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Abstract—Wireless Car-to-X communication is about to enter
the mass market in upcoming years. The non-licensed, but
reserved bandwidth for such communications is relatively narrow
in terms of the few usable channels and the expected number
of communicating entities. Among other communication aspects,
data serialization schemes that allow compact encoding as well as
fast encoding and decoding are required. Compact representation
of data helps in keeping a minimal bandwidth overhead in
the wireless channel. Moreover, since delay is an important
performance parameter in Car-to-X communication, the pro-
cessing time of the serialization/deserialization schemes shall be
kept to a minimum. So far, no detailed analysis of different
data serialization schemes for Car-to-X communication regarding
important properties such as runtime, memory consumption
and encoded output length has been published. In this work,
we provide a performance comparison analysis between the
standardized ASN.1 , the binary representations, Google Protocol
Buffers and Efficient XML Interchange format (EXI), all of them
as alternative strategies for data serialization. Standardized data
content for CAM, DENM and the security envelope are used in
the conducted study. We conclude that ASN.1 encoding on the
facility layer shows the best performance, outperforming Google
Protocol Buffers and EXI. However, for the case of encoding the
security envelope, ASN.1 is outperformed by a binary encoding
scheme in most cases, while EXI encoding outperforms all other
schemes. This implies that standardization efforts for the security
envelope should reconsider the recent shift from binary encoding
towards usage of ASN.1. Instead, the Efficient XML Interchange
format should be considered for this purpose.

Keywords-ETSI ITS; data serialization; ASN.1; Google Protocol
Buffers; Efficient XML Interchange format.

I. INTRODUCTION

Car-to-X (C2X) communication systems, often called Ve-
hicular Ad-Hoc Networks (VANETs), are gaining increased
attention in the awake of their upcoming deployment. Consid-
ering the high number of vehicles that are to be interconnected
and the narrow radio spectrum being a limited resource for
communication, efficient data representation is an important
aspect, which has not received much attention prior to our
work in [1].

However, the kind of data representation used for sending
content over the wireless channel significantly influences the
overall network performance. One of the key impacts is the
one on the availability of the channel, since a longer packet
implies a longer usage of the spectrum at a given transmission
rate. Since the ITS-G5 and WAVE systems both use a carrier

sense collision avoidance mechanism (CSMA-CA) for multi-
user channel access, longer packets imply longer transmission
times and hence a higher channel busy ratio. This means that
nodes near a transmitter, which are willing to transmit as well,
must wait longer until the channel is free to use. Moreover,
the wireless channel has a limited capacity allowing only a
limited number of transmitted bits per unit of time. The lower
the number of transmitted messages, the higher the number of
users that could use the given frequency spectrum in parallel.

The data serialization schemes also influence processing
power requirements in both ETSI Intelligent Transport Sys-
tems (ITS) in Europe [2] and Wireless Access in Vehicular
Environments (WAVE) in the United States [3].

Like most modern communication systems, C2X commu-
nication happens digitally. The latter implies that messages
between the involved nodes are represented as a series of bits,
i.e., as bit streams, in a platform independent way. As in any
software implementation of a communication system, the for-
mat of the messages exchanged between two communication
end points must be well known by them. That means that nodes
should be able to represent messages as bit streams and to
interpret them as the original messages as well. The generation
of a bit stream from a message is defined as encoding. Hence,
we refer to an encoded message as the bit stream representation
of such a message. Following the same logic, decoding is
defined as the (re-)generation of the original message from
its bit stream representation.

Several encoding schemes exist nowadays, and some of
them are used extensively in everyday data communications.
Depending on the application requirements, one scheme may
be suited better than another. The requirements for these
encoding schemes range from human readability (e.g., XML
[4], JSON [5]) or the space the bit stream takes up in memory
(e.g., ASN.1 PER encoding, binary encoding), up to system
performance, i.e., encoding/decoding processing delay (e.g.,
binary encoding, ASN.1 OER encoding).

In the C2X realm, it is significantly relevant to use a
bandwidth efficient encoding scheme since C2X communica-
tions operate under quite strict bandwidth constraints. As an
example, in Europe only one 10 MHz channel is available for
safety critical applications [6]. Therefore, an encoding scheme
that generates short bit streams out of messages is favored.
Moreover, safety related C2X applications have strict end-to-
end delay requirements. Therefore, encoding/decoding delays
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should be minimal such that their contribution to the end-to-
end delay may be considered negligible.

In this work, we focus on the comparison of the per-
formance metrics of three coding schemes, namely Abstract
Syntax Notation 1 (ASN.1) encoding rules, Google Protocol
Buffers (protobuf) and the Efficient XML Interchange format
(EXI). We apply the mentioned data serialization schemes to
the two most common C2X message types in ETSI ITS sys-
tems, which are Cooperative Awareness Message (CAM) and
Decentralized Environmental Notification Message (DENM).
Furthermore, four different encoding schemes for the ETSI ITS
security envelope are compared, which are binary encoding,
ASN.1 encoding rules, protobuf and EXI.

The remaining part of this work is organized as follows.
An overview of related work is given in Section II. Afterwards,
performance requirements and the applied measurement mech-
anisms are described in detail in Section III. The target plat-
forms’ description is summarized in Section IV. The obtained
results of the extensive performance study are described in
Section V. Finally, Section VI provides a conclusion about the
achieved results.

II. BACKGROUND

The background of this work regarding platform indepen-
dent data encoding, especially in the area of ETSI ITS, is
provided in this section. Additionally, a comparison to the
limited number of other published performance studies in the
area of this work is given.

