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Abstract—The use of ubiquitous computing for sport 
performance monitoring was demonstrated in recent work. In 
this paper, a custom-designed radio-based localisation system 
and its applicability for tracking a running athlete were 
presented. The system uses 2.4GHz radio with a Time-of-Arrival 
(ToA)-based localisation protocol to locate a running athlete on 
an indoor running track. Through a real-time analysis on the raw 
localisation data, the location results could be used to support 
other useful coaching support applications, such as automatic 
video tracking. The system was experimented against gold-
standard technologies. The results show that the presented 
system achieves a positional accuracy within 21.959cm for 
tracking running athletes. 

Keywords—Application; athletes; localisation; sports; 
ubiquitous sensing.  

I.  INTRODUCTION 
The use of ubiquitous sensing to support sports 

performance monitoring has been demonstrated in recent 
years. The system design principles for developing ubiquitous 
sports equipment were identified in [6]; whereas in [7], a 
wearable system that detects kicks in martial arts was reported. 
In [1][8][11], the use of pervasive sensing for performance 
monitoring of athletes (i.e., sprinters) was reported. The most 
interesting performance information of an athlete is speed, 
which is derivable from location data. Although the use of 
radio-based localisation systems to locate objects have been 
reported, however, most existing work focus on locating static 
objects (e.g., locating static sensor nodes in an office) or 
tracking (relatively) slow moving subjects (e.g., people in a 
hospital); also, most of the reported work were carried out in 
indoor and (relatively) confined environments (e.g., offices, 
hospital rooms, etc.). The applicability of radio-based 
localisation system for locating running subject in a large 
indoor environment, for example a sprinter running in an 
indoor stadium, is unknown.  

It should be noted that besides the athletes’ speed profile, 
video footage is considered as an important element in 
coaching support. Traditionally, coaches hold hand-held 
cameras to capture footage of athletes in motion. The 
drawback is that such manual approach distracts coaches from 
the coaching session. An automated solution is therefore 
preferred. It is possible to install multiple cameras along-side 
the track to capture video footages of athletes running for long 
range (e.g., over 60m), but the drawback of this solution is that 
the cost increases substantially. An alternative solution that 
involves fewer cameras is one that spins a camera towards the 
athlete. To do so, the system must be able to approximate the 
location of the athlete on the track in real-time. One solution is 

to carry out real-time image processing of the video footage to 
track athletes. The authors suggest that radio-based 
localisation systems – such as the one presented in this paper – 
could provide location information of a running athlete in 
order to drive a camera in real-time.  

To investigate the applicability of radio localisation system 
for locating a running athlete, the custom-designed SEnsing 
for Sports and Managed Exercise (SESAME) [1] nanoLoc 
(NNL) 2.4GHz radio-based localisation system was developed 
and evaluated. Through experimentations, the system shows 
that radio-based localisation is a promising approach with an 
average positional error of 21.9589cm using minimal 
equipment setup. The accuracy of the results is promising 
comparing to the 0.5m to 1m positional accuracy reported in 
existing literature. This paper is organised as follow: firstly, 
related work and the design challenges will be presented; 
secondly, the design assumptions and the NNL system will be 
presented; thirdly, the experiments and the results will be 
presented and analysed. The paper finishes with a conclusion 
and future work. 

II. BACKGROUND 

A. Related Work 
Motion-capture optical-based systems [4][14] have been 

used in existing biomechanics research to capture 2D/3D 
motion data of athletes, including positional data. Although 
highly accurate (i.e., millimeter-level accuracy) [5], they are 
very expensive, have limited Field of View (FoV), and unless 
permanently installed, would require one calibration per setup. 
Also, multiple markers must be attached to the subject. Thus, 
to cover longer distance runs, multiple scanners would be 
needed which means cost would rocket. Also, since they are 
infrared-based systems, they could only be used indoor. The 
high monetary cost involved and the level of complexity in the 
setup process mean these systems are impractical for regular 
data collection. These systems are generally used for small-
scale studies involving small number of sprinters over small 
number of trials, or used as gold-standard for system 
evaluation. The same restrictions apply to high speed video 
cameras (i.e., >2k frame rate) as well. 

