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Abstract—Depth-image-based-rendering (DIBR) is the com-
monly used for generating additional views for 3DTV and
FTV using 3D video formats such as video plus depth (V+D)
and multiview-video-plus-depth (MVD). The synthesized views
suffer from artifacts mainly with disocclusions when DIBR is
used. Depth-based inpainting methods can solve these problems
plausibly. In this paper, we analyze the influence of the depth
information at various steps of the depth-included curvature
inpainting method. The depth-based inpainting method relies on
the depth information at every step of the inpainting process:
boundary extraction for missing areas, data term computation
for structure propagation and in the patch matching to find
best data. The importance of depth at each step is evaluated
using objective metrics and visual comparison. Our evaluation
demonstrates that depth information in each step plays a key
role. Moreover, to what degree depth can be used in each step
of the inpainting process depends on the depth distribution.

Keywords—3D; video plus depth; multiview video plus depth;
3D warping; depth-image-based rendering; image inpainting; dis-
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I. INTRODUCTION

In recent years, Three Dimensional Television (3DTV) and
Free Viewpoint Television (FTV) have become attractive in
the 3D research area. The 3D video formats video-plus-depth
(V+D) and multiview video-plus-depth (MVD) are efficient
ways to send the 3D content to the end user. These data
types provide backward compatibility with 2D displays, and
at the same time enable rendering of virtual views corre-
sponding to the requirement of current and future stereo and
multiview 3D displays. Depth-image-based rendering (DIBR)
is a fundamental method for producing these virtual views
using the video or texture component and the depth per pixel
information. A major concern when using DIBR on V+D
content is the artifacts caused by disocclusions, i.e., areas
that are occluded in the original view become visible in the
rendered view when DIBR is used. When using MVD, DIBR
methods can access multiple V+D components and thereby
fill disocclusions in virtual views from several known views,
which reduce the disocclusion problem yet does not solve
it. Hence, the disocclusion problem inherent in the above
3D video formats is still an open question that needs to be
addressed in order for applications such as 3DTV and FTV to
be successful. The present work considered horizontal disparity
for creating images on stereo or multiview displays. The depth-
based inpainting [1] method does not explain the importance

of depth at every step of the inpainting process, which raises
the question how the depth information influence the total
inpainting process in addressing the disocclusions.

There are several methods that aim to reduce the disoc-
clusions by filling the holes they constitute, including prepro-
cessing of depth map [2], linear interpolation, and inpainting.
Preprocessing of the depth map before warping reduces the
disocclusion but causes geometrical distortions in the resultant
view. Using linear interpolation is a simple approach that
gives acceptable results when the area of the disocclusion is
smaller and less noticeable. However, when the disocclusions
grow bigger, linear interpolation results a stark contrast to
the structure of the texture outside the holes borders due
to stretching of the border pixels into the holes. In general,
inpainting methods aim to solve the missing areas by filling
the unknown regions using neighborhood information. The
disocclusion problems can be considered as missing texture
information alone and it can be recovered by using texture
synthesis methods [3]. Due to inpainting being an ill-posed
problem the target of inpainting methods is to produce filled
disocclusions that are as perceptually plausible as possible.
In the following we will classify inpainting methods into the
following categories: textural inpainting methods and structural
inpaiting methods.

In texture inpainting methods, the missing regions are
filled by replicating the repetitive patterns in the image, which
surrounds the disocclusion. Many of these methods rely on
Markov Random Field (MRF) to model the local patterns, and
using small amount of known textures to generate new tex-
tures to fill the missing areas [4]. Texture inpainting methods
perform well for uniform texture images but faces problems
with real world images as they consist of a mixture of different
textures and linear structures.