A. Data Encoding Rules

Cooperative Awareness Messages (CAMs) and Decentral-
ized Environmental Notification Messages (DENMs) are the
two most important standardized ETSI ITS messages defined
in [7] and [8], respectively. A CAM contains basic information
about the transmitting vehicle, for example position and speed.
Depending on the purpose of the C2X application, received
CAMs are processed in specific ways. One example of an
application consuming the information contained in CAMs, is
the use case of a C2X based collision risk warning. Here, the
receiver nodes asses the risk of a collision with the transmitter
given the speed, position and heading information of the
sender, which is included in the CAM. The CAM generation
period is defined in the standard to be between 1 and 10 Hz,
being able to adapt depending on several parameters, such as
vehicle velocity and channel busy ratio [7].

In contrast to CAMs, DENMs are event-triggered mes-
sages. As its name suggest, a DENM contains information
about an event in the vicinity of the originating ITS-Station
(ITS-S). One example of an event could be a stationary vehicle
on the road. In this case, the stationary vehicle generates a
DENM and depending on the configuration might broadcast
this message periodically afterwards. The contents of the
DENM include, among other information, the position and
type of the event [8].

According to ETSI ITS standards, the encoding of CAM
and DENM is done using ASN.1 UPER (Unaligned Packed
Encoding Rules) encoding rules. There are several encoding
rules specified for ASN.1, including Basic Encoding Rules

(BER), Packed Encoding Rules (PER), Canonical Encoding
Rules (CER), Distinguished Encoding Rules (DER), Octet En-
coding Rules (OER) and XML Encoding Rules (XER) among
many other flavors. Each of them is providing advantages and
disadvantages from the point of view of a specific application.

Since PER provides a more compact encoded message than
the older BER and its subsets DER and CER, it is often
used in systems where bandwidth conservation is important
[9]. This might be the reason why the CAM and DENM
standards specify that the encoding rules to be used should
be Unaligned PER (UPER). In aligned PER fields are aligned
to 8-bit octet boundaries by inserting padding bits, whereas in
UPER padding bits are never inserted between fields, hence
allowing a higher bit stream size reduction.

A widely used alternative to ASN.1 encoding rules are
the so called Google Protocol Buffers (protobuf), which are
used by Google extensively in their production environment
[10], [11]. Therefore, they can be regarded as a stable and
reliable mechanism. Protobuf offers a more simplistic approach
to the platform independent data encoding, making it easier
to manipulate and implement [10]. Additionally, they can be
configured to do encoding optimized for either fast processing
or small memory footprint. The latter is also a common feature
provided by standard ASN.1 implementations. For example,
the software provided by OSS Nokalva provides this feature
[9]. Therefore, protobuf can be seen a well comparable alterna-
tive to ASN.1 for data representation. Hence, the performance
study provided in Section V includes usage of protobuf.

Another data representation technology, which is well-
known in the automotive domain, is the so called binary
Extensible Markup Language (XML) via the Efficient XML
Interchange (EXI) standard [12]. EXI is used for the commu-
nication between electric vehicles and charging stations during
the charging process as defined in the new ISO 15118 standard
[13]. EXI is a machine-to-machine protocol, which aims in
removing all overhead coming along with XML, to enable
human readability such as indentation, whitespace and even
byte alignment (like for ASN.1 UPER). In schema less mode,
EXI tries to minimize overhead by the use of string tables,
thus reduces encoding size very rapidly for repetitive message
structures.

Moreover, EXI also allows the usage of XML schemes on
the sender and the receiver, which allows to share common
knowledge about the structure of the transferred messages in
a convenient and flexible way. EXI encoding and decoding
happens in a linear way, so that decoding can already start
when only a first part of the full message has been received.
Thus, EXI can be regarded a proper alternative to ASN.1
UPER and is therefore included in our performance study.

For the ETSI ITS security envelope two different sets of
encoding rules have been proposed so far. At first, binary en-
coding with explicit definition of all data fields was proposed in
[14]. Additionally, encoding using ASN.1 UPER was proposed
recently in [15]. However, no in detail comparison of these
two proposals is available, except of our prior work in [1]. As
further reference schemes, protobuf and EXI are also used for
the security envelope in the performance study, presented in
Section V.
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There are important differences to consider when compar-
ing different data representation schemes. Some of the most
relevant are,

• how are optional fields within messages handled, i.e.,
how is a field’s presence or absence represented,

• possibility of future backward compatibility when
extending a message, i.e., adding of new mandatory
or optional data fields,

• byte alignment,

• providing the functionality of data compression, for
example variable length representation of integers.

These differences allow many different combinations which
could be used and are actually to be found in various prac-
tically used mechanisms. An overview of this set of basic
properties for the data representation schemes used later in
this work is provided in Table I.

TABLE I. OVERVIEW OF BASIC PROPERTIES FOR DIFFERENT SCHEMES
OF PLATFORM INDEPENDENT DATA REPRESENTATION.

binary [14] ASN.1 UPER protobuf [16] EXI
presence of
optional fields not encoded encoded encoded encoded
extendability no no yes yes
byte alignment yes no yes no
compression normally no yes yes yes

only one type byte blocks byte blocks

As a comparison example, the standardized binary en-
coding for the ETSI ITS security envelope uses no explicit
encoding of optional fields [14], allowing no possibility of a
backward compatible extension. It also uses data compression
only for one specific data type (IntX [14]), which is a variable
length integer type. This type is almost exclusively used to
encode the length of data fields and not for encoding real data
content. Protobuf and EXI both use variable length encoding
for integers, but the size of an integer still has to be an integer
multiple of one byte.

In regard to extendability, protobuf provides a backward
compatibility property, which allows to add message structures
without any change to the encoding and decoding code. EXI
has a similar feature when using schema files for message
specification. Here the schema file might be updated in a way
that the old message specification is still valid (e.g., by adding
an optional element). In this case, no change in the encoding
and decoding code is necessary either.