A split time monitoring system is reported in [10]. Split 
time is the time it takes for one to run for 10m. The system 
reports gold-standard comparable split time information of 
athletes using cost-effective light-sensors. But split time does 
not provide continuous location information. Although more 
light sensors could be added to improve the granularity of the 
information, this may create a scalability issue. The same 
applies to conventional Light-Gate (LG)-based systems.  
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There are several other methods for continuous location 
tracking: GPS-based systems have been used; with a repeater, 
it could be a solution for indoor tracking. However, the use of 
repeaters is illegal in many parts of the world including the 
UK and Europe. Also, high precision GPS systems are 
expensive. An alternative would be laser range finders [9]. 
Coaches have been using laser range finders for continuous 
location tracking of athletes, however, only on an occasional 
basis. A laser range finder is placed at the end of the track, and 
emits an infrared beam to a flat subject, commonly the lower 
back of an athlete. The time-of-flight of the (reflected) signal 
is used to determine the position of the athlete relative to the 
laser range finder. However, laser range finders suffer from 
the following drawbacks: a) a laser range finder must be 
placed behind an athlete, and the operator (i.e., the coach) 
must manually adjust the finder to point at the flattest surface 
of the athlete (i.e., the lower back); a task which is 
increasingly difficult when the athlete runs further away from 
the finder; and b) they are expensive. Although automated 
laser range finders - such as Total Station - are available, they 
are even more expensive than conventional laser range finders. 

Another approach for continuous location tracking would 
be to the use of on-body sensors such as inertial sensors [15]; 
high quality inertial sensing systems, however, are expensive. 
In [11], an integrated on-body and track-side sensing system 
which detects step/stride length was reported. Stride length is 
the forward displacement of on the same foot during a stride. 
A series of accurately measured stride length would enable 
one to determine the location of the subject, provided that the 
starting position and the direction of the run are known. An 
alternative approach would be radio-based localisation 
systems. These systems use different types of radio [12][13], 
each with different types of characteristics and accuracy. 
Radio-based systems, however, subject to noise. There are 
reports on radio localisation data analysis protocols, such as 
the Curvilinear Component Analysis (CCA) [16] for 
processing multi-dimensional localisation data. In [13][17], 
the algorithms for interference-aware radio-based localisation 
systems were presented. In [18], the work on locating a 
relatively slow moving pedestrian in an indoor environment 
was reported. The use of (extended) Kalman Filter for robot 
localisation was reported in [19][20]; however, the speed of 
the robots was relatively slow and the results are insufficiently 
accurate for the purpose of this study. 

B. Design Challenges 
Spaces available on athletes for attaching on-body sensors 

are limited: the authors’ interviews with the coaches and 
athletes suggest that they would prefer to minimise the number 
of on-body equipment to avoid affecting athletes’ 
performance. Athletes do have a more open attitude towards 
placing sensors at more static and rigid locations, such as the 
lower back, where motion obstruction caused by sensor 
attachment is negligible. Thus, care must be taken to design 
systems so that they are small in size and light in weight. Also, 
since the track is a shared environment, the number of on-
track equipment should be minimised to avoid disturbance to 
other users. 

III. SYSTEM DESIGN 

A. System Assumption 
The NNL system is deployed and evaluated in an indoor 

environment; this is because training commonly takes place in 
indoor stadiums in the UK; also, optical-motion systems, such 
as CODA, could be used for evaluation purpose. Since the 
system is portable, radio-based, and uses a small number of 
track-side equipment, the system is provisioned to be deployed 
in outdoor environment as well. As a preliminary study, the 
investigation will start with using the NNL radio-based 
localisation system for locating an athlete sprinting on a 
straight (i.e., a 60m straight). Energy consumption of devices 
is not important, as each sprint is no more than a few seconds 
and athletes only train for a few sprints per day training 
session; thus, batteries could be re-charged or replaced at the 
end of a training session. Since the track is a shared 
environment, the number of on-track and on-body equipment 
should be minimised. The track is assumed to be clear when 
the athlete runs; this is a valid assumption for safety purpose. 
Safety and security issues are not addressed. 

Radio-based localisation systems are sensitive to changes 
in the surrounding environment, such as new additional 
infrastructure; however, it is fair to assume that during a day 
raining session, the surrounding environment does not change. 
In Section VII, provisionings in the finalised system that 
minimise the effect on the system’s accuracy due to changes 
of the surrounding infrastructure will be presented. 