Structural inpainting methods, imitate the idea of manual
inpainting that is propagating the linear structures present
in the neighborhood of the missing regions using diffusion
process [5]. Structural inpainting methods based on partial
differential equations (PDE) fill the missing regions iteratively.
These methods preserve and propagate linear structures in
to missing regions. The disadvantages associated with these
methods are blurring and structure discontinuity for large
missing areas due to the diffusion process and not knowing
the edge information. The total variation approach and cur-
vature driven diffusion (CDD) model follow the anisotropic
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Figure 1. Block diagram of the rendering method using inpainting.

diffusion, which means diffusion strength reduces with respect
to the structure variations [6] [7]. Total variation approach
depends only on isotropic strength, whereas CDD depends on
both isotropic strength and geometries. Although incorporating
many constraints and higher order PDEs in the inpainting
process, the resulted inpainted views still suffer from blurring
artifacts for larger missing regions.

Criminisi et al. [8] proposed an efficient exemplar-based
image inpainting technique, a kind of hybrid inpainting that
combines the benefits of structural and textural inpainting
methods to fill the missing regions. However, this method
introduces inconsistent structures in to disocclusions areas due
to not considering what is foreground (objects closer to the
camera) and background (objects away from the camera) in
the rendered view. Daribo et al. [9] extended the exemplar-
based inpainting to address this limitation by introducing the
depth constraint. However, hole filling with this method causes
noticeable artifacts around foreground objects in the virtual
view. Gautier et al. [10] extended the Criminisi et al. method
by taking into account the structure tensor as a data term that
identifies the strongest structure in the neighborhood, and the
depth information to fill the holes. Moreover, filling with these
methods require true depth information. Usually, the depth at
the required camera view position needs to be estimated. By
having access to the true depth at the virtual camera view
position disocclusions can be filled according to depth level.

We proposed depth-included curvature inpainting method
that consider the scene depth in all parts of the inpainting
process [1]. This paper presents the method in more detail and
also performs an analysis of how the depth information affects
the quality of the inpainting result. The proposed method also
relies on the fundamental method introduced in [8], but extends
and improves upon it by using the available depth information
at different stages of the inpainting process. In contrast to [9],
[10], the proposed depth-included curvature inpainting method
does not rely on having access to a true depth map but instead
considers a more general and realistic case of having access
to a warped depth when performing the inpainting.

The outline of the paper is as follows: A more general
review of depth-image-based rendering is given in Section II. A
selected summary of related work within the field of inpainting
is presented in Section III and the proposed depth-included
curvature inpainting method is described in Section IV. The
methodology used in this work, including test arrangement and
evaluation criteria, are described in Section V, followed by
results and in Section VI. Finally, Section VII concludes the

work.

II. DEPTH-IMAGE BASED RENDERING

With the development of many rendering algorithms, the
rendering methods are categorized into image based rendering
and model based rendering methods. Image based rendering
methods, use the available image data to render new views
whereas model based methods require information about 3D
models to compute synthesized views. Image based rendering
methods can be further classified depending on the amount
of geometry used. DIBR is an approximation of rendering
with partial geometry, i.e., depth data. The depth data can be
obtained from multiview images or range sensors [11], [12].
Using this depth data and texture, new views can be syn-
thesized using basic principle 3D warping [13]. The warping
can be done in two ways either forward warping or backward
warping. In forward warping both depth and texture are warped
to the virtual view position, whereas in backward warping first
the depth map is warped and then pixel locations of the virtual
view are located in the original image. The inherent problems
with the DIBR are cracks, translucent cracks, missing areas and
corona like artifacts when views are synthesized from multi
view format. The causes of artifacts and different solutions
are presented in [14].

In this work, we present the total DIBR using image
inpainting technique to fill the disocclusion problems. Initially,
the texture and depth map are warped to the virtual view
positions and then the crack filling is applied by using averages
of neighboring pixels. In the next step, the ghosting-like
artifacts are removed on the borders. They appear as a thin
layer of foreground which is projected on the background at
the boundary of the disocclusion, due to depth and texture
misalignments. These ghosting problems can be removed by
simply extending the hole area on the background side. Oth-
erwise, the filling will be affected due to the mixed colour
pixels presented at the boundary area and the filling depends on
the boundary data. Thus these problems need to be addressed
before starting the inpainting process. The total DIBR method
is illustrated in the Fig. 1.