Alternative publicly available data serialization tools for
converting arbitrary data into a platform independent binary
representation include systems like Apache Avro, Apache
Thrift or Message Pack [17]–[19]. These systems are either less
mature or deployed to a much smaller extent in professional
environments compared to ASN.1 and protobuf (e.g., see [20]
for protobuf vs. Thrift). Therefore, they are not studied in detail
in this work. Additionally, serialization technologies like XML
or JSON, which aim to achieve a human readable and easy to
parse data representation at the price of increased encoding
length are out of the scope of this work. Such systems are not
appropriate to be used in bandwidth constrained communica-
tion systems.

B. State of the Art and Contribution of this Work

There are several publications comparing other encoding
schemes, such as XML with ASN.1. For example, the authors
in [21] compare the performance between binary encoded
XML and ASN.1 by running the tests on PC machines. In
[22], the authors compare the performance of XML against
ASN.1 BER on digitally signed data. They conclude that for
applications where high performance is required, ASN.1 BER
may be a better choice.

In [23] authors compare the performance of XML, JSON
and protobuf in terms of data size and coding speed. The
authors conclude that protobuf requires less bytes for the
message representation in comparison with XML or JSON.
The authors also explore the possibility of compressing XML
and JSON messages using gzip [24]. In the latter case, both
compressed text formats perform better than protobuf in terms
of data size. In terms of speed, the authors show that protobuf
performs better than both text schemes.

In [25], authors perform a similar study to the one in
[23] and expand it for performance in energy consumption,
relevant for a smartphone use case. They also show that
gzip-compressed protobuf, a variant not explored in [23],
performs better in terms of encoded data size in comparison
with compressed XML, but worse than compressed JSON.
When the authors measure performance in respect to encoding
time, they conclude that for the data set they used protobuf
performs better. On the parsing process on the receiver side,
i.e., decoding, JSON performs slightly better than the other
two schemes.

A performance comparison between gzip-XML as well as
ASN.1 PER against EXI is provided in [26], where it is shown
that EXI greatly outperforms both other schemes for the used
test data set. In [27] Peintner et al. highlight the advantages of
schema-enabled EXI in the domain of multimedia applications
for embedded systems over the use of plain XML in respect of
encoding and decoding performance as well as compression.
They especially focus on the encoding of SVG vector graphics
and introduce an approach for a more efficient data type
representation in combination with EXI in this domain.

To the understanding of the authors at the time of writing
this work, there are no previous studies focusing on a quantita-
tive comparison of performance measurements between ASN.1
UPER, protobuf and EXI, specifically on the field of C2X
communications. Although, ETSI ITS standards for the facility
layer define the encoding mechanisms as ASN.1, this work
should provide some insight for the viability of an alternative
based on an open source development (i.e., protobuf) or on
EXI.

An alternative suggestion to binary encoding of the security
envelope using ASN.1 encoding has been proposed in a recent
ETSI ITS draft standard [15]. However, there are currently
no performance studies available providing insights on which
alternative should be selected. Moreover, EXI encoding has
not been considered for ETSI ITS data representation so
far. Another contribution of this work is to provide some
information on the performance comparison of these encoding
schemes on different computing platforms such as embedded
systems.
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III. PERFORMANCE REQUIREMENTS AND
MEASUREMENTS

The performance metrics considered in the evaluation of
the different encoding schemes are

1) computation time,
2) memory footprint on computation and
3) encoded data length.

Aspects 1 and 2 clearly focus on the required computing
power for the encoding and decoding process. As ETSI ITS
technology shall be implemented in embedded systems, e.g.,
in vehicles, these criteria are quite important due to the
limited resources typically available in such systems. The used
tools and methodology to measure these kind of metrics are
described in Section IV-B.

The length of the encoded data is a criteria which mostly
influences the required communication bandwidth on the wire-
less channel. It directly determines how long it takes to
communicate a data packet over the air. Given that a com-
munication channel has a limited capacity, the length of the
encoded messages directly influences the number of possible
transmissions over the air in a specific time span. Additionally,
ETSI ITS uses only a single control channel to distribute
important CAMs and DENMs. Therefore, an increased size of
the encoded data packet directly leads to a decrease in system
performance and scalability.

IV. TARGET PLATFORMS

In order to obtain reliable results for our performance
study, different hardware platforms with a common software
configuration have been used. Details about the used hardware
are given in Section IV-A, while the software framework is
discussed in Section IV-B.

A. Hardware

To execute our performance measurements of the data
serialization schemes in question, we have used three different
platforms. The reason is to show the influence of different
used hardware technologies as well as to exclude effects on
the overall performance study caused by a single processor
technology. Table II summarizes the main characteristics of
the three platforms used during our experiments.

TABLE II. USED CPU HARDWARE AND ACHIEVABLE MEASUREMENT
ACCURACY VIA LINUX CLOCK COUNTERS.

type AMD Geode LX Intel Atom Z520PT Intel Core i7-2640M
clock speed 500 MHz 1.33 GHz 2.8 GHz
clock res. 2 ns 1 ns 1 ns

More details about the used processor technologies can be
found in references [28]–[30].

The clock resolution given in Table II was obtained by us-
ing the clock getres() [31] function on the individual platforms
in the software environment described in the next section.

B. Software

On all platforms, a standard Debian Linux [32] system with
kernel version 3.16.0 was used as the underlying operating

system during the performance study. Furthermore, ASN.1
related functionality was provided by the FFASN1 Compiler
[33]. Additionally, correctness of encoding as well as the
encoded data length was double checked with the ASN.1
library from OSS Nokalva [9]. Protobuf was used in version
2.5.0 as provided by the Debian distribution.

