
employed only for FVV usage was performed. Although the 
proposed system is able to operate over any networking 
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topology, a scenario involving a currently implemented 
wireless architecture was simulated so as to attain 
appreciation of the algorithm’s performance. 

The mobile device is considered to be equipped with a 
1500mAh battery and consumes an average current of 25mA 
during transmission and an average current of 20mA during 
reception of data. The considered scenario is that of a 
terminal operating in a network employing HSPA 
technology with a downlink and uplink bandwidth of 
7.2Mbits/s and 1.4Mbits/s respectively. The free-viewpoint 
operation requires a single packet of 50 bytes to send view 
requests and a mean of four 200 byte packets on the 
downlink channel. The transmitted data constitutes a 
continuous video stream in CIF standard resolution 
employing the H.264/AVC baseline profile. 

The drastic reduction in the necessary transmissions on 
the uplink channel achieved by the employment of view 
prediction algorithms significantly reduces the battery power 
consumed by the mobile terminal during FVV operation, as 
shown in Fig. 7. Even though the amount of data which is 
transmitted on the uplink channel is much smaller than that 
of the received video, the energy saved is still significant for 
a resource limited device. This considerable drop in energy 
consumption occurs because the transmitter module is the 
most power hungry component of any mobile terminal. 
Furthermore, the prediction solutions enhance the Quality of 
Service (QoS) provided by the FVV system. This occurs 
because the algorithms offer a pro-active network 
implementation by predicting and providing the required 
view perspective to the user instantaneously, thus reducing 
the round-trip delays incurred by the reference method.  
 

 
Figure 7.  Comparison of the battery discharge time on a mobile terminal 

when adopting the prediction algorithms 

V. CONCLUSION 
This paper has presented a detailed study in the 

adaptation of prediction algorithms to free-viewpoint video 
technology to reduce the amount of uplink transmission. 
Four distinct algorithms were analyzed and implemented in 
several simulation scenarios representing typical FVV 
architectures. The minor increase in computational costs 

incurred at the server and/or mobile node are justified by a 
drastic reduction of up to 96.7% in the amount of feedback 
packets transmitted on the wireless uplink channel. The 
requests from the mobile client demanding a different 
perspective of the scene in a typical FVV usage profile are 
replaced by the server’s predictions through one of the 
prediction algorithms. The benefits achieved from such 
systems enable a considerable gain in terms of power 
conservation for the multimedia mobile terminal as well as a 
reduced utilization of the uplink bandwidth. Moreover, 
hysterisis is introduced in the algorithm’s converging pattern, 
making the real-time experience more pleasing and avoiding 
any video jitter being presented to the mobile client. 
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