B. System Design 

 
Figure 1 – The custom-designed NNL board 

The NNL system has track-side anchor(s), on-body tag(s), 
and a track-side sink which is connected to a laptop. The on-
body tag sends radio signal to the track-side anchor(s) which 
is(are) placed at known position(s), and uses Time-of-Arrival 
(ToA) to determine the distance between itself and the 
anchor(s). The (raw) distance value calculated by the tag is 
uploaded to the track-side sink. The system supports both 
Multiple Anchor (MA) and Peer-to-Peer (P2P) mode. The 
former requires multiple anchors to be placed at known 
positions on the track and uses triangulation to locate a subject, 
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whereas the latter uses only one anchor (which is placed 
behind the athlete) and is therefore suitable for straight runs. 
Another advantage of the P2P mode was that it involves less 
equipment on the track, which is ideal for experimentation in a 
shared environment at this early stage. Thus, in this paper, the 
results of the system using the P2P setup are reported. 

The custom-design localisation board (Figure 1) is used for 
implementing the anchors, tags, and sink. Thus, the only 
difference between the three types of nodes lies within their 
functionalities (i.e., software). Each board is only a few 
millimeter thick and half the size of a credit card, and each has 
a nanoLoc AVR chip from nanotron [3]. Each board is 
equipped with an ATmega644 processor and a 3-axis 
accelerometer and gyros. The boards operate in the 2.45GHz 
ISM band for both localisation and wireless data transmission. 
The effective wireless range in an indoor environment with a 
12dBi directional antenna was sufficient enough to cover a 
60m indoor track. The use of a directional antenna improves 
signal quality, hence reduces packet loss, and the range of 
coverage. For ranging, the system uses the Symmetric Double-
Sided Two-Way Ranging (SDS-TWR) protocol. Due to space 
limitation, readers are referred to [3] for details on the protocol. 
The double-side and two-way approach of the SDS-TWR 
protocol enables compensation of internal hardware delays, 
time drifts, and wireless transmission delays; hence 
eliminating the need of explicit wireless synchronisation 
between devices. Thus, the major advantage of the protocol is 
that it is asynchronous, which means no synchronisation is 
needed among the boards involved in ranging. 

 

IV. EXPERIMENT 

A. Experiment Setup 

 

Figure 2 – Experiment equipment setup 

Figure 2 shows the equipment setup. The anchor (with a 
directional antenna) is placed on a tripod (i.e., 0.76m above 
ground) and is placed at 2.8m behind the 0m line. The on-
body tag is securely mounted to a belt which is worn by the 
subject (i.e., 1.12m above ground); thus, the tag is close to the 
Centre-of-Mass (CoM) (i.e., lower back) of the subject (Figure 
3). Gold-standard passive optical motion tracking system, 
CODA from CODAmotion, was used for evaluation. CODA 
was chosen because of its well-documented high accuracy 
(i.e., millimetre-level). The CODA scanners were placed 
horizontally to the track, each has a viewing FoV of ~7m; 

thus, the total FoV was ~13m (with some overlapping between 
the scanners). A CODA marker is placed on the right side of 
the tag, so that the marker is within direct line-of-sight with 
the track-side CODA scanners in order to track the forward 
displacement of the tag (i.e., CoM of the subject). CODA was 
set to sample at 400Hz. 

On-body tag

CODA 
marker     
(on tag)

 

Figure 3 – On-body equipment 

It should be noted that a unique feature of sprinting 
experiment is that the experiment runtime is very short and 
there is no need to capture positional information beyond each 
sprint. Since crystal clocks drift linearly and the experiment 
runtime is very short, the effect of clock drift is minimal. 
TRIG IN was therefore chosen as the cross-subsystem 
synchronisation method between CODA and NNL: a 5.5V 
falling edge trigger was delivered to both systems through a 
BNC cable. An alternative method to TRIG IN is SYNC IN, in 
which all systems are driven to sample by the same clock. 
CODA provides a SYNC OUT function which could be used 
to drive other systems to sample. However, SYNC IN is 
currently not supported in NNL because NNL was designed 
operate independently. Note that for longer experiment, 
multiple triggers could be sent to synchronise the systems to 
address clock drift: this is possible because both NNL and 
CODA logs the incoming trigger signal in a separate ADC 
channel from their data channels. A series of common triggers 
could be generated as square waves by a signal generator. This 
arrangement facilitates for continuous and concurrent data 
sampling and trigger signal sampling (i.e., continuous 
synchronisation through multiple triggers). 

B. System Calibration 
It is well known that radio-based localisation systems are 

subject to noise and bias. The question is the repeatability of 
these parameters. Calibration is needed to address bias in the 
system. To calibrate the system, the subject was asked to stand 
at different known positions on the track for 30s (i.e., at every 
5m away from the 0m line, up to 60m). The raw distance 
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values reported by the NNL system at each known position are 
averaged to determine the bias value associated with that 
position. 