EXI related functionality was provided by the Embeddable
EXI Processor in C (exip) library [34]. A double check of
the correctness of the encoding and the preparation of the
schemes for exip have been done with the Java-based OpenEXI
software [35]. For binary encoding of the security envelope the
implementation from the ezCar2X framework [36] was used.
All used software was compiled on the target with the GCC
compiler version 4.8.2 [37]. Thereby, strong optimization was
enabled with the -O3 compiler flag.

In contrast to our prior work in [1], we focus the per-
formance study in this work on the time optimized (TOED)
implementation variants of the regarded data (de-)serialization
schemes. This is done, as the results in [1] clearly show
that computational processing on all used target platforms is
bound by pure CPU speed. Thus, the TOED implementations
clearly outperform their space optimized (SOED) counterparts
in regard to all considered performance criteria. For more
details about this aspect the reader is referred to [1].

For timing measurements, the Linux kernel high per-
formance counters have been used, which can be accessed
from user space by calling the clock gettime() function [31].
Thereby, CLOCK PROCESS CPUTIME ID was used as the
clock ID in order to determine only the time spent in the
process, which contains the algorithm to be measured. An
accuracy of up to 1 ns can be achieved, if the underlying
hardware permits such accurate measurements [38]. In order to
make the measurements more accurate, the suggestions from
[39] for avoiding effects of out-of-order execution have been
applied. Therefore, the CPUID instruction was executed before
and after calling the clock gettime() function.

The described methodology for time measurements is
preferred over directly reading the CPU’s time stamp counter
(TSC), which is for example used in [39]. The reason is that
while [39] uses operations only available inside the Linux
kernel, the measurements in our performance study are done in
the user space. Therefore, certain prerequisites of the approach
from [39] like disabling of interrupts or scheduling cannot be
fulfilled. Hence, we rely on the implementation of the clock
counter in the Linux kernel.

An algorithm’s main memory footprint (heap as well as
stack usage) was measured by the help of the so called
malloc count framework [40]. This framework allows arbitrary
parts of a program to be traced by inserting dedicated function
calls into it. These calls where only used during memory
measurements and were removed during timing measurements
as they would introduce overhead. Other memory tracing
tools like massiv from the valgrind framework [41] do not
allow adjustment of the measurement procedure with such fine
granularity. Therefore, malloc count was used to obtain the
results presented in Section V-C.
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V. PERFORMANCE STUDY

The conducted performance study is discussed in de-
tail in this section. Firstly, the data content to be used
for (de-)serialization is described in Section V-A. Secondly,
the procedure for generating encoding rules for serialization
schemes not present in current standards (i.e., protobuf and
EXI) is introduced in Section V-B. Finally, Section V-C pro-
vides the results obtained in the extensive performance study,
using the methodology from Section IV on content described
in Sections V-A and V-B.

A. Content for Encoding and Decoding

For this performance study, we have selected the subset of
fields that are defined as mandatory in the standards of CAM
and DENM. This implies that the results showed here provide
a lower bound of performance of all the considered encoding
schemes. For these messages, we have used real data within
the message content as far as possible, e.g., we included real
time stamps and coordinates.

The studied security envelopes consist of the message fields
as specified in [14] and [15], where all defined security profiles
(three in total) are taken into consideration. Additionally, for
the CAM security profile (security profile number 1) two cases
have to be distinguished. The corresponding envelope can hold
a signed certificate or just an eight byte hash value of the
certificate. Both cases have been included in the performance
study.

It should be noted, that the depth of nested data structures
significantly affects the performance of encoding and decoding
mechanisms. Thus, an overview of the hierarchy of data
elements (often called containers in the ETSI ITS context) is
given in Table III. Four different cases are considered for the
security envelope, which relate to the three different security
profiles from [14].

TABLE III. OVERVIEW OF NESTING OF DATA FIELDS FOR CAM,
DENM AND SECURITY ENVELOPE.

nesting level 1 2 3 4 5
CAM 2 4 4 20 10
DENM 4 8 4 0 0
sec. profile 1 (CAM) w/o cert. 5 16 4 0 0
sec. profile 1 (CAM) w. cert. 5 22 21 11 0
sec. profile 2 (DENM) 5 22 23 11 0
sec. profile 3 (Generic) 5 22 22 11 0

The numbers in Table III give the amount of data sets
(mandatory and optional) found at the different nesting levels.
To obtain the figures in Table III, the full data sets were
represented in a tree structure. As we use only mandatory fields
in our performance study, the elements of sub-trees following
an optional element are not counted. Nesting level one means
the top level of the data packet, whereas nesting level five
relates to the data elements at the most deeply nested position
inside the data packet.

In order to separate the security component tests from
others, no real payload was used on these tests. For the case
of binary encoding, the envelope only includes the mandatory
one byte dummy payload as specified in the standard [14].

Listing 1. VerificationKey element from the security envelope as implemented
according to the standard.
<s 0 : V e r i f i c a t i o n K e y>

<s0 :Key>
<s0 :E cdsaNi s tp 256Wi thS ha256>

<s 0 : p u b l i c K e y>
<s0:CompressedLsbY0>

<s 0 : x>FFFFFFFF< / s 0 : x>
< / s0:CompressedLsbY0>

< / s 0 : p u b l i c K e y>
< / s0 :E cdsaNi s t p256Wi thS ha256>

< / s0 :Key>
< / s 0 : V e r i f i c a t i o n K e y>

Listing 2. Optimized VerificationKey element from the security envelope.
<s 0 : S u b j e c t A t t r i b u t e V e r i f i c a t i o n K e y E c d s a
Nistp256WithSha256CompressedLsbY0>FFFFFFFF
< / s 0 : S u b j e c t A t t r i b u t e V e r i f i c a t i o n K e y E c d s a
Nistp256WithSha256CompressedLsbY0>

B. Encoding Rules for Google Protocol Buffers and Efficient
XML Interchange Format

The definition files for protobuf and the XML scheme files
for EXI were derived from the ASN.1 definitions given in
standards [7], [8], [15]. Transformation from ASN.1 definitions
to protobuf and EXI is straightforward due to the low number
of available data types in both. During the transformation
process always the smallest protobuf (or EXI) data type, which
is able to hold the corresponding ASN.1 data type, was selected
to avoid introducing unnecessary overhead.