III. RELATED WORK

The exemplar-based texture synthesis introduced by Cri-
minisi et al. effectively replicates both structure and texture
by using the advantages of both partial differential equations
(PDE) based inpainting method and non-parametric texture
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synthesis. The quality of the inpainted image highly depends
on the order of the filling direction.

(a) Notation diagram (b) Warped image with notations

Figure 2. Schematic illustration.

Consider an input image I with an empty region Ω, also
known as hole, the source region Φ (the remaining part of
the image except the empty region) is defined as Φ = I −
Ω. The boundary between Φ and Ω is denoted as δΩ (see
Fig. 2). The basic steps of Criminisi’s algorithm are as follows:
(i) Identify the boundary and compute the priorities on the
boundary region and (ii) Find the patch with the maximum
priority and find the best patch that matches the selected patch
using patch matching and filling (iii) Update the confidence
values. Suppose a patch Ψp centered at a pixel p for some
p ∈ δΩ and the priority is computed as the product of two
terms:

P (p) = C (p) ·D (p), (1)

C (p) =
1

|Ψp|
∑

q∈Ψp∩Φ

C (q), (2)

D (p) =

〈
∇I⊥p ,np

〉
α

, (3)

where C (p) is the confidence term indicating the amount of
non-missing pixels in a patch and the data term D (p) gives
importance to the isophote direction. |Ψp| is number of pixels
in Ψp, α is normalization factor (e.g., 255 for gray scale
image), np is a unit vector orthogonal to δΩ at a point p,
and ∇I⊥p is the direction and of the isophote.

After the priorities on boundary δΩ are computed, the
highest priority patch Ψp̂ centered at p̂ is selected to be filled
first. Next, a block matching algorithm is used to find the best
similar source patch Ψq̂ in order to fill-in the missing pixels
in the target patch:

Ψq̂ = arg min
Ψq∈Φ

{d(Ψp̂,Ψq)} , (4)

where d is the distance between two patches defined as sum of
squared difference (SSD). After the most similar source patch
Ψq̂ is found, the values of the missing pixels in the target patch
ṕ|ṕ ∈ Ψp̂∩Ω are copied from their corresponding pixels inside
source patch Ψq̂. Once the target patch Ψp̂ is filled, the update
of the confidence term C (p) is as follows:

Figure 3. Block diagram of the exemplar-inpainting method; The
highlighted blocks indicates the depth-included curvature inpainting
method enhancements.

C (q) = C (p̂),∀q ∈ Ψp̂ ∩ Ω. (5)

However, this method is not aimed at 3DV formats to
handle disocclusions and thereby could not recognize the
differences between foreground and background in a virtual
view. As a result, missing areas are sometimes filled with
foreground information instead of background.

Daribo et al. extended the Criminisi et al. method by using
depth information, first by introducing a depth regularity term
in the priority term calculation P (p) = C (p) ·D (p) · L (p)
and is given as:

L (p) =
|Zp|

|Zp|+
∑

q∈,Zp∩Φ (Zp(q)− Zp)
2 , (6)

The depth regularity term L (p) is approximated as the inverse
variance of the depth patch Zp centered at p. The depth
regularity term presented in their inpainting method controls
the inpainting process by favoring the filling order that comes
from the background. In addition, the patch matching step is
modified by adding the depth into the search process to find a
best patch in both the texture and the depth domain. Although
this method uses the depth in the inpainting process reduces
the problem to a degree as it still partly fills the disocclusion
regions with the foreground information and wrong textures.