Note that two sessions of the experiments were conducted. 
This is because, even though radio subjects to noise, 
calibration is only needed per experiment setup, or per 
infrastructural change (i.e., major constructional changes in 
the surrounding environment), but not per repetition (rep.). 
Repetition is the term used by coaches to refer to a sprint. This 
argument is justified by carrying out the experiments over two 
sessions: the calibration on the second session reports a similar 
bias. 

V. RESULTS AND ANALYSIS 

A. Low-Pass Filtering and Correction 
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(c) Error distributions of corrected ranging data (mean error = 0.1222m, SD = 0.2333m)  

Figure 4 – Error distributions of corrected ranging data (rep. 1) 
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(c) Error distributions of corrected NNL (mean error = 0.0096084m, SD = 0.27863m)  
Figure 5 – Error distributions of corrected ranging data (rep. 2) 

One approach to correct bias in the data is through 
modeling. However, given the level of variability caused by a 
relatively significant change in pace (i.e., acceleration) at the 
start-up phase of a run, a modeling approach would be 
difficult, as reported in [2]. In this section, the raw ranging 
data are first low-pass filtered, then corrected using the 
calibration data collected as described in Section IV.B. Fast 
Fourier Transform (FFT) was used to determine a suitable cut-
off frequency (i.e., 1Hz), and the filtered ranging data are 
corrected using a piecewise linear model and the calibration 
data. The corrected ranging data are then compared with 
CODA data for error analysis. Some of the selected results are 
shown in Figure 4 to Figure 8 respectively. Note that because 
the NNL ranging data and CODA data were sampled at 

different rates, the corrected NNL ranging data are 
interpolated at 400Hz for error analysis. 
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(c) Error distributions of corrected NNL (mean error = 0.093634m, SD = 0.22024m)  
Figure 6 – Error distributions of corrected ranging data (rep. 3) 
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(c) Error distributions of corrected NNL (mean error = 0.035188m, SD = 0.28319m)  
Figure 7 – Error distributions of corrected ranging data (rep. 4)# 
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(c) Error distributions of corrected NNL (mean error = 0.07525m, SD = 0.31503m)  
Figure 8 – Error distributions of corrected ranging data (rep. 5) 

The averaged positional error of all reps. is 
6.7172±26.6078cm (mean±SD), which gives an overall 
positional error of 20.0211cm. There were a number of factors 
which would have contributed to the error: a) mean error and 
SD were useful to evaluate systematic error and noise; but the 
lower the cut-off frequency, the smaller the SD, the estimated 
trajectory is smoother. To justify this point, the analysis 
process was repeated but with a higher cut-off frequency at 
4Hz, the mean error was reduced but the SD was increased 
(i.e., 6.03248±31.138cm); b) it was assumed that the direction 
of movement of the tag is along the forward plane only. This 
is a valid assumption because sprinters are trained to run in a 
straight line (to maximise their speed) and lane crossing is 
strictly prohibited; in reality, however, sprinters could drift 
slightly off the centre of their assigned lane, and each lane has 
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a width of 1.21m; c) track-side equipment’s positional 
measurements were done manually; which could contribute to 
the error; and d) because NNL and CODA has a different 
sampling rate, corrected NNL data are interpolated at 400Hz 
for error analysis; should some of the corrected values were 
out-of-range, interpolation would contribute to the error as 
well. 

B. Real-time Approximation 
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(b) Error distribution of moving averaged with three samples (mean error = 0.10517m, SD = 0.27417m)

 

Figure 9 - Error distributions of the moving averaged data (rep. 1) 
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(b) Error distribution of moving averaged with three samples (mean error = 0.011509m, SD = 0.3032m)

 
Figure 10 - Error distributions of the moving averaged data (rep. 2) 

It should be noted that, a light-weight localisation protocol 
for approximating the location of an athlete in real-time would 
be preferred; one that is sufficiently accurate enough for 
spinning the camera at the athlete. Note that a typical camera 
placed on the track side has a FoV of ~5m (dependent on size 
of lens used). The FoV increases when the camera is placed 
further away from the track, which is the likely scenario (i.e., 
permanently installed cameras in a sport stadium – such as 
photo-finishing cameras - are usually installed in the roof or 
somewhere high on the side walls). Thus, one could tolerate a 
relatively larger error in the localisation system if the data 
were used for driving a camera. It should be that the design of 
the mechanical mechanism to spin a camera is out of the scope 
of this paper.  