Protobuf does not provide a data element for choices, thus
all possible subjects of a choice where chosen to be optional
elements. This also means that, the protobuf library does not
provide any possibility to check whether exactly one of the to
be chosen elements was actually chosen. Thus, this check is
left to the user of the auto-generated code.

In the performance study case for EXI, two approaches
were followed. At first, a full mapping of the standard to an
EXI schema has been developed. These schema files contain
a lot of nesting levels, leading often to (informationally)
unnecessary content. On the other hand, this makes the existing
schemes easy to expand and very structured. However, in all
cases the full schema description has to be updated on both
sender and receiver when introducing fundamental changes
in the message structure. Since one of the key parameters in
this study is the size of the encoded messages, we opted for
introducing data optimized schemes. In other words, in the
schema files the unnecessary nesting levels are merged, thus
decreasing the number of options in the EXI grammars. The
difference in respect to XML structure of the elements can be
seen exemplarily in Listings 1 and 2.

As one can see from comparing Listings 1 and 2, the
number of tags required for storing the same amount of
payload is reduced from six to only one. Thus, this clearly
reduces the amount of metadata in the serialized data, which
leads to reduced encoding length.
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C. Results of Performance Study

The results of the conducted performance study regarding
memory consumption and encoded output length are sum-
marized below. At first, in Tables IV (CAM), V (DENM),
and VI (security envelope) results for encoding (i.e., data
serialization) are given. Second, results for decoding (i.e., data
deserialization) are provided in Tables VIII and IX. In the
following, individual results for these message contents are
analyzed in detail.

Memory requirements, as well as encoding length are
independent of the used CPU architecture. Therefore, just a
single result is given for these criteria in the following analysis.
Runtime performance, which is clearly processor specific, is
presented later on.

In the following analysis, all encoding lengths and memory
consumption measurement results are given in bytes. To pro-
vide a fair comparison, all memory consumption and runtime
measurements for the EXI data serialization scheme give the
results for normal, i.e., non optimized, data representation.
At first, the results for data encoding, i.e., serialization into
the data format transmitted over the network, are given in
Section V-C1. A discussion about the results for data decoding,
i.e., deserialization of data received from the network follows
in Section V-C2.

1) Data Encoding: Data encoding (i.e., serialization) is
studied in the following, as it happens at the sender side of a
communication connection.

At first, encoding performance for CAMs is studied in
detail. The achieved results are summarized in Table IV.
Thereby, the value in brackets in the EXI column gives the
achieved message size for the case of using the optimized
message definition set as introduced in Section V-B.

TABLE IV. ENCODING PERFORMANCE RESULTS FOR CAMS.

protobuf ASN.1 EXI
heap / stack 242 / 1864 66 / 3112 62656 / 210
encoded length 165 41 64 (opt: 61)

From Table IV, one can see clearly that protobuf generates
almost four times more output bytes than ASN.1 for an
encoded CAM. Both the standard as well as the optimization
variants of EXI encoding are clearly outperformed by ASN.1,
but achieve smaller encoding size than protobuf.

The generated protobuf code uses less memory (cumulative
heap and stack) than the ASN.1 implementation. From the
measurement results, it is clear that both protobuf and ASN.1,
outperform the EXI implementation in regard to memory us-
age. This is because, the chosen EXI implementation does not
use any static a-priori knowledge like the auto-generated code
used for ASN.1 and protobuf. Instead, the used library builds
up all required trees for encoding on demand in memory. This
clearly leads to increased memory consumption and runtime,
as one can see from runtime measurement results given in the
following. Thus, for a production system one would choose
to use a less flexible, but more memory and runtime efficient
implementation.

We now study the encoding performance of DENMs. The
corresponding results are given in Table V.

TABLE V. ENCODING PERFORMANCE RESULTS FOR DENMS.

enc. type protobuf ASN.1 EXI
heap / stack 126 / 1752 75 / 2792 61608 / 175
encoded length 114 43 52 (opt: 51)

As one can clearly see, the memory consumption is similar
to the encoding of CAMs but somewhat lower. This is in
line with the smaller size of encoded data. As less data
has to be encoded, a lower memory consumption can be
expected. Additionally, the protobuf encoding shows again the
smallest memory footprint of all of the shown four encoding
schemes. Furthermore, protobuf performs worst in encoded
length, however it only needs roughly three times as much
space as ASN.1 compared to almost four times for CAMs.

Moreover, the difference between encoding lengths for
ASN.1 and EXI in Table V is significantly smaller than for the
CAM case. From studying the different encoding rules, one can
see that protobuf introduces more overhead for deep nesting
structures than ASN.1 does. From the data analysis provided in
Table III, one can see that CAM uses much more and much
deeper nested data structures compared to their counterparts
in DENM and security envelope. Thus, the difference between
the overhead caused by protobuf for the CAM and DENM data
sets is as can be expected.

Table VI gives the performance results for main memory
consumption as well as encoding length for the ETSI ITS
security envelope.