Gautier et al. followed the [9] method in considering
depth map and extending the exemplar approach to help the
inpainting process. They introduced a 3D tensor to calculate
the data term in the priority calculation of (1) and a one-sided
priority to restrict the filling direction. In the patch matching
step, they also used a weighted combination of the best patches
as the final selected patch.

J =
∑

l=R,G,B,Z

∇Il∇ITl , (7)

D(p) = a+ (1− a) exp

(
−C1

(λ1 − λ2)2

)
, (8)

where ∇Il is local spatial gradient over a 3x3 window. J is
the 3D structure tensor and λ1,λ2 are the eigen values of J ,
which gives amount of structure variation, C1 is a constant
positive value and a ∈ [0, 1].

Moreover, these previous work both Daribo et al. and
Gautier et al. rely on having true depth information available at
the rendered view position. In general, this assumption is not
feasible or realistic since the depth information of the virtual
view also must be estimated.
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(a) Total boundary (b) One sided boundary (c) Depth-guided one sided boundary

Figure 4. Boundary extraction.

IV. PROPOSED DEPTH-INCLUDED CURVATURE
INPAINTING METHOD

The depth-included curvature inpainting method also fol-
lowed the Criminisi method by introducing the new data term
and depth based constraints in all stages of the inpainting
process. The depth information is added in the following steps
of the depth-included curvature inpainting process:

A. Depth guided directional priority
B. Depth included curvature data term
C. Depth-based source region selection

Fig. 3 illustrates how these steps relate to the general
inpainting process. Step A consists of defining a depth guided
directional priority, which helps the selection of background
patches to be filled first. In Step B, we used the Curvature
Driven Diffusion (CDD) model [6] similarly to [15] as the
data term D (p) in the priority computation and extend the
data term by incorporating depth to give the importance to the
isophote curvature and strength. Finally, Step C prevents the
foreground data from the source region, using depth constraints
derived from the warped depth to favor the background filling.
In addition, a weighted combination of - N best patches is used
to define the target patch in the patch matching.

A. Depth guided direction priority

The boundary extraction block of Fig. 3 is improved by
using depth information to guide the filling such that it starts
from the background. This is because disocclusions result from
depth discontinuities between foreground and background, and
the disocclusion regions belong to the background which
makes filling the disocclusion from the horizontal background
side reasonable. Moreover, when the disocclusion appears
between two foreground objects, selection of one sided bound-
ary results foreground propagation into the holes. Hence, the
one-sided boundary is constrained by using the depth, which
controls the foreground scattering problem. The background
side of the disocclusion is obtained as follows. First, a one
sided boundary δΩ1 of the disocclusion area is obtained by
applying the convolution operation (∗) on a disocclusion map
(DM ) as given δΩ1 = DM ∗ H . Disocclusion map is a
mask, which represents the hole regions with 1s and remaining
regions with 0s so the convolution gives one sided edges.
Second, the directional priority selection is constrained by
using a depth on δΩ1, such that pixels whose depth values

are less than M percent of the maximum depth value in the
warped depth map are selected. The one-sided boundary and
depth guided boundaries are shown in the Fig. 4.

δΩ
′

1 = δΩ1(q)|q∈δΩ1∩(Z(q)<M ·max(Z)), (9)

where δΩ
′

1 is the depth guided boundary, Z is the depth map
and Z(q) is the depth value at pixel location q. Convolution
kernel H is defined as follows according to the warped view:

H =

{
[1 −1 0] if left warped view ;
[0 −1 1] if right warped view. (10)

Once the hole boundary is obtained, using (9), priorities are
calculated according to (1) utilizing the data term (14). Then
the holes in the background regions are filled using the selected
depth guided direction priority. However, the filling with the
depth-guided directions handles holes to a certain depth level,
the remaining holes are filled with one sided boundary priority.
Moreover, when the virtual view camera is not horizontal, the
holes do not appear according to the assumption that a right
virtual view has holes on right side. In that case, hole filling
is processed with the total boundary extraction.