Thus, the use of an alternative light-weight algorithm for 
approximating the location of a running athlete in real-time is 
investigated in this section. The algorithm involves moving 
average and correction in which three consecutive raw ranging 
data are averaged (i.e., a raw ranging data is averaged with its 
neighbouring value immediately before and after itself). The 
averaged value is subsequently corrected using the known 
calibration data. Since the typical FoV of camera is ~5m, the 

delay incurred by waiting for three samples is therefore 
acceptable. It should be noted that this is a proof-of-concept 
experiment, which means the presented system is not 
restricted to a moving average of three samples. Figure 9 to 
Figure 13 shows the error distributions of the selected reps. 
(i.e., interpolated NNL results against CODA). Note that 
interpolation is not needed to spin the camera, but needed for 
error analysis only.   
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Figure 11 - Error distributions of the moving averaged data (rep. 3) 

Rep 004

4 4.5 5 5.5 6 6.5 7
0

5

10

15

20

Accumulated time from start (s)

D
is

ta
nc

e 
(m

)

(a) Moving averaged (3 samples)

 

 

Moving averaged ranging data (3 samples)
CODA

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.80

50

100

150

200

Errors (m)

D
is

tr
ib

ut
io

ns

(b) Error distribution of moving averaged with three samples (mean error = 0.035579m, SD = 0.33739m)

 
Figure 12 - Error distributions of the moving averaged data (rep. 4) 
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(b) Error distribution of moving averaged with three samples (mean error = 0.076968m, SD = 0.38407m)

 
Figure 13 - Error distributions of the moving averaged data (rep. 5) 

The results show that the error is 6.4574±31.003cm 
(mean±SD); thus, an average error of 21.9589cm. Both the 
mean error and SD are higher than the results using filtered 
and corrected approach reported in Section IV.A. This is 
expected because of the presence of noise due to the decision 
to compensate accuracy for performance (i.e., a faster 
response time for spinning a camera). Consider the typical 
FoV of a camera is in excess of a few meters, the authors 
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argue that this level of accuracy is sufficiently enough for 
spinning a camera to follow an athlete in motion. 

VI. CONCLUSION 
In this paper, a radio-based localisation system that is 

capable of accurately locating a running athlete on an indoor 
running track was presented. The system operates in the 
2.4GHz band and uses ToA as the ranging protocol for 
localisation. The system supports either a multi-anchor mode, 
which includes multiple anchors placed at known positions on 
the track, or a P2P mode, in which only one anchor would be 
needed. A range of experiments using the system in P2P mode 
were conducted and the results show that radio localisation 
technique is a promising approach with an average positional 
error of 21.9589cm. The authors suggest that such level of 
accuracy is sufficiently enough for supporting an automated 
camera-based video tracking system to track athletes. 

VII. FUTURE WORK 
It was discussed in Section II.B that the presented system 

is not limited to indoor but also outdoor. With a directional 
antenna, the range of coverage in an outdoor environment 
could reach over 130m. To evaluate the system’s performance 
in an outdoor environment, a light-weight GPS board is being 
developed. Part of the future work is to develop a spinning 
motor what spins a camera at an athlete based on real-time 
localisation data from the NNL system using a gumstix 
computer. Gumstix was chosen because of its wide range of 
functionalities, although the system will not be restricted to 
gumstix. Another part of the future work includes installing 
the anchors in the roof of the stadium. The purpose of doing so 
is to avoid the need of placing equipments on the track, hence 
minimising the level of disturbance to other users. Also, 
calibration would be needed only when there was a substantial 
infrastructural change to the system’s location. This 
arrangement would also enable one to experiment with the 
multiple-anchor setup of the NNL system, which would allow 
one to do 2D tracking via triangulation (i.e., for oval track 
localisation). 

With regard to the on-body equipment, the authors’ 
observation is that coaches and athletes prefer tiny, light-
weight on-body equipment. This requirement means three 
further areas of work: a) a new version of the on-body sensor 
board is underdevelopment, the new version of the board is the 
size of a one-euro coin; b) the omni-directional antenna of the 
on-body tag must be replaced; probably by a chip-antenna on 
the NNL AVR chip; and c) currently, the sensor is attached to 
a belt which is worn by the subject; the sensor must be firmly 
attached to the subject’s body for safety reason as well as 
reducing the fluctuation of orientation of the antenna; thus, a 
better, less intrusive, user-friendly sensor attachment will be 
investigated. 
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