TABLE VI. ENCODING PERFORMANCE RESULTS FOR THE SECURITY
ENVELOPE.

enc. type profile heap/stack enc. length
binary 1 no cert. 240 / 12168 96

1 cert. 798 / 15800 222
2 798 / 15800 233
3 798 / 15800 230

protobuf 1 no cert. 1784 / 13528 133
1 cert. 3819 / 15016 306

2 4023 / 15016 318
3 3865 / 15016 312

ASN.1 1 no cert. 1463 / 19784 88
1 cert. 2186 / 20528 240

2 2186 / 20528 249
3 2186 / 20528 247

EXI 1 no cert. 61760 / 680 90 (opt: 87)
1 cert. 63313 / 680 210 (opt: 201)

2 63553 / 680 215 (opt: 206)
3 63457 / 680 213 (opt: 204)

In Table VI the profile column gives the number of the
applied security profile as defined in [14]. As described above
in Section V-A, the two cases of an envelope with and without
certificate have to be distinguished for security profile number
one (used for CAMs).

Comparing the overhead introduced by protobuf encoding,
its size is between the overheads for CAM (being larger) and
the one for DENM (being smaller). Such behavior can be
expected, as the nesting of the security envelope is deeper
than the one for DENM, but no such deep as for CAM (see
also Table III).

The encoding lengths for security profiles two and three
are only different for the case of binary encoding and not
for ASN.1 encoding, as the data field called message type is
optional according to [14] but required according to the ASN.1
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definition given in [15]. As the only difference between these
two security profiles is the presence of the message type data
field, this difference vanishes in the case of ASN.1 encoding.
Therefore, memory consumption is identical for these two
cases. In order for a difference between the two security
profiles to exist, our protobuf and EXI definitions declare
the message type field as being optional. From a semantical
perspective, it makes no sense to give a message type in case of
profile number three, as this is the default profile for messages
of type Generic [14].

One can see from the most right column of Table VI that,
in all cases binary encoding clearly outperforms protobuf in
respect to achieved encoding length. Additionally, it outper-
forms ASN.1 encoding in three out of four cases, the only
exception being the case of security profile number 1 without
certificate. In this case, ASN.1 encoding uses only 9 bytes less
than binary encoding. However, for the case with certificate
and security profile one, ASN.1 requires 19 more bytes than
binary encoding. Furthermore, binary encoding requires 18
bytes less for security profile number two against ASN.1 and
21 bytes less for security profile number 3, respectively.

The results from Table VI clearly show that the normal EXI
encoding scheme achieves the smallest packet size for security
profile one with certificate as well as profiles two and three.
Additionally, it outperforms binary and protobuf encoding for
the case of security profile one without certificate and is
only slightly outperformed by the ASN.1 encoding scheme.
However, the optimized variant of EXI encoding significantly
outperforms all other schemes in regard to message size.

In order to decide which encoding scheme performs best
for security profile one, the average size of the security
envelope should be considered. Due to varying CAM emission
frequency (from 1 to 10 Hz) and the different certificate
inclusion rules (see [14]), only a lower limit for the average
size of the security envelope for profile one can be given. The
average size of the security envelope ssec is to be calculated
by

ssec =
(fCAM − fcert) · sw/o + fcert · sw

fCAM
; fcert ≤ fCAM

Thereby, the size of the security envelope without certificate is
denoted by sw/o and the one with included certificate by sw.
To calculate the metric of the lower limit of ssec, the maximum
CAM emission frequency fCAM , of 10 Hz, together with the
minimum certificate inclusion frequency fcert, of 1 Hz, is used.
The different values of this metric for the regarded encoding
schemes are given in Table VII.

TABLE VII. MINIMUM AVERAGE SIZE OF THE SECURITY ENVELOPE
FOR CAMS (SECURITY PROFILE ONE).

encoding scheme binary protobuf ASN.1 EXI
min (ssec) 108.6 150.3 103.2 102 (opt: 98.4)

One can see from the results provided in Table VII that EXI
encoding achieves the best minimum average encoding length.
This means, that with EXI encoding the average message
size will always be smaller than the one for other encod-
ing schemes, whatever CAM generation rate and certificate
inclusion rates are applied. The saved message size for the
optimized variant of EXI in comparison to the normal EXI

encoding is an additional 3.53%. In comparison to the stan-
dardized binary encoding scheme, it even saves the significant
amount of 9.39% in message size.

To obtain results for the computation time we ran the
measurement procedure described in Section IV-B 10,000
times and computed the average of the measured outcome.
Corresponding results for all processor types from Table II are
shown in Figures 1, 2, and 3. Please note that the vertical axis
of the graphs uses a logarithmic scale. Additionally, for binary
encoding only four runtime measurement results are provided
per processor as this scheme is not defined for encoding of
CAMs and DENMs. Therefore, only the four different kinds
of security envelope encoding have been measured.

An overview about the achieved runtime performance
measurements on an Intel Core i7 processor is provided in
Figure 1 (see also Table II).
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Figure 1. Encoding runtime performance of ETSI ITS CAM, DENM and
security envelope encoding on an Intel Core i7 processor.

The obtained results clearly show that, for the security
envelope, binary encoding is significantly faster than the two
other encoding schemes. Additionally, ASN.1 encoding out-
performs its protobuf and EXI counterparts.

A significant source of influence on runtime performance
for encoding the security envelope is the high number of small
and deeply nested data fields used for defining the security
envelope (see also Table III). The achieved results depicted in
Figure 1 indicate that binary encoding can handle this kind
of structure better than the other encoding schemes can do.
Moreover, ASN.1 and protobuf are almost on par and both
clearly outperform the EXI mechanism.