B. Depth included curvature data term

As the data term in the general inpainting process we adopt,
and add depth to, the CDD model in order to consider the
depth curvature along with the texture. The CDD model is a
variational approach, which solves the PDE to fill the missing
regions using diffusion [6]. It mainly aims at satisfying the
connectivity principle, i.e., broken lines should connect over
missing areas. The CDD introduces the curvature along with
the gradient strength to achieve that goal by using diffusion
process.

Although the present approach is not a diffusion-based in-
painting, the CDD model computes the structures information
using the curvature as it gives the geometry of the isophote.
Hence, we adopt and add the depth while calculating the data
term to propagate the structure details into the missing areas.

g (s) = sα, s > 0, α ≥ 1 (11)
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(a) “Ballet” depth map (b) “Lovebird” depth map

Figure 5. Different depth distributions in the background.

kp = ∇ ·
(
∇Ip
|∇Ip|

)
(12)

∂Ip
∂t

= ∇ ·
(
g(|kp|)
|∇Ip|

∇Ip
)
, (13)

where kp is the curvature of the isophote through some pixel
p, ∇· is the divergence at p, and g is the control function to
adjust the curvature. By incorporating the CDD model as a
data term and setting α = 1 in (11), the data term becomes:

D (p) =

∣∣∣∣∇ · ( kp
|∇Ip|

∇Ip
)∣∣∣∣ . (14)

The data term is calculated using the depth gradient.
Therefore, less variation in depth reduces the influence of the
data term. Fig. 5 shows two examples of depth variations,
where Fig. 5(a) exhibits more changes in depth than Fig. 5(b).

C. Depth-based source region selection

The patch-matching step is an improvement to the method
of [9] and [10], where they add depth information in the
patch matching step to find the best texture according to the
depth range, and moreover, they assume the original depth
map is available. If the original depth information is available,
hole filling will be straight forward to find the source patch
according to the right depth level. The improvement to the
reference methods consists of classifying the source region
using warped depth information, in order to select similar
patches from the nearest depth range. The source region is
divided into background region and foreground regions using
depth information in the target patch. By considering Φ to
be the known source region, which contains both foreground
and background regions, the best source patch selection from
foreground region is avoided by sub-dividing Φ using depth
threshold Zc according to:

Φb = Φ− Φf , (15)

where Φf is the source region whose depth values are higher
than the depth threshold Zc.

The depth threshold has two different values selected
adaptively from the variance of the known pixel values of

the target depth patch. When the depth patch lies near to
foreground (See Fig. 6(a)), the variance of the target depth
patch is greater than a threshold γ, and the patch might contain
unwanted foreground values (See Fig. 6(b)). The average
value of the depth patch is then chosen instead as the depth
threshold in order to deduct the foreground parts. Otherwise,
the patch contains the uniform or continuous depth values, so
the maximum value in the depth patch is used as the depth
threshold in order to get the best patch according to the depth
level. The depth threshold Zc is defined as follows:

Zc =

{
Zp̂ if var(Zp̂(q)|q∈Ψp̂∩Φ) > γ;
max(Zp̂) otherwise. (16)

Ψp̂ is the highest priority patch, Zp̂ is the depth patch centered
at p̂ ; and Zp̂ is the average value of the depth patch. Zp̂(q) is
the depth value at pixel q and γ is the depth variance threshold.

Once the highest priority patch Ψp̂ from the priority
term and depth-based source region Φb defined in (15) are
computed, the target patch is filled with the best N number of
patches within the source region.

Ψq̂ = arg min
Ψq∈Φb

{d(Ψp̂,Ψq) + β · d(Zp̂, Zq)} , (17)

where d is SSD, and β is a value to give weight to the depth as
important as the texture. In contrast to the reference methods,
the depth-included curvature method used the warped depth
information in the inpainting process. In order to help the
inpainting process using the depth information, the holes in the
depth image should be filled simultaneously, or the hole free
depth image should be available for depth-guided inpainting
process. In depth-included curvature method, we considered
that the depth map should be filled simultaneously along with
the texture.