To avoid overloading the figures, the computed standard
deviation of the measured runtimes are not shown. In general
the standard deviation was quite low, e.g., a value of 152 ns
was found for binary encoding of the security envelope with se-
curity profile one without included certificate. The differences
between the obtained results of different encoding schemes
for same encoded data content are always bigger than three
times the standard deviation of the corresponding runtimes.
Therefore, the achieved measurement results can be regarded
as reliable.
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The results obtained from the runtime measurements on
an Intel Atom processor are depicted in Figure 2 (see also
Table II).
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Figure 2. Encoding runtime performance of ETSI ITS CAM, DENM and
security envelope encoding on an Intel Atom processor.

Comparing Figure 2 to Figure 1, one can see that except of
a general increase in runtime (please note the different scaling
of the vertical axis of both figures), the overall results are
the same for the Atom and the Core i7 processor technology.
Due to the lower processor speed (see also Table II) such an
increase in runtime can be expected. However, the increase
is somewhat bigger than what can be calculated by just
determining the factor one obtains from dividing the respec-
tive processor clock speeds. It is reasonable to observe an
advantage in the runtime performance of the Core i7, which is
due to the improved processor technology such as precaching
algorithms, as it was introduced to the market significantly
later than the used Atom processor.

Finally, Figure 3 provides the results of runtime measure-
ments conducted using an AMD Geode processor (see also
Table II).
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Figure 3. Encoding runtime performance of ETSI ITS CAM, DENM and
security envelope encoding on an AMD Geode processor.

From the comparison of results shown in Figure 3 to
the results given in Figures 1 and 2, one can see that the
overall outcome of the performance study does not change by
switching from a modern high speed processor (like the Core
i7) to a quite old and low speed processor, like the AMD
Geode.

Given the latter statement, we conclude that the achieved
results can also be used to interpret the behavior of the studied
encoding algorithms within embedded systems using medium
speed processors, nevertheless low end, low power processors
may possibly behave differently.

In summary, it has been shown that regarding runtime and
memory consumption, binary encoding outperforms all other
studied encoding schemes running on all platforms. Regarding
ASN.1, it can only achieve a shorter encoding length than
binary encoding in the case of security profile number 1
without certificate. However, for the security envelope case
EXI encoding, especially the optimized variant, outperforms
all other serialization schemes in regard to message length.

It is worth to note that, the default timing interval for
including a certificate in the security envelope of a CAM
is equal to the default sending interval of CAMs (see [14]
[7]). The latter means that normally CAMs are sent with a
certificate included in the envelope. Therefore, the results show
that the newer standard [15] defining the security envelope
using ASN.1 significantly deteriorates the performance of its
encoding compared to the preceding standard [14], which uses
a binary encoding scheme. Furthermore, as ASN.1 does not
provide a forward compatibility functionality, like e.g., proto-
buf would do, there is almost no reason why one should prefer
ASN.1 over binary encoding. Instead, one should consider EXI
encoding to benefit of a shortening in encoded size of the
security envelope of about 9.39%.

The conducted performance study also shows that protobuf
cannot be seen as a real alternative to ASN.1 for ETSI ITS
data encoding. Protobuf is outperformed by ASN.1 on almost
all of the selected important performance criteria on any of
the platforms used and for all kinds of data types considered.
Protobuf was found to be somewhat smaller compared to the
respective ASN.1 counterpart only on the memory footprint
parameter for some kinds of data types. Nevertheless, also in
those particular cases, protobuf is not able to outperform the
binary encoding scheme of the security envelope.

2) Data Decoding: In the following, the results for data de-
coding (i.e., deserialization) are provided. These mechanisms
are required at the receiver side of a message exchange. As the
number of other ITS-Ss is typically quite high in a VANET
and the majority of messages is broadcast traffic (e.g., CAMs
and DENMs), message decoding happens much more often
than message encoding. Thus, poor computational performance
of a data representation scheme leads to significantly higher
penalty at the receiver’s side compared to the sender’s side.

Table VIII provides an overview of the memory con-
sumption regarding stack and heap usage of the different
deserialization mechanisms for CAM and DENM data types.

The obtained results clearly show, that protobuf uses the
least amount of memory (cumulative stack and heap) and EXI
performs worst in regard to this criteria. Like for encoding
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TABLE VIII. MEMORY RELATED DECODING PERFORMANCE RESULTS
FOR CAMS AND DENMS.

protobuf ASN.1 EXI
CAM: heap / stack 242 / 1800 370 / 2968 3850 / 210
DENM: heap / stack 126 / 1624 816 / 2872 3630 / 135

results (see Tables IV and V), the EXI decoder uses the
majority of its memory on the heap in contrast to both protobuf
and ASN.1, which take the majority of their memory from the
stack.

Table IX summarizes the results for memory usage of the
different deserialization schemes for the security envelope.

TABLE IX. DECODING PERFORMANCE RESULTS FOR THE SECURITY
ENVELOPE.

enc. type profile heap/stack
binary 1 no cert. 872 / 15480

1 cert. 1709 / 19208
2 1773 / 19208
3 1717 / 19208

protobuf 1 no cert. 1916 / 19992
1 cert. 3665 / 20632

2 3869 / 20632
3 3711 / 20632

ASN.1 1 no cert. 1296 / 13016
1 cert. 4255 / 14040

2 4327 / 14040
3 4311 / 14040

EXI 1 no cert. 13375 / 1080
1 cert. 14131 / 1100

2 14195 / 1140
3 14198 / 1136

In contrast to results for CAM and DEMN deserialization,
for decoding of the security envelope ASN.1 uses less memory
than protobuf, which showed the best performance for CAM
as well as DENM. Furthermore, EXI exhibits the smallest
memory footprint for all security profiles, significantly out-
performing binary and ASN.1 decoding schemes. This clearly
shows the dependence of a data (de-)serialization scheme on
the used structure of the message.