From the idea of [16], we used a weighted average of N
patches from the patch matching to fill the missing information
in the disocclusion. Weighted average minimizes the noise in
the selected patch and helps the smooth continuation filling
process. The depth information helps the inpainting process
to fill with the background textures otherwise when the depth
information in the patch-matching is not considered, we put
the filling in risk, i.e., the holes being filled with foreground
textures.
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(a) Warped depth-information (b) Source region before separation (c) Depth-based background source region

Figure 6. Depth-based source region selection.

In [1], the data term is calculated iteratively after every
target patch is filled because the new copied texture to fill the
hole region is a combination of the N best patches. In addition,
the source region is updated such that the filled area is also
available as source region for the next target patch.

V. TEST ARRANGEMENT AND EVALUATION CRITERIA

A. Compared to related work

Initially, the depth-included curvature inpainting method
results are evaluated by using objective measurements as well
as using visual comparison. A set of 10 frames are selected
from the three MVD sequences “Ballet”, “Break dancers”
and “Lovebird1” for objective evaluation. All three sequences
have a spatial resolution of 1024x768 pixels. The former two
sequences are captured with 8 cameras and a baseline of 300
mm and 400 mm respectively [12]. The latter sequence is
captured with 12 cameras and a baseline of 35 mm [17]. The
test sequences have different depth and texture characteristics
that make them suitable for testing different disocclusion
filling attributes of inpainting methods as the method relies on
depth. The “Ballet” sequence has large depth discontinuities
at different depth ranges, which results in large disocclusions
at different depth levels. The “Break dancers” sequence has a
large number of objects located in almost the same depth level
and smaller holes due to gradual depth discontinuities. The
“Lovebird1” sequence has complicated scene with complex
texture, structured background and large depth discontinuities.

B. Sensitivity analysis

The sensitivity of the depth at various steps of the proposed
inpainting process is analyzed by restricting the depth at those
stages. The depth information is used in three steps of the
proposed inpainting process. In the first step, sensitivity of the
depth in boundary extraction (SZB) is analyzed by performing
the inpainting method without considering the depth informa-
tion, i.e., using one sided boundary. In the next step, sensitivity
of depth in data term (SZD) is analyzed by computing the
data term using R, G, and B channels without incorporating
the depth information as an additional channel. In the last
step, the depth is used in source region selection and in block
matching. Sensitivity of depth in patch matching (SZP) is
analyzed separately without using depth. The sensitivity of
depth in source region selection (SZSR) and sensitivity of

depth in block matching (SZBM) are analyzed by using the
Φ as a source region and finding SSD for only R, G, and
B channels. While measuring the sensitivity at one step, the
depth is not changed in other steps.

All test sequences are used in a DIBR of V+D scenario
with possibility of full reference evaluation, i.e., access to
ground truth texture and available depth at the required camera
view positions. For the first two sequences, camera view 4 is
rendered from camera view 5 and compared with ground truth
image at camera view 4. In the third “Lovebird1” sequence,
camera view 4 is rendered from camera view 6 and compared
with ground truth image at camera view 4. The virtual views
are first rendered and small holes and ghosting artifacts are
removed using preprocessing step (see Fig. 1). Thereafter, the
processed warped views are used as inputs to the inpainting
method presented in Section IV. Important parameter and
values of the proposed inpainting method is given in [1].
The best exemplars are searched in the warped depth and
texture images, where as in [9] and [10] methods exemplars
are searched in the warped texture and original depth at
the virtual camera position. The implementation of inpainting
method [8] is available on [18]. We have also implemented the
method [9] for the comparison. The following two objective
evaluation metrics are considered for assessing the results:
peak signal to noise ratio of the luminance component (Y-
PSNR) and mean structural similarity index (MSSIM). Both
of these metrics measure the image quality where as MSSIM
mostly corresponds to the perceptual visual quality [19]. Both
metrics are applied to the full image, although the disocclusion
areas only corresponds to 3−15% of the total number of pixels.
This results in the quality change shown in the sensitivity
analysis to only manifest in the fractional part of the metric
values. Another approach that would emphasize the changes
would be to evaluate disocclusion pixels only. However, that
would produce results that are not comparable with previous
work.

VI. RESULTS AND ANALYSIS

A. Compared to related work

The objective evaluation results from the related work
and proposed methods are shown in Fig. 7. The PSNR
and MSSIM graphs consistently demonstrate that the depth-
included curvature inpainting method performs better than the
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Figure 7. Compared to related work: Objective metrics PSNR and MSSIM of the investigated sequences; Proposed method (−�−), Gautier
et al. method (− × −), Daribo et al. method (− · ♦ · −) and Criminisi method (· · 4 · ·), PSNR for each rendered frame at view position 4
of “Ballet” (a), at view position 4 of “Break dancers” (b), at view position 4 of “Lovebird1” (c), MSSIM for each rendered frame at view
position 4 of “Ballet” (d), at view position 4 of “Break dancers” (e) and at view position 4 of “Lovebird1” (f).

reference Criminisi, Daribo and Gautier methods. In addition
to the objective results, Fig. 8 shows the synthesized views of
the “Ballet” and “Lovebird1” images with the missing areas
and inpainted images from different inpainting methods for
visual assessment. Missing regions in Fig. 8(b) are filled with
foreground information since no information about the depth
is used to assist the filling process. Although the Daribo and
Gautier methods are aided with true depth information, the
missing areas are filled with the unwanted textures due to the
lack of depth constraints and filling order.

The depth-included curvature inpainting method operates
in a more realistic setting that only depends on warped depth
and it shows visual improvements compared to the reference
methods. The results from Fig. 8(e) show that the depth-
included curvature inpainting method propagates the necessary
neighboring information into the missing areas, by retaining
both smooth areas (at the left side of the “Ballet” image)
and propagating neighborhood structure (on the curtain in the
“Ballet” image and at the head of the women in the “Love-
bird1” image). The inpainting method might not reproduce the
exact structure as in ground truth images due to the lack of
knowledge about the scene contents, but it almost replicates
the main structure.

B. Sensitivity analysis

The sensitivity of the depth in various stages of the depth-
included curvature inpainting method is analyzed by using both
the objective metrics and visual comparison. The results for the
objective measurements are presented in Table I and Table II.

Fig. 9 and Fig. 10 show the synthesized views of the “Ballet”
and “Lovebird1” images with the missing areas and sensitivity
of the depth in depth-included curvature inpainting method for
visual assessment. The average PSNR and MSSIM values and
visual comparison consistently demonstrate that the influence
of the depth depends on the scene content and available depth
information.

1) Sensitivity of depth in boundary extraction: The results
from the sensitivity of depth in boundary extraction show that
the depth information is important to handle the disocclusions,
plausibly when they occur between foregrounds (see Fig. 9(b)).
Although depth information is used in source region selection
and block matching in order to fill holes from the background,
still the holes are filled with the foreground due to the lack
of knowledge about the depth on boundary, and as a result
foreground boundary is selected in the boundary extraction.
Thus adding the depth constraint on the selection of the
boundary improves the hole filling process.

2) Sensitivity of depth in data term: The results from the
sensitivity of depth in data term show that the depth informa-
tion is less important for filling holes in the inpainted view
(see Fig. 9(c) and Fig. 10(c)). However, the depth information
gives the priority to structures when the depth contains several
layers. For example, Fig. 5(a) contains several depth layers,
whereas the other depth image does not contain less depth
layers (see Fig. 5(b)). Moreover, the depth characteristics
depend on the depth acquisition method. Thus, if there are
some layers in the depth map enriching the depth information,
it favors the inpainting process.
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TABLE I. Sensitivity analysis: Average Y-PSNR.