Memory usage of EXI decoding is much smaller compared
to encoding (see also Table VI). This is because the chosen
decoder design does not try to build a full message tree in
memory before returning the decoded message to the user.
Instead, the approach is more like the one for simple binary
decoding. The data packet is parsed element by element and
for each primitive data type found (e.g., an integer) an a-priori
registered callback function (provided by the user) is called.
This usage of a-priori information clearly reduces memory
consumption inside the decoding method significantly.

Runtime measurements of the different message decoding
mechanisms on the three regarded hardware platforms are
discussed in the following.

Figure 4 provides the results of runtime measurements on
the Core i7 platform.

As one can see from Figure 4, binary encoding significantly
outperforms its counterparts for all variants of the security
envelope. However, for decoding the gap between binary and
ASN.1 is smaller than for encoding (see also Figure 1).

Additionally, ASN.1 performs best for both CAM and
DENM decoding. An interesting finding is that the perfor-
mance gap between ASN.1 and protobuf as well as EXI
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Figure 4. Decoding runtime performance of ETSI ITS CAM, DENM and
security envelope encoding on an Intel Core i7 processor.

for CAM and DENM is much bigger than for the security
envelope. What is more, protobuf performs poorly for the
case of CAM and DENM. EXI shows the worst decoding
runtime performance for the security envelope. Furthermore,
for protobuf and EXI, decoding of CAM and DENM takes
longer than decoding of a security envelope with profile one
with certificate. This is a quite unexpected result, as the
envelope is significantly longer than a CAM or DENM (see
also Tables IV, V, and VI).

Comparison of the decoding results from Figure 4 with
encoding results from Figure 1 shows that for all data repre-
sentation mechanisms decoding is faster than encoding. This
is clearly a beneficial property for VANETs, as the number
of received (i.e., decoded) messages will typically greatly
outnumber the number of sent (i.e., encoded) messages.

Figure 5 gives the runtime measurement results for the
Intel Atom platform.
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Figure 5. Decoding runtime performance of ETSI ITS CAM, DENM and
security envelope encoding on an Intel Atom processor.

While the overall amount of required runtime increases
in comparison to the results for the Core i7 platform, no
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significant change in the relationship between the different
deserialization methods can be obtained.

Finally, Figure 6 provides runtime measurement results for
the AMD Geode platform.
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Figure 6. Decoding runtime performance of ETSI ITS CAM, DENM and
security envelope encoding on an AMD Geode processor.

As before, it can be seen that the overall processing
time scales again when compared to the Atom and Core i7
platforms, but in general the relation between deserialization
mechanisms is the same as with the other platforms. Thus,
it can be concluded that the obtained results for the relation
between processing speeds of the different data representation
schemes is the same on all regarded platforms.

In summary, the obtained performance measurement results
for data deserialization are in line with the results of data
serialization provided in Section V-C1.

An overall conclusion about the achieved results in this
work is to be found in the following Section VI.

VI. CONCLUSION AND FUTURE WORK

Efficient data encoding schemes are required for future
bandwidth-limited C2X communication. In this work, we have
addressed three main performance metrics in C2X communi-
cations, which are encoded data length, runtime and memory
footprint. A study on these metrics for the ASN.1, Google
Protocol Buffers (protobuf) and the Efficient XML Interchange
format (EXI) encoding schemes has been performed using
ETSI ITS CAM and DENM messages as well as for their
security envelopes. On the latter, we have further evaluated
these metrics for the case of binary encoding, too. To make
the study as independent on the hardware as possible, the eval-
uation was done using three different processor technologies.
Our work also presents the used methodology for obtaining
the mentioned performance metrics.

The results presented show that the outlined measurement
methodology is able to provide the required performance
characteristics in a reliable way. Additionally, it was found
that the performance of the different encoding technologies is
independent of the used processor technology.

From the presented results, it is clear that the performance
of protobuf and EXI schemes are almost always outperformed
by ASN.1 encoding w.r.t. the required encoding delay or
runtime. Only in a minor amount of the studied cases, protobuf
outperformed ASN.1 encoding with regard to its memory
footprint. EXI showed to be the most expensive scheme
in terms of memory footprint. In terms of encoding length
for the cases of CAM and DENM ASN.1 UPER encoding
performs better compared to EXI and protobuf. For these cases,
the differences in length between the serialized information
generated by EXI schemes and ASN.1 were considerable but
small. In contrast, protobuf serialized message lengths are so
large that this scheme cannot be used in C2X communication.

An important result of the conducted performance study is
that binary encoding greatly outperforms ASN.1 encoding in
the clear majority of cases for the security envelope. ASN.1
actually outperformed its binary counterpart with respect to
encoded data length only in one of the studied cases (security
envelope for CAMs without certificate). Regarding runtime,
binary encoding performs significantly better in all studied
cases. The latter implies that the recent shift from binary
towards ASN.1 encoding (from [14] to [15]) is not justified
at least by the mentioned performance metrics.

In case a more compact representation of the security
envelope is required than binary encoding can provide, one
should consider to move to EXI data representation instead
of its ASN.1 counterpart. The EXI variant always provides a
smaller serialization size in average and current performance
burdens are likely to be overcome with an implementation
being more targeted to the specific ETSI ITS use case.
Therefore, the authors propose to conduct additional studies
involving either extensive simulations or field tests using both
technologies before finalizing the corresponding standard in
order to determine which encoding scheme should be used for
mass rollout of the future ETSI ITS system.

Directions on future work may include an extension of
the provided performance study regarding new upcoming
platform independent encoding schemes like Apache Avro
[17]. Such systems may provide more flexibility regarding
how to organize the encoded data. However, future research
has to show whether these improvements have to be paid
for by a performance degradation limiting practical usability.
Additionally, more runtime efficient implementations of the
used Efficient XML Interchange format can be studied to
enhance practical usability of this data representation scheme.
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