Test
sequence

SZB SZD SZSR SZBM Proposed

Ballet 31.91 31.88 31.76 31.99 31.96
Break
Dancer

31.84 31.82 31.82 31.80 31.80

Love
bird1

25.16 25.15 24.91 25.13 25.16

TABLE II. Sensitivity analysis: Average MSSIM.

Test
sequence

SZB SZD SZSR SZBM Proposed

Ballet 0.8745 0.8745 0.8741 0.8748 0.8742
Break
Dancer

0.8289 0.8289 0.8298 0.8296 0.8289

Love
bird1

0.8614 0.8613 0.8607 0.8615 0.8615

3) Sensitivity of depth in patch matching: The results from
the sensitivity of depth in source region selection (SZSR) in
the patch matching step demonstrate that the depth information
is necessary in order to avoid the selection of the similar
texture regions from the foreground. Without using the depth
information, regions between two foreground objects are filled
with the foreground texture (see Fig. 9(d) and Fig. 10(d)).
Other results from the sensitivity of depth in source region
selection (SZBM) in the patch matching step demonstrate that
the use of depth in the source region is not so important when
the depth data contains no layers (see Fig. 9(e) and Fig. 10(e)).
In contrast, the depth data is essential for filling holes when
the scene contains multiple depth layers in order to propagate
the similar texture according to the depth level.

In summary, the quality of the virtual view is highly
dependent on the available depth information. Moreover, the
depth-information plays a crucial role in filling the missing
regions in the synthesized views by guiding the filling process
to proceed from the background direction and copying the best
texture from the background data. It is important that the depth
map is filled with the background information otherwise errors
will propagate because all stages of the proposed inpainting
method depend on the depth information.

VII. CONCLUSION

We have analyzed the importance of the depth information
in the proposed depth-based inpainting method to fill disoc-
clusions in a virtual view. The depth information guide the
direction from which the filling should proceed, helping the
data term calculation and, moreover, in the patch matching
to select the best texture from the background. The influ-
ence of the depth information at each stage of the inpaiting
process is analyzed by using objective measurements and
visual inspection and the results are compared with the depth-
included curvature inpainting method results. The evaluation
demonstrates that the proposed method performs better than
related work.

To what degree depth can be used in each step of the
inpainting process depends on the depth distribution, which is
presented in our visual analysis and objective evaluation. More

elaborate knowledge about the depth distribution allows for
tradeoffs that may reduce computational requirements without
sacrificing quality. One such example is in the case where
the scene has no disocclusions between foreground, and depth
may be excluded from the boundary extraction step. Moreover,
when the depth map contains only foreground and background
layers, the depth information in the data term and block
matching demonstrate less impact on visual quality.

For the future work, we will focus on reducing the compu-
tation time as the current method uses third order PDEs and is
iteratively calculating the data term. Another focus in the future
work will be on temporal coherency by using information from
neighboring frames with valid tests and analysis.
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(a) Warped images of Ballet and Love bird1

(b) Inpainted with Criminisi et al. method

(c) Inpainted with Daribo et al. method

(d) Inpainted with Gautier et al. method

(e) Inpainted with Proposed method

Figure 8. Compared to related work: inpainting method results for the investigated sequence frames “Ballet” first frame in the coulmn1 and
“Lovebird1” 190th frame in column 2.
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(a) Warped image (b) SZB (c) SZD

(d) SZSR (e) SZBM (f) Proposed method (depth in all steps)

Figure 9. Sensitivity analysis results for the investigated “Ballet” sequence second frame.

(a) Warped image (b) SZB (c) SZD

(d) SZSR (e) SZBM (f) Proposed method (depth in all steps)

Figure 10. Sensitivity analysis results for the investigated “Lovebird1” sequence frame198.


